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DIV-CURL LEMMA REVISITED:
APPLICATIONS IN ELECTROMAGNETISM

Marián Slodička and Ján Buša, Jr.

Two new time-dependent versions of div-curl results in a bounded domain Ω ⊂ R3 are
presented. We study a limit of the product vkwk, where the sequences vk and wk belong
to L2(Ω). In Theorem 2.1 we assume that ∇× vk is bounded in the Lp-norm and ∇ ·wk

is controlled in the Lr-norm. In Theorem 2.2 we suppose that ∇ ×wk is bounded in the
Lp-norm and ∇ · wk is controlled in the Lr-norm. The time derivative of wk is bounded
in both cases in the norm of H−1(Ω). The convergence (in the sense of distributions) of
vkwk to the product vw of weak limits of vk and wk is shown.

Keywords: compensated compactness, convergence, vector fields

Classification: 35B05, 65M99

1. INTRODUCTION

The structure of this paper is as follows. Section 1.1 shows the main differences in
compactness arguments for diffusion processes and for electromagnetic fields. Section
1.2 collects some known important versions of the div-curl lemma. New compactness
results are derived in Section 2, namely in Theorems 2.1 and 2.2. A numerical
experiment from electromagnetic fields is presented in Section 3.

1.1. Different ways of compactness

Modeling the process of real physical events is a complex procedure including the
following steps:

• Physical model and its analysis.

• Mathematical description including partial differential equations (PDEs) and
boundary conditions (BCs), which reflect the situation outside the region of
interest.

• Qualitative and quantitative mathematical analysis of the present model.

• Numerical study including discretization, (a priori and/or a posteriori) esti-
mates, convergence analysis, (possible) error estimates.



Div-curl Lemma Revisited 329

• Computations and visualization of results.

• Calibration of model parameters.

This scheme is usually repeated until the coincidence between the computed results
and the measurements becomes reasonable. Only very few problems admit exact
solutions. In most cases one can find only an approximation of a solution in an
appropriate function space. The choice of such a space can be crucial for the well
posedness of the problem. Variational framework has been developed in order to
decrease impositions put on a solution. Using integration by parts (Green formula)
one can put the half of the derivatives from the differential operator onto a suitable
test function. A solution obtained in this way is called variational or weak. The
appropriate test spaces (usually Hilbert or reflexive Banach) have to reflect the
BCs in a natural way. Using the Galerkin approximation the test space can be
approximated by finite dimensional subspaces containing approximate solutions. If
the problem setting in considerations is linear, then a weak convergence is sufficient
to prove convergence of approximations towards an exact solution. In a case of
nonlinear settings strong convergence of approximations is necessary.

Considering diffusion processes, the variational framework is usually based on
Sobolev spaces Hk,p(Ω) or their suitable subspaces, whose properties are familiar.
Convergence of approximations for steady-state elliptic problems is frequently based
on the compact embedding Hk,p(Ω) →֒→֒ Lq(Ω) – see [16]. For monotone operators
(cf. [23, 29]) one can apply the well knownMinty–Browder trick based on a monotone
behavior of the nonlinearity, cf. [9, 10]. Time dependent problems have to contain
some information about the time derivative. The proof of convergence is then based
on the Arzela–Ascoli theorem or Kolmogorov’s argument ([16]). Possible (nonlinear)
BCs can be handled using trace theorems and the Nečas inequality – see [22]

‖z‖2Γ ≤ ε ‖∇z‖2 + Cε ‖z‖2 , ∀ z ∈ H1(Ω), 0 < ε < ε0.

The situation in electromagnetism is more delicate, which is given by the nature
of differential operator appearing in the modeling of electromagnetic fields. Let us
consider an open bounded domain Ω ⊂ R3 (with a Lipschitz boundary Γ), which
is occupied by a ferromagnetic material. The electromagnetic field in Ω can be
described by several vector fields B – magnetic induction, H – magnetic field, E
– electric field, D – electric displacement field, and J – free current density. We
consider the Maxwell equations of the form

∂tD −∇×H + J = 0, Ampere’s law
∂tB +∇×E = 0, Faraday’s law

J = J0 + σE, Ohm’s law
(1)

where J0 is a given vector field and σ denotes the conductivity. Variational frame-
work usually uses subspaces of H(curl; Ω), H(div; Ω) as natural test spaces. The
main disdvantage is that their embedding into Lp(Ω) is generally not compact. The
traces of elements of H(curl; Ω) or H(div; Ω) do not generally belong to Lp(Γ)
spaces, cf. [6, 20]. Nevertheless suitable subspaces of H(curl; Ω) are compactly
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embedded into L2(Ω) (cf. [1, 20, 30]), namely

{u ∈ H(curl; Ω) ∩H(div; Ω) u× ν = 0} →֒→֒ L2(Ω),

{u ∈ H(curl; Ω) ∩H(div; Ω); u · ν = 0} →֒→֒ L2(Ω),

{u ∈ H(curl; Ω) ∩H(div; Ω); u× ν = 0, u · ν = 0} = H1
0 (Ω).

Inhomogeneous BCs can be handled using the following inequalities (cf. [8]) in a
bounded Lipschitz domain in R3

‖u‖
H

1
2 (Ω)

≤ C
(
‖u‖L2(Ω) + ‖∇ × u‖L2(Ω) + ‖∇ · u‖L2(Ω) + ‖u× ν‖L2(Γ)

)

and

‖u‖
H

1
2 (Ω)

≤ C
(
‖u‖L2(Ω) + ‖∇ × u‖L2(Ω) + ‖∇ · u‖L2(Ω) + ‖u · ν‖L2(Γ)

)

Moreover, for a convex or smooth domain with u× ν = 0 we obtain u ∈ H1(Ω).

1.2. Compensated compactness

The famous div-curl lemma represents a basic result of the compensated compactness
theory in Sobolev spaces (see [10, 21, 28]). It was introduced by Murat and Tartar.

Lemma 1.1. (Murat [21]) Assume that {vk}∞k=1, {wk}∞k=1 are bounded sequences
in L2(Ω) such that

(i) ∇×wk lies in a compact subset of W−1,2,

(ii) ∇ · vk lies in a compact subset of W−1,2.

Suppose further
vk ⇀ v, wk ⇀ w in L2(Ω).

Then
lim
k→∞

vkwk = vw

in the sense of distributions.

Here, the missing information about the gradient is compensated by some regularity
of the divergence and of the curl operators. Then the convergence (but not up to the
boundary) of the product vkwk to vw can be proved. Specially, if vk = wk for all
indices, then a suitable information about the divergence and of the curl implies the
strong convergence of vk in the L2(Ω

′) for any compact subset Ω′ ⊂ Ω. The proof of
Murat’s lemma is essentially based on the identity −∆M = ∇×(∇×M)−∇(∇·M ).
Suitable information over M ,∇×M and ∇·M can yield a compactness argument.
First results were determined in L2(Ω) spaces and later generalized to Lp(Ω) case,
cf. [15]. Generalization to a setting, where every component of the vectors vk and
wk can lie in different Lpi(Ω). This is of special interest in problems arising from
limiting procedures in the hydrodynamic equations for plasmas and semiconductors.
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Lemma 1.2. (Gasser & Marcati [12]) Let Ω ⊂ Rn be a bounded, open, smooth
domain. Let 1 < pi < ∞, 1

pi
+ 1

p′
i
= 1 for i = 1, . . . , n. Denote pmin = min1≤i≤n pi,

pmax = max1≤i≤n pi. Assume

• vik ∈ Lp′
i
(Ω), wi

k ∈ Lpi(Ω) are uniformly bounded with respect to k in corre-

sponding norms, and 1
pmin

− 1
n < 1

pmax
;

• ∇ · vk lies in a compact set of W−1,t(Ω) with t ≥ max1≤i≤n p
′
i = (pmin)

′;

• ∇ × wk lies in a compact set of W−1,sij (Ω) with min1≤j≤n sji ≥ pi for i =
1, . . . , n.

Then
lim
k→∞

vkwk = vw

in the sense of distributions, where v,w are the corresponding weak limits.

In a case when the vectorial fields vk and wk are time dependent, one also needs
some information about their time derivatives. More exactly, it is enough to keep
the time derivative of one of the vectorial fields under control, e. g.,

Lemma 1.3. (Slodička [26]) Assume that {vk}∞k=1, {wk}∞k=1 are bounded se-
quences in L2 ((0, T ),L2(Ω)) such that

(i)

∫ T

0

‖∇ ×wk‖2 ≤ C,

(ii)

∫ T

0

[
‖∇ · vk‖2 + ‖∂tvk‖2−1

]
≤ C.

Suppose further

vk ⇀ v, wk ⇀ w in L2 ((0, T ),L2(Ω)) .

Then

lim
k→∞

∫ T

0

(Φvk,wk) =

∫ T

0

(Φv,w)

for any Φ ∈ C∞
0 (Ω)

or

Lemma 1.4. (Slodička [27]) Assume that {vk}∞k=1, {wk}∞k=1 are bounded se-
quences in L2 ((0, T ),L2(Ω)) such that

(i)

∫ T

0

[
‖∂twk‖2 + ‖∇×wk‖2

]
≤ C,

(ii)

∫ T

0

‖∇ · vk‖2 ≤ C.

Suppose further vk ⇀ v, wk ⇀ w in L2 ((0, T ),L2(Ω)) . Then

lim
k→∞

∫ T

0

(Φvk,wk) =

∫ T

0

(Φv,w) for any Φ ∈ C∞
0 (Ω).
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2. MAIN RESULTS

Now, we prove our first main result. Here, we keep ∇ × vk under control in the
Lp-norm and ∇ ·wk in the Lr-norm.

Theorem 2.1. Let Ω ⊂ R3 be a bounded open domain with a Lipschitz continuous
boundary. Assume that {vk}∞k=1, {wk}∞k=1 are sequences in L2 ((0, T ),L2(Ω)) such
that

(i)

∫ T

0

[
‖wk‖2 + ‖∇ ·wk‖rLr(Ω) + ‖∂twk‖2H−1(Ω)

]
≤ C, r > 6

5 ,

(ii)

∫ T

0

[
‖vk‖2 + ‖∇ × vk‖pLp(Ω)

]
≤ C , p > 6

5 .

Suppose further vk ⇀ v, wk ⇀ w in L2 ((0, T ),L2(Ω)) . Then

lim
k→∞

∫ T

0

(Φvk,wk) =

∫ T

0

(Φv,w)

for any Φ ∈ C∞
0 (Ω).

P r o o f . Consider for each k = 1, 2, . . . the vector field uk solving

−∆uk = wk in Ω,
uk = 0 on Γ.

(2)

Applying [13, Theorem 8.13] we see that uk belongs to L2

(
(0, T ),H2(Ω)

)
. We

differentiate (2) with respect to the time variable and we get

−∆∂tuk = ∂twk in Ω,
∂tuk = 0 on Γ.

(3)

Due to the fact that

∫ T

0

‖∂twk‖2H−1(Ω) ≤ C, we easily deduce that

‖∇∂tuk‖2 = (∂twk, ∂tuk) ≤ ε ‖∂tuk‖2H1(Ω) + Cε ‖∂twk‖2H−1(Ω) .

Choosing a sufficiently small positive ε we conclude

∂tuk ∈ L2

(
(0, T ),H1(Ω)

)
. (4)

Taking into account that Ω ⊂ R3 we have H2(Ω) →֒→֒ W1,s(Ω) for any 1 ≤ s < 6
(see [16, Thm.5.8.2]), which implies the compactness of uk in L2

(
(0, T ),W1,s(Ω)

)
.

One can easily see that z = ∇ · uk solves

−∆z = ∇ ·wk in Ω,
z = ∇ · uk on Γ.

(5)
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Using [14, Thm. 9.2.2] we see that ∇·uk ∈ L2

(
(0, T ),W2,r(Ω′)

)
for any sub-domain

Ω′ ⊂⊂ Ω. The relation (4) yields ∂t∇ ·uk ∈ L2 ((0, T ),L2(Ω)), which according [16,
Thm. 5.8.2] we haveW2,r(Ω′) →֒→֒ W1,2(Ω′), which gives the compactness of∇·uk

in L2

(
(0, T ),W1,2(Ω′)

)
.

Therefore, upon passing to subsequences as necessary, we have

uk → u in L2

(
(0, T ),W1,s(Ω)

)
,

∇ · uk → ∇ · u in L2

(
(0, T ),W1,2(Ω′)

)
,

(6)

where u solves
−∆u = w in Ω,

u = 0 on Γ,
(7)

which has been obtained from (2) passing to the limit as k → ∞.
Now, using the identity −∆M = ∇× (∇×M) − ∇(∇ ·M ), which is valid for

any vector M , we can write for arbitrary Φ ∈ C∞
0 (Ω)

∫ T

0

(Φvk,wk) =

∫ T

0

(Φvk,−∆uk)

=

∫ T

0

(Φvk,∇×∇× uk)−
∫ T

0

(Φvk,∇(∇ · uk))

=

∫ T

0

(∇× (Φvk),∇× uk)−
∫ T

0

(Φvk,∇(∇ · uk))

=

∫ T

0

(Φ∇× vk,∇× uk) +

∫ T

0

(∇Φ× vk,∇× uk)

−
∫ T

0

(Φvk,∇(∇ · uk)) .

According to (6) we obtain

∫ T

0

(Φvk,wk) →
∫ T

0

(Φ∇× v,∇× u) +

∫ T

0

(∇Φ× v,∇× u)

−
∫ T

0

(Φv,∇(∇ · u))

=

∫ T

0

(∇× (Φv),∇× u)−
∫ T

0

(Φv,∇(∇ · u))

=

∫ T

0

(Φv,∇×∇× u)−
∫ T

0

(Φv,∇(∇ · u))

=

∫ T

0

(Φv,−∆u)

=

∫ T

0

(Φv,w) ,

which concludes the proof. �

Now, we prove our second main result. Here, we keep ∇ ×wk under control in
the Lp-norm and ∇ ·wk in the Lr-norm.
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Theorem 2.2. Assume that {vk}∞k=1, {wk}∞k=1 are sequences in L2 ((0, T ),L2(Ω))
such that

(i)

∫ T

0

[
‖wk‖2 + ‖∇ ·wk‖rLr(Ω) + ‖∂twk‖2H−1(Ω) + ‖∇ ×wk‖pLp(Ω)

]
≤ C

for some p, r > 6
5 ,

(ii)

∫ T

0

‖vk‖2 ≤ C.

Suppose further vk ⇀ v, wk ⇀ w in L2 ((0, T ),L2(Ω)) . Then

lim
k→∞

∫ T

0

(Φvk,wk) =

∫ T

0

(Φv,w)

for any Φ ∈ C∞
0 (Ω).

P r o o f . The proof is similar to the one of Theorem 2.1. Therefore we point out
the main steps only.

Let uk solves (2). The theory of linear elliptic equations yields that uk belongs
to L2

(
(0, T ),H2(Ω)

)
and (4) holds true. Moreover we also get the compactness of

∇ · uk in L2

(
(0, T ),W1,2(Ω′)

)
. Further r = ∇× uk solves

−∆r = ∇×wk in Ω,
r = ∇× uk on Γ.

(8)

Applying [14, Thm. 9.2.2] we see that ∇ × uk ∈ L2

(
(0, T ),W2,p(Ω′)

)
for any

sub-domain Ω′ ⊂⊂ Ω. The relation (4) yields ∂t∇ · uk ∈ L2 ((0, T ),L2(Ω)), which
according [16, Thm. 5.8.2] we have W2,p(Ω′) →֒→֒ W1,2(Ω′), which gives the com-
pactness of ∇× uk in L2

(
(0, T ),W1,2(Ω′)

)
.

Now, we can write

∫ T

0

(Φvk,wk) =

∫ T

0

(Φvk,−∆uk)

=

∫ T

0

(Φvk,∇×∇× uk)−
∫ T

0

(Φvk,∇(∇ · uk)) .

Passing to the limit for k → ∞ we obtain

∫ T

0

(Φvk,wk) →
∫ T

0

(Φv,∇×∇× u)−
∫ T

0

(Φv,∇(∇ · u))

=

∫ T

0

(Φv,−∆u)

=

∫ T

0

(Φv,w) ,

which concludes the proof.
�
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3. NUMERICAL EXPERIMENT

We recall the London model of the nonlinear diffusion in superconductors, see Lon-
don [17, 18]. The “London” name comes from brothers F. London and H. London,
who in 1935 created a theoretical model of superconductivity. It is well known
that high-field (hard) type-II superconductors are not ideal conductors of electric
current. From the point of view of phenomenological electrodynamics, type-II su-
perconductors can be treated as electrically nonlinear conductors. The process of
electromagnetic field penetration in such devices is the process of nonlinear diffusion.
Understanding this process is of practical and theoretical importance and it helps by
evaluation of magnetic hysteresis and the study of creep phenomena. For a very nice
overview of models with some hierarchy structure we refer the reader to Chapman
[7], Fabrizio and Morro [11].

The idea of using nonlinear diffusion equations for the description of flux creep can
be traced back to the landmark papers of Anderson and Kim [2] and Beasley et
al. [4].

By the modelling we start from the quasi-static Maxwell equations

∇×H = J ,
∂tB +∇×E = 0.

We assume linear materials

B = µ0H ,

where µ0 denotes the magnetic permeability of free space. Actual resistive transitions
are gradual and it is customary to describe them by the following power law (cf.
Mayergoyz [19])

J = σc|E| 1p−1E, p > 1, (9)

where σc is some parameter that coordinates the dimensions of both sides in ex-
pression. Let us note that in the case as p → 1 we obtain the linear Ohm law, and
for p → ∞ we obtain the Bean critical-state model – see, e. g., Bean [3], Prigozhin
[24, 25].

Elimination of H gives

µ0σc∂t

(
|E| 1p−1E

)
+∇×∇×E = 0. (10)

We recall that one can also use the power law (9) in the form

E = σ−p
c |J |p−1J , p > 1

instead of (9). Elimination of E gives

µ0∂tH +∇×
(
σ−p
c |∇ ×H |p−1∇×H

)
= 0. (11)

Of course, both equations (10) and (11) have to be accompanied by appropriate BCs
and some reasonable physical information about the divergence of E or H . Testing
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(10) with E, integrating over Ω and the time interval (0, T ), using integration by
parts one can readily derive the following stability of E

max
t∈[0,T ]

‖E(t)‖
p+1
p

L p+1
p

(Ω) +

∫ T

0

‖∇ ×E‖2 ≤ C.

Testing (11) with H similarly yields

max
t∈[0,T ]

‖H(t)‖2 +
∫ T

0

‖∇ ×H‖p+1
Lp+1(Ω) ≤ C.

These stability results indicate the need of div-curl lemma in some Lr-norm with
r 6= 2.

Applying the time discretization (Rothe’s method) to (10) or (11) one has to solve
a recurrent system of nonlinear steady-state problems starting from initial data. The
existence of a weak solution at each time step follows from the theory of monotone
operators. The more and less standard analysis gives rise to suitable stability results
for the approximate solution. Passing to the limit in the variational formulation for
a time step approaching 0 and applying the generalized div-curl lemma one can get
the existence of a weak solution to the original transient problem. Now, we present
an illustrative numerical example.

3.1. Study case

We consider the following variational problem

(∂t(σ(|E|)E),ϕ) + (∇×E,∇×ϕ) = (F ,ϕ) (12)

with
σ(s) = s−α, α = 0.5,

Dirichlet boundary condition EΓ, initial condition

E(x, 0) = 2




x3 − x2

x1 − x3

x2 − x1


 for x ∈ Ω,

and the right-hand side F chosen in such a way that

E(x, t) =




x3 − x2

x1 − x3

x2 − x1


 (sin(2πt) + 1)

is the exact solution.

To solve problem (12) we first discretize it using Rothe’s method and afterwards
we solve linearized problem obtained in this way using Newton’s method. The
discretization of (12) reads for i = 1, 2, . . .

((σ(|ei|)ei),ϕ) + τ(∇× ei,∇×ϕ) = (F i,ϕ), (13)



Div-curl Lemma Revisited 337

where
F i = τF i + σ(|ei−1|)ei−1,

τ is the length of the time step, and e0 represents the initial condition.
To solve equation (13) using Newton’s method we define a functional Φ as

Φ(v) = |v|−αv + τ∇×∇× v − F i.

For the weak formulation and its Fréchet derivative DΦ(v) we can write

(Φ(v),ϕj) = (|v|−αv,ϕj) + τ(∇× v,∇×ϕj)− (F i,ϕj),

(DΦ(v)ϕi,ϕj) = (−α|v|−α−2[v ·ϕi]v + |v|−αϕi,ϕj) + τ(∇×ϕi,∇×ϕj),

where ϕi,ϕj ∈ H0(curl; Ω).

On each time layer we now solve

Φ(Ei) = 0

by iteratively solving
DΦ(Eim)dm = Φ(Eim)

and setting
Eim+1

= Eim − dm,

until some stopping criterion is met. Index i stands for the time layer and the index
m denotes iterations at singular time layer. Stopping criterion used in considered
problem was

‖dm‖H(curl;Ω) < 1.0 · 10−6,

and linearized problem in Newton’s algorithm was solved using GMRes solver.

We have calculated our testing problem on a unit cube, which was split “quasi
uniformly” into 384 tetrahedrons (leading to 4184 degrees of freedom). The mesh
diameter was 0.026. For the approximation of the field E we have used the lowest
order Whitney’s edge elements, cf. [5, 6]. The computational error was calculated
in the L2-norm. Proposed numerical scheme has been computed using “The Finite
Element Toolbox ALBERT”1. This toolbox was modified at our workgroup for the
use of Whitney’s elements.

Table shows the dependence of the error of obtained numerical approximation on
the length of the time step τ . The same data are presented in Figure. Here the
linear dependency of the error on the length of the time step is clearly visible. The
obtained convergence rate ξ is 0.9613.

1ALBERT can be downloaded from http://www.alberta-fem.de/ and the name stands for
Adaptive multi-Level finite element toolbox using Bisectioning refinement and Error control by
Residual Techniques. Its successor ALBERTA can be downloaded from the same site.
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Table. Dependence of the errors for the time discretization

of the test problem on the length of the time step.

τ Absolute Err log(τ) log(err)
0.50000000 0.37024160 -0.30103000 -0.43151479
0.25000000 0.19737710 -0.60205999 -0.70470324
0.12500000 0.10340850 -0.90308999 -0.98544376
0.06250000 0.05326687 -1.20411998 -1.27354282
0.03125000 0.02734697 -1.50514998 -1.56309079
0.01562500 0.01383989 -1.80617997 -1.85886736
0.00781250 0.00696084 -2.10720997 -2.15733854
0.00390625 0.00349059 -2.40823997 -2.45710066

−0.5

−1.0

−1.5

−2.0

−2.5−2.5 −2.0 −1.5 −1.0 −0.5

ξ = 0.9613

log(τ)

log(err)

Fig. Errors for the time discretization as a function of the length of the time step τ .

Linear dependence of the error on the time step is clearly visible. ξ denotes the

numerically obtained convergence rate.
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