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STOCHASTIC GEOMETRIC PROGRAMMING
WITH AN APPLICATION

Jitka Dupačová

In applications of geometric programming, some coefficients and/or exponents may not
be precisely known. Stochastic geometric programming can be used to deal with such
situations. In this paper, we shall indicate which stochastic programming approaches and
which structural and distributional assumptions do not destroy the favorable structure of
geometric programs. The already recognized possibilities are extended for a tracking model
and stochastic sensitivity analysis is presented in the context of metal cutting optimization.
Illustrative numerical results are reported.

Keywords: stochastic geometric programming, statistical sensitivity analysis, tracking
model, metal cutting optimization

Classification: 90C15, 90C31, 90C90

1. INTRODUCTION

Geometric programs (GP), see e. g. [3, 19], are nonlinear programs in which the
objective function and/or some constraints are of the form of posynomials :

minimize g0(t) subject to gk(t) ≤ 1, k = 1, . . . ,K, t ∈ RM
++ (1)

with

gk(t) =
∑

i∈Ik

ci

M∏

j=1

t
aij

j =
∑

i∈Ik

ui(t), k = 0, . . . ,K. (2)

The exponents aij are real numbers and the coefficients ci are positive. The next
section provides basic information about this type of nonconvex constrained opti-
mization problem.

The recently observed growing interest in GP stems from the fact that various
practical problems can be reformulated as geometric programs and there are solution
methods which solve even very large-scale GPs efficiently and reliably. With a basic
interior-point method which exploits sparsity of the generic geometric program (1) –
(2), the reported efficiency is close to that of linear programming solvers. We refer to
[4] for an up-to-date survey of various applications and an extensive list of references.

In applications, however, some coefficients ci and/or exponents aij are not known
precisely, and their incomplete knowledge may be modeled as random. This is then
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the area of stochastic programming and one deals with the distribution problem
or focuses on decision problems. The choice of a suitable approach depends on the
problem formulation, on the structure of the geometric program and on distributional
assumptions. Section 3 discusses stochastic programming approaches which preserve
the favorable structure of (generalized) geometric programs. A suggestion is to use
a tracking model.

The stochastic sensitivity analysis which allows constructing approximate confi-
dence bounds for the optimal values and the optimal solutions of stochastic geometric
programs (SGP) is another possibility. It was initially suggested and applied in [7, 8]
to problems with deterministic constraints in (1). This work was motivated by metal
cutting problems where some exponents aij are obtained as statistical estimates of
the true values. These metal cutting problems will be briefly introduced in Section 4.
The stochastic sensitivity analysis will be detailed in Section 5 for the general struc-
ture of the SGP and its extension to the generalized stochastic geometric programs
will be delineated. A numerical illustration based on [8] concludes the paper.

2. GEOMETRIC PROGRAMMING

Let Q denote the total number of monomials ui(t) = ci
∏M

j=1 t
aij

j in the formulation
of the geometric program (1) – (2) and let {Ik, k = 0, . . . ,K} be a decomposition
of {1, . . . , Q} into K + 1 disjoint index sets. Notice that simple box inequality
constraints can be written as inequalities for monomials.

The special structure of the geometric program (1) – (2) allows deriving a numer-
ically tractable dual problem:

max
δ,λ

v(δ, λ) :=

Q∏

i=1

(ci/δi)
δi

K∏

k=1

λλk

k (3)

subject to ∑
i∈I0

δi = 1, δi ≥ 0, i = 1, . . . , Q,

∑Q

i=1
aijδi = 0, j = 1, . . . ,M,

∑
i∈Ik

δi = λk, k = 1, . . . ,K.

The optimal solutions t∗ of (1) and δ∗, λ∗ of (3) are related as follows:

δ∗i =
ui(t

∗)
g0(t

∗)
=

ui(t
∗)

v(δ∗, λ∗)
for i ∈ I0,

δ∗i = λ∗
kui(t

∗) for i ∈ Ik, k = 1, . . . ,K.

Hence
δ∗i
λ∗
k
, i ∈ Ik is the proportional contribution of the ith monomial to the value

of the posynomial gk at the optimal solution t∗. By means of these duality relations
the numerical solution of small size geometric programs can be based on the solution
of their relatively simple duals.

The degree of difficulty of a geometric program is defined as ∆ = Q − M∗ −
1 where M∗ denotes the rank of the (Q,M) matrix A = (aij). It refers to the
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dimensionality of the set of feasible solutions of the dual program. For ∆ = 0,
i. e. for the zero degree of difficulty geometric programs, there is a unique solution of
the system

∑
i∈I0

δi = 1,
∑Q

i=1 aijδi = 0, j = 1, . . . ,M. If this solution δi ≥ 0 ∀ i then
it is the optimal solution of the dual problem and it is possible to get an explicit
representation of the optimal value function of (3) in terms of the coefficients ci.
Moreover, its logarithm is a linear function in coefficients ci.

In general, geometric programs are not convex programs, but they can be reformu-
lated so that they are convex. When card Ik = 1 for all k = 1, . . . ,K, the constraints
in (1) are defined by monomials and can be linearized. When card Ik > 1, using the
exponential substitution zj = log tj the posynomials (2) are transformed to

hk(z) =
∑

i∈Ik

ci exp





M∑

j=1

aijzj



 , k = 0, . . . ,K. (4)

The resulting transformed GP is then the convex program

minimize h0(z) subject to hk(z) ≤ 1, k = 1, . . . ,K, z ∈ RM . (5)

An additional log transform of the functions hk is frequently recommended.
Convexity of hk(z) in (4) extends to functions of the form

Hk(z) :=
∑

i∈Ik

ci exp{φi(z)} (6)

with convex functions φi. This observation motivated one type of generalizations
of geometric programming. Another generalization is e. g. to replace posynomials
gk(t) in (1) by generalized posynomials, i. e. functions which are formed from posyn-
omials using operations of addition, multiplication, positive (fractional) power and
maximum.

If some of the coefficients ci in (2) are negative, complexity of the optimization
problem increases substantially. Even from (4) it is clear that convexity of functions
hk(z) for nonpositive coefficients ci cannot be expected. Functions of the form (2)
but with some negative coefficients ci are called signomials.

3. STOCHASTIC GEOMETRIC PROGRAMMING

In stochastic geometric programming (SGP) one accepts that some coefficients ci
and/or exponents aij are not known precisely, and their incomplete knowledge is
modeled as random. The origins of stochastic geometric programming are connected
with paper [2], where the exponents aij are deterministic and the coefficients cj are
positive random variables. The main results of the paper are numerically tractable
bounds for the optimal value of (1) – (2); see also [23] for their further elaboration
and application.

Construction of confidence bounds for the optimal value of a geometric program,
deriving its moments or probability distribution fall under the distribution problem
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of stochastic geometric programming. It was studied first for the zero degree of diffi-
culty geometric programs in connection with a lognormal distribution of coefficients
ci. Then the logarithm of the optimal value function in (3) is an affine linear function
in log ci, hence, a lognormal distribution of ci yields a lognormal distribution of the
optimal value. These results were extended to the zero degree quadratic geometric
programs with quadratic positive semidefinite functions φi in (6), cf. [20], and to
problems with degree of difficulty ∆ > 0, cf. [9]. For general positive random coeffi-
cients ci [9, 21] suggest to exploit the central limit theorem to get an asymptotically
lognormal distribution of the coefficients and subsequently of the optimal value. In
general, approximate confidence bounds and moments of the optimal value can be
also obtained by simulation and repeated solution of (1); see e. g. [15].

Individual probabilistic constraints replacing constraints of (1) or (5) have been
applied under the assumption of deterministic exponents and normally distributed
mostly uncorrelated coefficients ci; see e. g. [12, 19]. Of course, the assumption
of normally distributed costs ci is not in agreement with the required positivity of
coefficients in (2). For general probability distributions of coefficients [11] suggests
to approximate the probabilistic constraints by the one-sided Chebyshev inequal-
ity and discusses assumptions under which the variance appearing in the resulting
deterministic constraint is a posynomial.

A possibility which applies to SGP with coefficients and exponents in the objective
function determined by a random parameter β ∈ Rq and to a discrete distribution
of this parameter is to use a tracking model. The problem we face for a realization
(scenario) βν of β is the geometric program

min
t

g0(t, β
ν) subject to t ∈ RM

++ ∩ T

with a fixed set T described by deterministic posynomial constraints. We are not
interested in optimal solutions, say tν , for each of the scenarios separately but we
need to obtain one acceptable decision. Tracking models related with the goal pro-
gramming offer such possibility: Try to find the universal compromising solution by
minimization of the (positively) weighted distance

∑

ν

pν‖g0(t, βν)− g0(t
ν , βν)‖

on the set RM
++ ∩ T . With the L1-distance and using optimality of tν for scenario

βν the resulting problem to be solved is the geometric program

min

{∑

ν

pνg0(t, β
ν) : t ∈ RM

++ ∩ T
}
. (7)

The weights pν > 0,
∑

ν pν = 1 can be interpreted as scenario probabilities. Sensi-
tivity of the optimal solution of (7) to changes in these weights can be studied by
the parametric programming techniques which will be explained in Section 5.

An extension of this idea to generalized stochastic geometric programs is straight-
forward.
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For random costs and exponents both in the objective function and in the con-
straints a penalization or two-stage approach was suggested by [13]. First of all,
using an additional constraint and an additional variable t0, the geometric program
(1) can be rewritten to have a nonrandom linear objective function:

min
{
t0 : t−1

0 g0(t, β) ≤ 1, gk(t, β) ≤ 1, k = 1, . . . ,K, t0 > 0, t ∈ RM
++

}
. (8)

The constraints of (8) can be further split to

ui(t, β)θ
−1
ik ≤ 1, i = 1, . . . , Q, k = 0, . . . ,K

with θik > 0,
∑

i∈Ik
θik = 1 interpreted as the proportional contribution of the ith

monomial to the value of the kth posynomial.
The first stage decisions are t0 > 0, t ∈ RM

++, θik > 0, i ∈ Ik ∀ k, and
∑

i∈Ik
θik =

1∀ k are the first stage constraints. After observing realizations of random coefficients
and exponents, a possible violation of constraints ui(t, β)θ

−1
ik ≤ 1 can be corrected

for an additional cost. The logarithmic penalty function is applied and the case of
the multivariate discrete or normal distribution of parameters ci, aij is discussed.

In [7, 8] a technique for construction of confidence bounds for the optimal value
and the optimal solution based on sensitivity results for deterministic geometric
programs [17] and on the stochastic sensitivity analysis of [6] was proposed. It
was motivated by metal cutting problems where some of the exponents aij in the
objective function of (1) are obtained as statistical estimates of the true values.
The technique applies also to other GP problems with estimated coefficients and/or
exponents both in the objective function and constraints of (1). Its general form
will be presented in Section 5.

4. METAL CUTTING PROBLEMS

Many typical problems in optimization of cutting conditions in machining can be
formulated as (generalized) geometric programs; several examples are given e. g. in
[7, 14, 19], see also [5, 18].

The most popular optimality criterion is minimization of the total machining
costs which equal the sum of the machining time costs, the costs of tool changing
time per component and the tool cost per component:

C = xTc + xTd
Tac

T
+ y

Tac

T
= xTc +

Tac

T
(xTd + y) (9)

where x is the labor plus overhead cost rate, y is the tool cost, Tc is the machining
time, Tac the actual cutting time, Td the tool changing time and T the tool life.
Whereas x, y and Td are understood as a fixed input, the tool life, the cutting time
and the machining time depend on the cutting conditions, such as the depth of
the cut d, the feed f, and the speed v which is proportional to the number r of
revolutions per minute. The machining time

Tc = Lr−1f−1 (10)
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where L is the length of the workfeed motion between the tool and the workpiece.
There are surface finish requirements, limitations on the machine tool dynamics

and box constraints on variables mostly formulated as monomial or posynomial
constraints. For example, the machine power constraint has the form

kFzf
yFzdxFzv ≤ 60Peff (11)

where Peff (in W) denotes the effective power and kFz , xFz and yFz are empirical
constants that appear in the cutting force function. Prescribed upper and lower
bounds on the product rf restrain the feed per minute, etc. Similar models apply
also to other metal working procedures, e. g. to turning, drilling and milling.

Due to the nonhomogeneity of the machined and cutting material, a variability
of the tool life is observed even at fixed machining conditions. From the technical
point of view, this is the main source of uncertainty in the machining costs which
asks for an analysis of the precision of the optimally settled cutting conditions, of
the corresponding tool life, and of the machining costs.

According to the common technical practice, the tool life T is related to the
cutting conditions via the Taylor equation [22]

vT nfmdp = A (12)

where n,m, p and A are empirical constants which correspond to the tool and the
workpiece material.

Substituting (10), (12) for Tc, T in (9), accepting the common assumption that
Tac

Tc
∼ 1 and using the proportionality of the speed v and the number r of revolutions

per minute, the objective function (9) can be written in the form

k1v
−1f−1 + k2v

1/n−1fm/n−1dp/n

or
C1r

−1f−1 + C2r
1/n−1fm/n−1dp/n (13)

to be minimized with respect to v, f, d or r, f, d subject to constraints on monomials
or posynomials such as (11).

Optimization of the multiple tools turning operation exploits a time diagram ac-
cording to which various tools are supposed to be active at a given instant. It means
that in the GP problem, the power constraints have to be considered separately
at all particular points in time where the pattern changes and it is necessary to
evaluate the contribution of all tools to the total machining costs per component
including the various tool lives. This is the idea behind optimization of the cutting
conditions on automatic production lines e. g. [16]. In the case of the multipass
turning operations [18], the new feature is that there are signomials, i. e. differences
of posynomials, in the objective function and the optimization problem cannot be
transformed into a convex program.

It is accepted that the Taylor equation (12) represents the tool life for commonly
used materials. For special alloys, however, the logarithm of the tool life does not
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exhibit linear but quadratic behavior, cf. [14, 20]. It means that the objective
function h0 in the transformed GP (5) changes to

H0(z) =
∑

i∈I0

ci exp





M∑

j=1

aijzj +
M∑

j=1

M∑

l=1

bijlzjzl



 .

The resulting metal cutting problem is a generalized geometric program with a
special choice of functions φi, i ∈ I0 in (6). Randomness of its parameters was
considered and the distribution problem for the optimal total machining cost was
solved in [20] under simplifying assumptions of deterministic exponents and random
independent coefficients ci with normal or lognormal distributions for the zero degree
of difficulty problem.

5. SENSITIVITY ANALYSIS

It is convenient to apply the sensitivity analysis results, cf. [10, 17], to the convex
transformed GP of the form (5) whose coefficients and exponents are differentiable
functions of a parameter β ∈ Rq :

minimize h0(z;β) subject to hk(z;β) ≤ 1, k = 1, . . . ,K. (14)

Assume that (14) was solved with coefficients and exponents determined by a spe-
cific parameter value, say, β∗. The classical sensitivity analysis results for the optimal
solution z∗ := z(β∗) and for the corresponding multipliers µ∗ := µ(β∗) hold true
under linear independence of gradients of the binding constraints, the strict com-
plementarity condition and the second order sufficient condition. These conditions
guarantee, inter alia, that the set of active constraints does not change for small
changes of parameter values and that the derivatives of the optimal solution and
of the multipliers with respect to parameters can be obtained from the first order
necessary conditions by the implicit function theorem, cf. [10]. Moreover, except
for the strict complementarity condition, for geometric programs these assumptions
reduce to a simple rank condition on the matrix A(β∗) of exponents determined by
β∗; see [17] for details. Among others, we shall assume that the matrix A(β∗) is of
a full rank, i. e. M∗ = M.

Without loss of generality assume that hk(z;β) ≤ 1, k = 1, . . . ,K0 ≤ K, are the
constraints in (14) that are active at z∗ for β = β∗ and that they are defined by means
of Q0 monomials. Denote A0(β) the corresponding (Q0,M) submatrix of exponents
aij(β) in the objective and in the active constraints and put A∗

0 := A0(β
∗). The

Lagrange function for the reduced parametrized problem (14) is

L(z, µ;β) = h0(z;β) +

K0∑

k=1

µk(hk(z;β)− 1).

To express the second order derivatives of the Lagrange function in a transparent
way, we use an auxiliary substitution w(β) = A0(β)z and denote

h̃k(w;β) =
∑

i∈Ik

ci(β) exp(wi(β)), k = 0, . . . ,K0.
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Let C∗ be the (K0, Q0) matrix of gradients ∇wh̃k(w
∗;β∗)⊤ of h̃k, k = 1, . . . ,K0, at

[w∗ = A∗
0z

∗, β∗], H∗ the diagonal matrix

H∗ = diag{ci(β∗) exp(w∗
i ), i ∈ I0, µ

∗
kci(β

∗) exp(w∗
i ), i ∈ Ik, k = 1, . . . ,K0},

B∗ = ∇2
z,βL(z

∗, µ∗;β∗) the (M, q) matrix of the second order derivatives of the
Lagrange function at the point [z∗, µ∗, β∗] and D∗ the (K0, q) matrix of gradients
∇β h̃k(w

∗;β∗)⊤, k = 1, . . . ,K0, at the point [w∗ = A∗
0z

∗, β∗].

Under strict complementarity conditions, the (M, q) matrix ∂z(β∗)
∂β of deriva-

tives ∇βzj(β
∗)⊤, j = 1, . . . ,M, of the optimal solution and the (K0, q) matrix of

derivatives of multipliers µ∗
k = µk(β

∗) of the constraints active at β∗ are uniquely
determined by the following system of equations

(
A∗⊤

0 H∗A∗
0 (C∗A∗

0)
⊤

C∗A∗
0 0

)(
∂z(β∗)

∂β
∂µ(β∗)

∂β

)
= −

(
B∗

D∗

)
(15)

provided that the matrix of the system (15) is nonsingular.
The gradient of the optimal value function is

∇βϕ(β
∗) = ∇βL(z(β

∗), µ(β∗);β∗) (16)

and this assertion holds true even in the case that the strict complementarity con-
ditions are not fulfilled. A simple formula is obtained when the constraints do not
depend on the parameter β : we have then the gradient of the optimal value function

∇βϕ(β
∗) = ∇βh0(z

∗, β∗) = ∇β h̃0(w
∗;β∗)A∗

0; (17)

moreover, in (15), the matrix D∗ = 0 and B∗ = ∇2
zβh0(z

∗;β∗).

Assume now that the parameter value β∗ is an asymptotically normal estimate
of the true parameter value β̂,

√
N(β∗ − β̂) ∼ N (0, σ2M).

Using the above sensitivity results and the Delta theorem, we get an asymptotically
normal distribution of the optimal solution of (14) and of the optimal value function
ϕ(β∗) computed with the estimated coefficient values: if the matrix of derivatives
∂z(β∗)

∂β 6= 0 then according to [6], the optimal solution is asymptotically normal

√
N(z(β∗)− z(β̂)) ∼ N

(
0, σ2(

∂z(β̂)

∂β
)M(

∂z(β̂)

∂β
)⊤
)
. (18)

The rank of the asymptotic distribution equals the rank of (∂z(β̂)
∂β )M (∂z(β̂)

∂β )⊤. The
optimal value ϕ(β∗) is asymptotically normal as well,

√
N(ϕ(β∗)− ϕ(β̂)) ∼ N (0, σ2∇βϕ(β̂)

⊤M∇βϕ(β̂)). (19)
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Whereas the distribution (19) can be used directly to obtain an asymptotic con-
fidence interval for the optimal value, (18) applies to logarithms of the optimal
solution. For application of these results, it is essential that for the sample size N
large enough, the covariance matrix in (18) and the variance in (19) can be evaluated
at the estimated values of parameters β and σ2.

We refer to [7] for a detailed discussion of the sensitivity analysis for optimization
of a single pass single tool turning operation where all constraints are linearizable.
Then the set of feasible solutions is convex, polyhedral (described by constraints
log ck +

∑
j akjzj ≤ 0 ∀ k) and nondegeneracy of its vertices implies that the linear

independence condition is satisfied.

These ideas can be extended to the stability analysis of generalized geometric
programs that allow transformation of the objective and constraints to the form (6)
with functions φi convex and differentiable. Assume for simplicity that the random
parameters appear only in the exponents of the objective function and let ϕ̃(β)
denote the optimal value of the program

min{H0(z;β) : Hk(z) ≤ 1, k = 1, . . . ,K, z ∈ RM}.

Then the gradient of the optimal value function at β = β∗ is

∇βϕ̃(β
∗) = ∇βH0(z(β

∗);β∗) =
∑

i
ci exp{φ(z(β∗);β∗)}∇βφ(z(β

∗);β∗),

compare with (17); the asymptotic distribution of ϕ̃(β∗) follows the pattern (19).

6. NUMERICAL ILLUSTRATION

The obtained results can be used for constructing confidence regions for the optimal
cutting conditions and for the minimal cost of the machining process. The numerical
illustration below is based on [8].

A carbon steel workpiece (D = 100mm) is to be rough turned in the length
L = 80mm by using a sintered carbide tool under optimal cutting conditions that
minimize the total machining costs (13). The maximum and minimum speed capac-
ity is 4000 resp. 112 revolutions per minute, the maximum and minimum available
feed per minute fr equals 6000 resp. 1. From the point of view of chip formation
and of the strength of the cutting tool the upper and lower bounds on the feed f
(0.45 resp. 0.05mm per revolution) and on the depth of the cut d (5 resp. 0.5mm)
are prescribed. The machine power constraint (11) is split into two constraints that
correspond to different ranges of the cutting speed:

kFzf
yFz dxFz ≤ 2MkpD

−1 (20)

kFzf
yFz dxFz rzM ≤ 2kpD

−1. (21)

Moreover, a constraint on the torque for high revolution chuck is taken into account

kFzf
yFz dxFz ≤ 3µDuD

−1
(
Fu0 − kur

2
)
. (22)

Notice that the last constraint (22) cannot be linearized.
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In the corresponding GP, I0 = {1, 2} , M = 3 and the transformed decision
variables are z1 = log v (or log r), z2 = log f, z3 = log d. The unit costs needed
for evaluation of coefficients C1, C2 in (13) were calculated with the tool cost per
cutting edge y = 1.5 and tool changing time Td = 1. See [8] for numerical values of
coefficients and exponents in (20) – (22).

The standard values of parameters in the Taylor equation (12) are: A=293,
n=0.36, m=0.39, p=0.11. The optimal solution of the GP described above was
obtained by GAMS CONOPT:

r = 1169.448 (v = 367.393), f = 0.180, d = 0.500

with the minimal unit costs ϕ = 3.397 and the corresponding tool life T = 4.219.

Estimates of the empirical constants in the Taylor equation (12) may be obtained
via regression analysis based on the linearized assumed empirical relationship be-
tween the tool life and the cutting conditions

logT = logA1/n − 1/n log v −m/n log f − p/n log d+ ǫ (23)

with ǫ independent of logT , with zero mean value and with a fixed unknown variance
σ2 > 0. Such an approach is needed e. g. for nonstandard materials.

Let β0, β1, β2, β3 denote the regression coefficients in (23) rewritten to the stan-
dard form of the linear regression model with regressors z1 = log v, z2 = log f, z3 =
log d

logT = β0 + β1z1 + β2z2 + β3z3 + ǫ.

Their estimates β∗ enter as parameters into the second posynomial of the objective
function (13), i. e. into the second term of h0(z;β). We have

c2(β) = C2 exp(−β0), a21(β) = −β1 − 1, a22(β) = −β2 − 1, a23(β) = −β3. (24)

For fitting the regression (23), the data from [7] were used: Normality of the residuals
was observed and the estimate β∗ was obtained by the Least squares method, with
the estimate of the correspondingly indexed variance matrix

σ2M =




0.016 0.004 0.004 −0.075
0.004 0.004 0.001 −0.016
0.004 0.001 0.004 −0.019

−0.075 −0.016 −0.019 0.367


 .

The resulting estimates of coefficients in the Taylor equation (12) are n=0.3532,
m=0.3816, p=0.1103, A=298.3155. The optimal solution of the GP with estimated
parameters provided by GAMS CONOPT is

r∗ = 1138.122 (v∗ = 357.551), f∗ = 0.180, d∗ = 0.500

and the optimal value ϕ(β∗) = 3.453. This means that the only difference in the op-
timal cutting conditions is due to the cutting speed. At this solution, the constraint
(22) and the lower bound on d are active and the tool life T (β∗) = 4.336.
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For the sensitivity analysis we start with

z1(β
∗) = log r∗ = 7.037 (log v∗ = 5.879), z2(β

∗) = log f∗ = −1.714,

z3(β
∗) = log d∗ = −0.693.

Solving the system (15) we obtain

∂z(β∗)
∂β

=




0.52259 3.97761 −0.90567 −0.36216
−0.01817 −0.13831 0.03149 0.01259

0.0 0.0 0.0 0.0


 .

The variance matrix of logarithms of the estimated optimal solution z(β∗), see (18),
equals 


0.19093 −0.00664 0.0
−0.00664 0.00023 0.0

0.0 0.0 0.0




and the variance of the estimated minimal costs, see (19), is 0.04695.
Hence, the 2σ confidence interval for the mimimal cost is (2.9632, 3.8298), and 2σ

confidence intervals for the optimal speed and feed can be constructed similarly as
in [7], whereas the depth of the cut d is kept on its lower bound. The 2σ confidence
interval for logarithm of the tool life computed for the optimal setup of cutting
conditions follows from the regression analysis connected with the Taylor equation,
see (23).

The differences in the optimal cutting conditions and in the optimal cost obtained
for standard and estimated parameter values seem to be negligible. Notice, however,
that the bounds of the confidence interval for the optimal value relate to the optimal
cost of cutting one part of a large series, say several thousands of pieces, which makes
the confidence interval width information an important ingredient in the analysis of
economic features of the metal cutting problem.
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