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Abstract. Asymptotic properties of solutions of the difference equation of the form

∆m
xn = anϕ(xτ1(n), . . . , xτk(n)) + bn

are studied. Conditions under which every (every bounded) solution of the equation
∆myn = bn is asymptotically equivalent to some solution of the above equation are ob-
tained.
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1. Introduction

We denote by Z,N,R the set of integers, positive integers and real numbers, re-

spectively. For p ∈ Z let N(p) = {p, p + 1, . . .}.
Let m, k ∈ N. We consider the difference equation of the form

(E) ∆mxn = anϕ(xτ1(n), . . . , xτk(n)) + bn,

n ∈ N, an, bn ∈ R, ϕ : R
k → R, τ1, . . . τk : N → Z,

lim
n→∞

τi(n) = ∞ for i = 1, . . . , k.

Let n0 = min{n ∈ N : τi(j) > 1 for every j > n and every i = 1, . . . , k}. By a
solution of equation (E) we mean a sequence x : N → R if there exists q ∈ N(n0)

such that the equation (E) is satisfied for all n > q. We say that sequences x, y are

asymptotically equivalent if xn − yn = o(1). For a given sequence x of real numbers,
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by
∑

xn we denote the series whose partial sums are x1, x1 + x2, x1 + x2 + x3 and

so on.

Recently, there has been a great interest in the study of asymptotic and oscillatory

behavior of solutions of higher order difference equations, see for example [3], [4], [6],

[10]–[17], Chapter 6 of [1], Chapter 7 of [5] and the references cited therein.

The purpose of this paper is to study the asymptotic behavior of solutions of

equation (E). Using the Schauder fixed point theorem and some technical results

obtained in Section 2 we show that if the sequence (an) is sufficiently “small” and the

function ϕ is continuous (uniformly continuous and bounded), then every bounded

solution (every solution) of the equation ∆myn = bn is asymptotically equivalent

to some solution of (E). Moreover, if the sequence (bn) is also “small”, then we

may replace the solutions of ∆myn = bn by the solutions of ∆myn = 0, i.e. every

polynomial sequence of degree < m is asymptotically equivalent to some solution of

(E). A similar problem for the first order nonautonomous difference equation was

considered in [10].

The results obtained here extend the results of the paper [3] and some of those

contained in [4], [11]. For the general theory of difference equations, one can refer to

[1], [5], [7]. Many references to some applications of the difference equations can be

found in [2], [8], [9].

The space of all sequences x : N → R we denote by SQ. The Banach space of all

bounded sequences x ∈ SQ with the norm

‖x‖ = sup{|xn| : n ∈ N}

we denote by BS. If B ⊆ R then Bk denotes the set

B × B × . . . × B ⊆ R
k.

Similarly if c ∈ R, then ck = (c, c, . . . , c) ∈ R
k. The standard (Euclidean) metric on

R
k we denote by d. We choose a constant λ0 ∈ R such that

d(t, s) 6 λ0 max{|ti − si| : i = 1, 2, . . . , k}

for every t = (t1, . . . , tk), s = (s1, . . . , sk) ∈ R
k (λ0 may be any real number >

√
k).

If X ⊆ R
k then ϕ|X denotes the restriction of the function ϕ to the set X , i.e.,

ϕ|X : X → R, (ϕ|X)(t) = ϕ(t) for any t ∈ X .
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2. Preliminary lemmas

In this section we present some lemmas which are interesting in their own right

and will be used in the proofs of the main theorems in Section 3.

For n ∈ N(1) we define numbers

σ0
n = 1, σ1

n = σ0
1 + σ0

2 + . . . + σ0
n = n.

If k, n ∈ N(1) then by induction on k we define numbers

σk+1
n = σk

1 + σk
2 + . . . + σk

n.

Moreover, we define σk
n = 0 for n ∈ −N(0), k ∈ N(0). By virtue of the equality

n
∑

i=1

(

k + i − 1

k

)

=

(

k + n

k + 1

)

it is easy to see that if k ∈ N(0) and n ∈ N(1), then

σk
n =

(

n + k − 1

k

)

=
n(n + 1) . . . (n + k − 1)

k!
.

Obviously, σk
n 6 nk.

Lemma 1. If x = o(1) then xn = −
∞
∑

i=n

∆xi for every n ∈ N(1).

P r o o f. If j > n then ∆xn + . . . + ∆xj = xj+1 − xn −→ −xn. �

Lemma 2. If x = o(1) then

(1) xn = (−1)k

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

ik=ik−1

∆kxik

for every k, n ∈ N(1).

P r o o f. If x = o(1) then ∆mx = o(1) for every m ∈ N(1). By Lemma 1,

xn = −
∞
∑

i1=n

∆xi1 , ∆xi1 = −
∞
∑

i2=i1

∆2xi2 . Hence,

xn = (−1)2
∞
∑

i1=n

∞
∑

i2=i1

∆2xi2 .
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By Lemma 1, ∆2xi2 = −
∞
∑

i3=i2

∆3xi3 . Therefore

xn = (−1)3
∞
∑

i1=n

∞
∑

i2=i1

∞
∑

i3=i2

∆3xi3

and so on. After k steps we obtain (1). �

Lemma 3. Assume m ∈ N(1), the series
∑

nm−1xn is absolutely convergent and

the sequence z is defined by

zn = σm−1
1 xn + σm−1

2 xn+1 + . . . .

Then z = o(1) and ∆mz = (−1)mx.

P r o o f. For every q ∈ {1, . . . , m} we define the sequence rq by

rq
n = σq−1

1 xn + σq−1
2 xn+1 + . . . =

∞
∑

k=0

σq−1
k+1xn+k.

The series is absolutely convergent since

σq−1
k+1 6 σm−1

k+1 6 σm−1
n+k 6 (n + k)m−1.

Since

rm
n =

∞
∑

k=0

σm−1
k+1 xn+k = σm−1

1 xn +

∞
∑

k=1

σm−1
k+1 xn+k,

rm
n+1 =

∞
∑

k=0

σm−1
k+1 xn+1+k =

∞
∑

k=1

σm−1
k xn+k

we obtain

rm
n − rm

n+1 = σm−1
1 xn +

∞
∑

k=1

(σm−1
k+1 − σm−1

k )xn+k

= σm−2
1 xn +

∞
∑

k=1

σm−2
k+1 xn+k =

∞
∑

k=0

σm−2
k+1 xn+k = rm−1

n .

Therefore ∆rm = −rm−1. Analogously, ∆rm−1 = −rm−2. Hence,

∆2rm = (−1)2rm−1

and so on. Afterm−1 steps we obtain∆m−1rm = (−1)m−1r1. Obviously∆r1 = −x.

Hence ∆mrm = (−1)mx. Moreover, by absolute convergence of the series
∑

σm−1
n xn

we obtain lim
n→∞

rm
n = 0. Note that z = rm. The proof is complete. �
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Lemma 4. Assume m ∈ N(1) and let the series
∑

nm−1xn be absolutely con-

vergent. Then there exists exactly one sequence z such that z = o(1) and ∆mz =

(−1)mx. The sequence z is defined by

zn =

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

xim

=
∞
∑

k=0

σm−1
k+1 xn+k =

∞
∑

k=0

(

m − 1 + k

m − 1

)

xn+k

=

∞
∑

k=0

(k + 1)(k + 2) . . . (k + m − 1)

(m − 1)!
xn+k.

P r o o f. By Lemma 3, if zn =
∞
∑

k=0

σm−1
k+1 xn+k then z = o(1) and ∆mz = (−1)mx.

If y is a sequence such that y = o(1) and ∆my = (−1)mx, then z − y = o(1) and

∆m(z − y) = ∆mz − ∆my = 0. Therefore z − y is a convergent to zero polynomial

sequence. Hence z − y = 0. Hence y = z. By Lemma 2,

zn = (−1)m

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

∆mzim
.

The equality ∆mz = (−1)mx implies

zn = (−1)m

∞
∑

i1=n

∞
∑

i2=i1

. . .
∞
∑

im=im−1

(−1)mxim
=

∞
∑

i1=n

∞
∑

i2=i1

. . .
∞
∑

im=im−1

xim
.

The proof is complete. �

3. Main results

Theorem 1. Assume ϕ is continuous and the series
∑

nm−1an is absolutely

convergent. Then for any bounded solution y of the equation ∆my = b there exists

a solution x of (E) such that x = y + o(1).

P r o o f. Assume y is a bounded solution of the equation ∆my = b and Y is the

set of values of the sequence y. Choose a number µ > 0. Let

U = {t ∈ R
k : there exists s ∈ Y k such that d(s, t) < λ0µ}.
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Since Y k is a bounded subset of Rk so U is bounded, too. Hence the closure U is

compact. Therefore ϕ is uniformly continuous and bounded on U. Choose M > 0

such that |ϕ(t)| 6 M for any t ∈ U . By Lemma 4, there exist numbers

̺n =

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

|aim
|

and the sequence ̺ is convergent to zero. Hence there exists q > n0 such that

M̺n < µ for any n > q. Let

T = {x ∈ BS : xn = 0 for n < q and |xn| 6 M̺n for n > q},
S = {x ∈ BS : xn = yn for n < q and |xn − yn| 6 M̺n for n > q}.

Let us define a mapping F : T → S by F (x)(n) = xn + yn. Then the formula

̺(x, z) = sup{|xn − zn| : n ∈ N} defines a metric on the set S such that F is an

isometry of T onto S. Obviously T is a convex and closed subset of the space BS.

Choose an ε > 0. Then there exists p ∈ N such that M̺n < ε for any n > p. For

n = 1, . . . , p let Gn denote a finite ε-net for the interval [−M̺n, M̺n] and let

G = {x ∈ T : xn = 0 for n > p and xn ∈ Gn for n < p}.

Then G is a finite ε-net for T . Hence T is a complete and totally bounded metric

space and so T is compact. If x ∈ S, n > n0, then (yτ1(n), . . . , yτk(n)) ∈ Y k and

d((xτ1(n), . . . , xτk(n)), (yτ1(n), . . . , yτk(n)))

6 λ0 max{|xσi(n) − yσi(n)| : i = 1, 2, . . . , k} < λ0µ.

It means that (xτ1(n), . . . , xτk(n)) ∈ U for any x ∈ S and n > n0. Hence

|ϕ(xτ1(n), . . . , xτk(n))| 6 M for every x ∈ S and n > n0. Let x ∈ S,

x∗

n =

{

0 for n < n0

anϕ(xτ1(n), . . . , xτk(n)) for n > n0.

Let us define a sequence A(x) as follows:

A(x)(n) =











yn for n < q

yn + (−1)m

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

x∗

im
for n > q.
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If n > q then

|A(x)(n) − yn| =

∣

∣

∣

∣

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

x∗

im

∣

∣

∣

∣

6

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

|x∗

im
|

6

∞
∑

i1=n

∞
∑

i2=i1

. . .
∞
∑

im=im−1

M |aim
| = M̺n.

It means that A(x) ∈ S. Hence A(S) ⊆ S.

Let ε > 0. Since the function ϕ is uniformly continuous on U there exists such

δ > 0 that if s, t ∈ U and d(s, t) < λ0δ, then |ϕ(t) − ϕ(s)| < ε. Assume x, z ∈ S and

‖x − z‖ < δ. If n > n0 then

d((xτ1(n), . . . , xτk(n)), (zτ1(n), . . . , zτk(n))) < λ0δ.

Let

z∗n =

{

0 for n < n0,

anϕ(zτ1(n), . . . , zτk(n)) for n > n0.

Then

‖A(x) − A(z)‖ = sup
n>q

∣

∣

∣

∣

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

x∗

im
−

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

z∗im

∣

∣

∣

∣

= sup
n>q

∣

∣

∣

∣

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

(x∗

im
− z∗im

)

∣

∣

∣

∣

6 sup
n>q

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

|x∗

im
− z∗im

|

=

∞
∑

i1=q

∞
∑

i2=i1

. . .

∞
∑

im=im−1

|x∗

im
− z∗im

| 6

∞
∑

i1=q

∞
∑

i2=i1

. . .

∞
∑

im=im−1

ε|aim
| = ε̺q.

This means that A : S → S is continuous. Let B : T → T , B = F−1 ◦ A ◦ F . Then

B is continuous and T is a convex and compact subset of the Banach space BS.

By the Schauder fixed point theorem there exists u ∈ T such that B(u) = u. Let

x = F (u) ∈ S. Then

x = F (u) = F (B(u)) = F (F−1AF (u)) = AF (u) = A(x).

Hence

xn = yn + (−1)m

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

x∗

im

for n > q. By Lemma 4 we obtain

∆mxn = bn + x∗

n = bn + anϕ(xτ1(n), . . . , xτk(n))
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for n > q. Hence x is a solution of (E). Moreover, by Lemma 4 the sequence

wn = (−1)m

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

x∗

im

is convergent to zero. Therefore x = y + o(1). The proof is complete.

R em a r k. Theorem 1 extends Theorem 1 of [3] and Theorem 2 of [4] and Theo-

rem 1 of [11].

Corollary 1. If the series
∑

nm−1an,
∑

nm−1bn are absolutely convergent and

ϕ is continuous, then for any c ∈ R there exists a solution of (E) convergent to c.

P r o o f. Let c ∈ R,

zn =

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

bim
, yn = c + (−1)mzn.

By Lemma 4, lim yn = c and ∆mz = (−1)mb. Hence

∆my = ∆mc + ∆m((−1)mz) = b.

Hence y is a bounded solution of the equation ∆my = b. By Theorem 1 it follows

that there exists a solution x of (E) such that x = y+o(1). Obviously limxn = c. �

Theorem 2. If the function ϕ is uniformly continuous and bounded, and the

series
∑

nm−1an is absolutely convergent, then for every solution y of the equation

∆my = b there exists a solution x of (E) such that x = y + o(1).

P r o o f. Assume y is a solution of the equation ∆my = b. Choose M > 0 such

that |ϕ(t)| 6 M for any t ∈ R
k. Let ̺ : N → R,

̺n =
∞
∑

i1=n

∞
∑

i2=i1

. . .
∞
∑

im=im−1

|aim
|, T = {x ∈ BS : |x| 6 M̺},

S = {x ∈ SQ : |x − y| 6 M̺}, F : T → S, F (x) = y + x.

For x ∈ S let

x∗

n =

{

0 for n < n0,

anϕ(xτ1(n), . . . , xτk(n)) for n > n0,

A(x)(n) = yn + (−1)m

∞
∑

i1=n

∞
∑

i2=i1

. . .
∞
∑

im=im−1

x∗

im
.

The rest of the proof is analogous to the second part of the proof of Theorem 1 and

we omit it.
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R em a r k. Theorem 2 extends Theorem 2 of [3].

Corollary 2. If the series
∑

nm−1an,
∑

nm−1bn are absolutely convergent, and ϕ

is uniformly continuous and bounded, then for every polynomial β(n) with deg(β) <

m there exists a solution x of (E) such that xn = β(n) + o(1).

P r o o f. Let β(n) be a polynomial (with real coefficients) such that deg(β) < m

and let

zn =

∞
∑

i1=n

∞
∑

i2=i1

. . .

∞
∑

im=im−1

bim
, yn = β(n) + (−1)mzn

for n ∈ N. Since ∆mβ = 0, we obtain by Lemma 4

∆my = ∆mβ + (−1)m∆mz = b.

Hence y is a solution of the equation ∆my = b. By Theorem 2 there exists a solution

x of (E) such that x = y + o(1). Since, by Lemma 4 we have z = o(1), we obtain

x = β + o(1) + o(1) = β + o(1).

�

R em a r k. Corollary 2 extends Theorem 2 of [11].

Theorem 3. Assume the series
∑

nm−1an is absolutely convergent and the func-

tion ϕ|[c,∞)k is uniformly continuous and bounded for some c ∈ R. Then for every

solution y of equation ∆my = b which diverges to infinity there exists a solution x

of (E) such that x = y + o(1).

P r o o f. Assume ∆my = b and lim yn = ∞. ChooseM > 0 such that |ϕ(t)| < M

for any t ∈ [c,∞)k. For n ∈ N let

̺n =
∞
∑

i1=n

∞
∑

i2=i1

. . .
∞
∑

im=im−1

|aim
|.

Choose q > n0 such that yn > c + M̺1 for any n > q. Let

S = {x ∈ SQ : xn = yn for n < q and |xn − yn| 6 M̺n for n > q}.

If x ∈ S and n > q, then xn > yn − M̺n > c + M̺1 − M̺n > c. Hence

(xτ1(n), . . . , xτk(n)) ∈ [c,∞)k for every x ∈ S and every n > q. The rest of the

proof is analogous to the proof of Theorem 1. �

R em a r k. Theorem 3 extends Theorem 3 of [3].

37



Corollary 3. Assume the series
∑

nm−1an,
∑

nm−1bn are absolutely convergent

and the function ϕ|[c,∞)k is uniformly continuous and bounded for some c ∈ R.

Then for every polynomial β(n) such that degβ < m and limβ(n) = ∞ there exists
a solution x of (E) such that xn = β(n) + o(1).

P r o o f. The proof is analogous to the proof of Corollary 2 and is omitted. �

Theorem 4. Assume the series
∑

nm−1an is absolutely convergent and the func-

tion ϕ|(−∞, c]k is uniformly continuous and bounded for some c ∈ R. Then for any

solution y of the equation ∆my = b which diverges to −∞ there exists a solution x

of (E) such that x = y + o(1).

P r o o f. The proof is analogous to the proof of Theorem 3. �

Corollary 4. Assume the series
∑

nm−1an,
∑

nm−1bn are absolutely convergent

and the function ϕ|(−∞, c]k is uniformly continuous and bounded for some c ∈ R.

Then for every polynomial β(n) such that degβ < m and limβ(n) = −∞ there

exists a solution x of (E) such that xn = β(n) + o(1).

P r o o f. The proof is analogous to the proof of Corollary 2. �

E x am p l e. Let m > 2, k = 1, τ1(n) = n, an = n−m−1, bn = 0, ϕ : R → R,

ϕ(t) =







t for t > 1,

2

|t| + 1
for t 6 1.

Then the equation (E) takes on the form

(E1) ∆mxn =
1

nm+1
ϕ(xn).

The function ϕ is uniformly continuous and, by Corollary 4, for every polynomial

β(n) such that degβ < m and limβ(n) = −∞ there exists a solution x of (E1)

such that xn = β(n) + o(1). We will show that in that case the equation (E1)

has no solutions of the form xn = β(n) + o(1) where β(n) is a polynomial such

that degβ = m − 1 and limβ(n) = ∞. Assume c > 0, α(n) is a polynomial,

degα < m − 1, xn = cnm−1 + α(n) + o(1) and x is a solution of (E1). Then

∆mxn = anϕ(xn) = anxn = cn−2 + o(n−2) for large n.

Since ∆m(cnm−1 + α(n)) = 0, there exists a sequence z such that zn = o(1) and

∆mzn = ∆mxn = cn−2 + o(n−2). Then

∆mzn

∆1/n
=

cn−2 + o(n−2)

−1/(n2 + n)
=

c + n2o(n−2)

−n2/(n2 + n)
−→ −c.
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By discrete l’Hospital theorem we obtain lim
n→∞

n∆m−1zn = −c. Hence

∆m−1zn

∆ln n
=

∆m−1zn

ln(n + 1) − lnn
=

n∆m−1zn

n ln (1 + 1/n)
=

n∆m−1zn

ln (1 + 1/n)n −→ −c.

Hence lim
n→∞

∆m−2zn/ lnn = −c 6= 0. On the other hand,

lim
n→∞

∆m−2zn

lnn
= lim

n→∞

∆m−2o(1)

lnn
= lim

n→∞

o(1)

lnn
= 0.

This contradiction shows that x is not a solution of the equation (E1).
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