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ON THE CENTRAL PATHS AND CAUCHY
TRAJECTORIES IN SEMIDEFINITE PROGRAMMING

Julio López and Héctor Raḿırez C.

In this work, we study the properties of central paths, defined with respect to a large
class of penalty and barrier functions, for convex semidefinite programs. The type of pro-
grams studied here is characterized by the minimization of a smooth and convex objective
function subject to a linear matrix inequality constraint. So, it is a particular case of convex
programming with conic constraints. The studied class of functions consists of spectrally
defined functions induced by penalty or barrier maps defined over the real nonnegative
numbers. We prove the convergence of the (primal, dual and primal-dual) central path to-
ward a (primal, dual, primal-dual, respectively) solution of our problem. Finally, we prove
the global existence of Cauchy trajectories in our context and we recall its relation with
primal central path when linear semidefinite programs are considered. Some illustrative
examples are shown at the end of this paper.

Keywords: semidefinite programming, central paths, penalty/barrier functions, Rieman-
nian geometry, Cauchy trajectories

Classification: 90C22, 53C25.

1. INTRODUCTION

Semidefinite programming (SDP) has been one of the most developed subjects in
optimization during the last decades. The tremendous research activity in this area
was spurred by the discovery of important applications in structural design, support
vector machines (e. g. [2]), combinatorial optimization (e. g. [6]), among others areas,
as well as the development of efficient numerical algorithms. For more details, see
the surveys of Todd [19] and of Vanderberghe and Boyd [20] and references therein.

Most of the applications mentioned above are modeled as linear SDP problems,
that is, the minimization of a linear function subject to a linear matrix inequality. In
this article, we consider a slight generalization allowing the objective function to be
convex (but smooth), see problem (P ) in Section 2.2. This convex SDP problem is
obviously a convex program. So, it can be solved via convex programming methods.
Among those methods, interior-point algorithms seem to be the most efficient ones
in practice. Roughly speaking, they are based on the good properties exhibited for
the central path with respect to the logarithm barrier function (e. g. Todd [19]).
This explains the large literature existing on the subject of this paper. A very brief
bibliographic summary on central paths for SDP problems is the following. In the
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case of linear SDP, the convergence of the central path towards a primal-dual optimal
solution has been first established by Kojima et al. [12]. Some years later Halická et
al. [9] characterized its limit as the solution (called the analytic center) of a related
optimization problem when the strict complementarity condition holds. They have
also shown that this characterization is not longer true when this conditions does
not hold. For general convex (smooth) SDP problems, only Graña-Drummond and
Peterzil [8] have established the convergence of the primal-dual central path but
under a restrictive assumption (cf. [8, Assumption A2]). Further details on this
subject can be found in E. de Klerk [11].

The relation between primal central path and the Cauchy trajectories (defined in
a related Riemannian manifold) has also attired the attention of many researchers.
For instance, Iusem et al. [10] study it for classical convex programs constrained
only over the positive orthant, while Cruz Neto et al. [5] do it for linear SDP.

The aim of our paper is to extend some of the previous result to our convex SDP
setting, allowing also the use of a larger class of penalty/barrier functions (not only
limited to standard barrier functions). Indeed, this larger class consists of spectrally
defined functions induced by a quite general class of functions defined over the real
positive numbers. So, we prove that the (primal, dual and primal-dual) central
path, with respect to a function in this class, is well-defined and converges toward a
(primal, dual and primal-dual, resp.) solution of our problem. We also show that the
Cauchy trajectories are also well-defined in our context. These results thus extend
those from [1, 5, 10] mentioned above and constitute the core of our paper.

The outline of this paper is the following. In Section 2, we introduce the basic
notation, our problem, its dual, and main assumptions of this paper, and the class
of functions used in our analysis. In Section 3, we establish the divers notions of
central paths, as well as their main properties. For this, we split this section into
three subsections, devoted to primal, dual and primal-dual central path, respectively.

Finally, in Section 4, we introduce some basic concepts about Riemannian geom-
etry, including the definition of the Cauchy trajectories for our convex SDP frame-
work. We then prove they are well-defined and recall their existing connection with
primal central path for linear SDP. Some illustrative examples are given at the end.

2. PRELIMINARIES

2.1. Notation

The following notation is used throughout this paper. The space of n×n symmetric
real matrices is denoted by Sn. This space is endowed with the trace inner product
〈X,Y 〉 = trace(XY ), for all X,Y ∈ Sn, where the trace of a matrix X = (Xij) ∈ Sn

is defined as trace(X) =
∑n

i=1 Xii. Also, Sn
+ (resp. Sn

++) denotes the cone of
symmetric positive semidefinite (resp. definite) matrices. Its Lowner order � is
defined by X � Y iff X − Y ∈ Sn

+ (order ≻ is similarly defined). We denote the
spectral decomposition of X in Sn by

∑n
i=1 λi(X)ei(X)ei(X)⊤, where ei(X)’s are

the orthonormal eigenvectors associated with the eigenvalues λi(X)’s of X . Finally,
for any set S, ∂S stands for its boundary and Γ0(S) denotes the set of extended
real-valued, proper, closed and convex functions defined on S.



526 J. LÓPEZ AND H. RAMÍREZ C.

2.2. Problem statement, basic duality notions and main assumptions

In this paper, we consider the following convex semidefinite programming problem:

(P ) min f(X) : X ∈ FP := {X ∈ Sn : AX = b, X � 0},

where f : Sn → R is convex and twice continuously differentiable, b ∈ Rm and
A : Sn → Rm is a linear operator, defined by AX := (〈Ai, X〉)mi=1 ∈ Rm, with
Ai ∈ Sn. It is easy to see that the adjoint operator ofA is given byA∗y =

∑m
i=1 yiAi.

The classical Lagrangian dual problem associated with problem (P ) is

(D) max
(S,y)∈Sn×Rm

p(S, y) : S � 0,

where p : Sn × Rm → R ∪ {−∞} is defined as p(S, y) = b⊤y + infX∈Sn{f(X) −
〈X,S+A∗y〉}. Note that (S∗, y∗) ∈ Sn

+×Rm is a solution of (D) if and only if there
exists X∗ ∈ FP such that

S∗ +A∗y∗ = ∇f(X∗), 〈X∗, S∗〉 = 0. (1)

Throughout this paper, we assume that the following standard assumptions hold
without explicitly mentioning them in the statements of our results.

(A1) The optimal set of (P ), denoted by S(P ), is nonempty and compact.

(A2) F0
P := FP ∩ Sn

++ = {X ∈ Sn : AX = b, X ≻ 0} 6= ∅ (Slater’s condition).

(A3) The matrices Ai, i = 1, . . . ,m, are linearly independent.

Assumption (A3) is not a restrictive hypothesis and ensures the one-to-one corres-
pondence between the dual variables y and S. Assumption (A2) ensures that the set
of optimal solutions of (D), denoted by S(D), is nonempty and compact. Finally,
(A1)-(A2) guarantee that there is no duality gap between (P ) and (D). These
consequences are necessary for ensuring the existence of the (primal and dual) central
path defined in Section 3 (e. g. [19]).

2.3. Penalty and barrier functions for positive semidefinite matrices

In this paper we are interested in functions υ satisfying the following properties:





(i) υ ∈ Γ0(R),
(ii) (0,∞) ⊂ dom υ ⊂ [0,∞),
(iii) υ ∈ C3(0,∞) and lims→0+ υ′(s) = −∞,
(iv) ∀s > 0, υ′′(s) > 0.

(2)

This class of functions is known as Legendre type functions and is denoted by L.
We divide L into two subclasses L1 and L2 defined by

L1 = {v ∈ L : υ(0) = +∞} and L2 = {v ∈ L : υ(0) < +∞}.
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For example, the functions υ1(s) = − log(s) and υ2(s) = s−1 belong to the class L1

(barrier type functions), while the functions υ3(s) = s log(s)−s (with the convention
0 log 0 = 0) and υ4(s) = − 1

r s
r (where r ∈ (0, 1)) belong to the class L2.

Additionally, throughout this paper, when υ ∈ L1 we assume that

(v) υ is nonincreasing and lim
s→+∞

υ′(s) = 0,

while when υ ∈ L2 we assume that

(vi) for all α ∈ R, {x ∈ R+ : v(x) ≤ α} is bounded.

This larger class will be denoted by L. Note that υi, i = 1, . . . , 4, belong to L. This
class provides us penalty and barrier functions for Sn

+ via the next definition.

Definition 2.1. A function Ψ : Sn → R ∪ {+∞} is said to be spectrally defined if
there is a symmetric function g : Rn → R ∪ {+∞} such that

Ψ(X) = Ψg(X) := g(λ(X)), ∀X ∈ Sn,

where λ(X) is a vector whose components are the eigenvalues of X . Recall that a
function g : Rn → R∪{+∞} is called symmetric if g(x) = g(Px), for all permutation
matrix P ∈ Rn×n.

For υ ∈ L we define g(x) =
∑n

i=1 υ(xi). In this context, υ is called the Legendre
Kernel of g. Clearly, it holds that g ∈ Γ0(Rn). Moreover, function g is symmetric
and is strictly convex on int(dom(g)), so this function induces a spectrally defined
function given by Ψυ(X) := Ψg(X) =

∑n
i=1 υ(λi(X)).

For instance, functions υi, i = 1, . . . , 4, given above, induce the following spec-
trally defined functions: Ψυ1(X) = −trace(log(X)) = −∑

i log(λi(X)), X ≻ 0,
Ψυ2(X) = trace(X−1) =

∑
i λi(X)−1, X ≻ 0, Ψυ3(X) = trace(X log(X) − X) =∑

i[λi(X) log(λi(X))−λi(X)], X � 0 (setting 0 log 0 = 0), Ψυ4(X) = − 1
r trace(X

r) =
− 1

r

∑
i λi(X)r, X � 0, with r ∈ (0, 1). Here the logarithm function of a positive de-

finite matrix X has been defined as log(X) =
∑n

i=1 log(λi(X))ei(X)ei(X)⊤, where
X =

∑n
i=1 λi(X)ei(X)ei(X)⊤ denotes the spectral decomposition of X .

Remark 2.2. A function υ ∈ L1 induces a spectrally defined function Ψυ which is
a barrier function for Sn

+, that is, for all X0 ∈ ∂Sn
+, limX→X0 Ψυ(X) = +∞. (cf.

[17, Theorem 9.1])

Definition 2.3. A function h ∈ Γ0(Rn) is essentially smooth if it is differentiable
on int dom(h) and for every sequence (xk) ⊂ int dom(h) converging to a boundary
point of dom(h) we have |∇h(xk)| → +∞ as k → +∞.

The following results follow from [13] and [14].

Proposition 2.4. Let υ ∈ L and Ψυ be its induced spectrally defined function. It
holds that Ψυ belong to Γ0(Sn

+)∩C3(Sn
++), is essentially smooth with int(domΨυ) =

Sn
++ and is strictly convex on Sn

++. Moreover, its gradient is given by

∇Ψυ(X) =

n∑

i=1

υ′(λi(X))ei(X)ei(X)⊤,
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where ei(X) denotes the orthonormal eigenvector ofX associated with the eigenvalue
λi(X), and ∇2Ψυ(X) is positive definite, for all X ∈ Sn

++.

We end this section by characterizing the analycity of function Ψυ. This result
is a direct consequence of [18, Section 2].

Lemma 2.5. The function υ : R → R is analytic if and only if its induced spectrally
defined function Ψυ is analytic.

3. CENTRAL PATHS IN SEMIDEFINITE PROGRAMMING

3.1. Properties of primal central path

From now on we assume that υ belong to L. Let Ψυ be its induced spectrally defined
function. We define the primal penalty/barrier problem (parameterized by µ > 0)
by means of

(Pµ) min{f(X) + µΨυ(X) : AX = b , X ∈ dom(Ψυ)}.

Let us denote by X(µ) the solution of (Pµ). The curve {X(µ) : µ > 0} is called
the primal central path with respect to Ψυ. Since υ ∈ L, function Ψυ satisfies the
assumptions given in [5, Section 3]. Consequently, the results therein can be directly
extended to our context. We thus obtain the following proposition which proof is
omitted.

Proposition 3.1. The following assertions hold true:
(i) The primal central path {X(µ) : µ > 0} is well defined and belong to F0

P .
(ii) The function µ 7→ Ψυ(X(µ)) is nonincreasing.
(iii) The set {X(µ) : 0 < µ < µ̄} is bounded, for each µ̄ > 0.
(iv) All limits points of the primal central path belong to S(P ).

The next result shows the convergence of the primal central path with respect to
functions in L2. It slightly generalizes [5, Theorem 3.2] from a linear SDP setting
to our convex one. For the sake of space, we omit its proof.

Theorem 3.2. Suppose that υ ∈ L2. Then the primal central path with respect to
Ψυ converges, when µ → 0, toward the unique minimizer of Ψυ over S(P ).

3.2. Properties of dual central path

The dual central path {(S(µ), y(µ)) : µ > 0} with respect to Ψυ is defined as follows

S(µ) = −µ∇Ψυ(X(µ)) and y(µ) = (AA∗)−1A(∇f(X(µ)) − S(µ)). (3)

Notice that Proposition 3.1(i) ensures that dual central path is well-defined.
In the next result, we prove the boundedness of the dual central path and that

its limit points are solution of the problem (D).

Proposition 3.3. The dual central path defined in (3) is bounded and each of its
limit points belongs to S(D).
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P r o o f . In the case when υ ∈ L1, the result was proven in [3, Theorem 4.1].
Otherwise, when υ ∈ L2, we will first prove the boundedness of the dual central
path by verifying that the eigenvalues of S(µ) are bounded (indeed, the boundedness
of y(µ) follows directly from its definition in (3)). Then, we proceed to prove that
every limit point satisfies optimality conditions (1). Let us demonstrate that the
eigenvalues of S(µ) are bounded. Theorem 3.2 ensures the convergence of X(µ),
when µ → 0, toward a particular solution in S(P ). We denote this solution by X̄.
It follows that the eigenvalues λi(X(µ)) of X(µ) converge toward the eigenvalues
λi(X̄) of X̄. Define the index sets I0 = {i : λi(X̄) = 0} and I+ = {1, . . . , n} \ I0 =
{i : λi(X̄) > 0}. We will study separately the cases i ∈ I0 and i ∈ I+. From the
definition of S(µ), given in (3), we know that its eigenvalues are given by

λi(S(µ)) = −µυ′(λi(X(µ))), for all i = 1, . . . , n. (4)

Then, continuity of v′ implies that υ′(λi(X(µ)) converge to the finite value υ′(λi(X̄)),
for all i ∈ I+. Consequently, λi(S(µ)) converge to 0, for all i ∈ I+. This will be also
useful when we prove the optimality of the limit points.

On the other hand, relation (4) and hypothesis (2), Part (iii), implies that
λi(S(µ))> 0, for all i ∈ I0, when µ is small enough. So, for these indexes i ∈ I0,
we can argue by contradiction and suppose the existence of a sequence of positive
numbers {µk} satisfying that µk → 0 and ζk =

∑
i∈I0

λi(S(µk)) → +∞, when
k → +∞. Without loss of generality we can assume that there exist positive values
ξ̂i, not all equal to zero, such that ξik = ζ−1

k λi(S(µk)) → ξ̂i, for all i ∈ I0. Con-
sider the spectral decompositions X(µ) =

∑n
i=1 λi(X(µ))ei(X(µ))ei(X(µ))⊤ and

X̄ =
∑n

i=1 λi(X̄)ei(X̄)ei(X̄)⊤, so that their orthonormal eigenvectors are chosen in
order to satisfy ei(X(µk)) → ei(X̄), for all i ∈ I0, when k → +∞ (see, for instance,
[3, Lemma 2.3]). From the definitions of S(µ) and y(µ), given in (3), we obtain

A∗y(µk)+S(µk) = A∗[(AA∗)−1A(∇f(X(µk))−S(µk))]+S(µk) = ∇f(X(µk)). (5)

Dividing the above expression by ζk and taking k → +∞, we get

(I −A∗(AA∗)−1A)
∑

i∈I0

ξ̂iei(X̄)ei(X̄)⊤ = 0,

that is, matrix Ŝ =
∑

i∈I0
ξ̂iei(X̄)ei(X̄)⊤ belongs to (KerA)⊥ = ImA∗, or equi-

valently, there exists ŷ ∈ Rm such that A∗ŷ + Ŝ = 0. Moreover, since Ŝ � 0
and 〈Ŝ, X̄〉 = 0, it follows that S(D) is unbounded (it is enough to check that
Sα = S∗ + αŜ and yα = y∗ + αŷ satisfy (1), for all α ≥ 0 and (S∗, y∗) ∈ S(D)).
This contradicts Slater’s condition (A2). The boundedness of the dual central path
follows.

Consider now a sequence (S(µk), y(µk)) converging to (S̄, ȳ). Since λi(S̄) = 0 for
all i ∈ I+, complementarity condition in(1) is trivially satisfied. Moreover, it follows
from the analysis above that S̄ � 0. Finally, passing to the limit k → +∞ in (5),
we conclude that (X̄, S̄, ȳ) satisfies (1). The optimality of (S̄, ȳ) is thus verified. �
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3.3. Convergence of the primal-dual central path

The primal-dual central path with respect to Ψυ is the curve {(X(µ), S(µ), y(µ)) :
µ > 0}, where X(µ) and (S(µ), y(µ)) were defined in the previous sections. Hence,
this curve is well defined as the unique solution of the optimality conditions of (Pµ):

AX = b, X ≻ 0, A∗y + S = ∇f(X), S + µ∇Ψυ(X) = 0. (6)

In the following result we prove that the primal-dual central path is an analytic
curve. It generalizes [11, Theorem 3.3] from a linear SDP setting to our convex one.

Proposition 3.4. Suppose that f and υ are analytic functions. Then the primal-
dual central path with respect to Ψυ is an analytic curve contained in Sn

++×Sn×Rm.

P r o o f . Define the function Ξ : Sn
++ × Rm × Sn × R++ → Rm × Sn × Sn as

Ξ(X, y, S, µ) = (AX−b,A∗y+S−∇f(X), S+µ∇Ψυ(X)). Clearly, Ξ(X, y, S, µ) = 0
is equivalent to (6). Then, we have that Ξ(X(µ), y(µ), S(µ), µ) = 0, for all µ > 0.
Moreover, it follows from Lemma 2.5 that Ξ is an analytic function. Hence, the result
is obtained when we applied the implicit function theorem for analytic functions
(see [7, Theorem 10.2.4]) to the function Ξ. For this, we only need to prove that its
derivative with respect to (X, y, S) is nonsingular everywhere, or equivalently, that
the kernel of

∇(X,y,S)Ξ(X, y, S, µ) =




A 0 0
−∇2f(X) A∗ I
µ∇2Ψυ(X) 0 I




is reduced to 0. We proceed to prove this claim. Let U,W ∈ Sn and z ∈ Rm s.t.

AU = 0, −∇2f(X)U +A∗z +W = 0, µ∇2Ψυ(X)U +W = 0. (7)

First and second equation in (7) implies that 〈W,U〉 = 〈∇2f(X)U,U〉, obtaining
from the third one that

〈[∇2f(X) + µ∇2Ψυ(X)]U,U〉 = 0. (8)

Since f is convex and ∇2Ψυ(X) is positive definite (cf. Proposition 2.4), it follows
from (8) that U = 0. Finally, substituting this in (7) and using that Ai are linearly
independent matrices, we conclude that W = 0 and z = 0. The result follows. �

We state here below the convergence of primal-dual central path. Its proof follows
word by word the article [9] (see also [11]), where the result was shown only for the
logarithmic barrier function in a linear SDP setting. Thus, it is omitted. The only
important difference is that here we need to work with semi-analytic sets (and its
corresponding curve selection lemma) instead of algebraic ones. We address the
reader to [15] for the definitions.

Theorem 3.5. Suppose that υ and f are analytic functions. Then the primal-
dual central path with respect to Ψυ converges, when µ → 0, toward a point in
S(P )× S(D).
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4. CAUCHY TRAJECTORIES FOR SEMIDEFINITE PROGRAMMING

In this section, we prove that the Cauchy trajectories (defined in a suitable chosen
Riemannian manifold) are well-defined even for our convex SDP problem (P ), and
we recall the existing connection between primal central path and the Cauchy tra-
jectories when the (P ) is a linear SDP problem (that is, when f is a linear mapping).

4.1. Some basic concepts on Riemannian geometry

Given X ∈ Sn
++ we introduce a new inner product on Sn

++ as follows:

(U, V )X = 〈∇2Ψυ(X)U, V 〉, ∀U, V ∈ Sn. (9)

Now, since Sn
++ is an open set contained in an Euclidean space, it can be seen as

a smooth manifold. Moreover, for every X ∈ Sn
++, the tangent space TXSn

++ can be
identify with Sn. Hence, M := (S++, (·, ·)X) can be seen as a Riemannian manifold.
The corresponding gradient vector field of f restricted to M is thus given by

grad f |M (X) = [∇2Ψυ(X)]−1∇f(X), (10)

where ∇f(X) denotes the Euclidean gradient in Sn. See [16] for more details.
Consider N = F0

P as a smooth submanifold of Sn
++. Its tangent space is given

by TXN = KerA = {V ∈ Sn : AV = 0}, for all X ∈ F0
P . On the other hand, the

Riemannian gradient of the restriction of f to N at X ∈ N can be computed as

grad f |N(X) = ΠX

(
[∇2Ψυ(X)]−1∇f(X)

)
, (11)

where ΠX : Sn → KerA is the (·, ·)X−orthogonal projection onto the linear subspace
KerA. Since A is onto, this projection can be explicitly stated for all X ∈ N ,
obtaining the following expression:

grad f |N (X) = [∇2Ψυ(X)]−1[I −A∗(A[∇2Ψυ(X)]−1A∗)−1A[∇2Ψυ(X)]−1]∇f(X).
(12)

Now, we are able to define the Cauchy problem as follows
{

Z ′(t) = −grad f |N(Z(t)),
Z(0) = Z0 ∈ F0

P .
(13)

The solutions of (13) are called Cauchy trajectories. We study their properties in
the next section.

4.2. Global existence of the Cauchy trajectories in convex SDP

Under the assumptions on υ and f , the Cauchy-Lipschitz theorem ensures the exis-
tence and uniqueness (at least locally) of a classical solution of (13). Then

Tmax = sup{T > 0 : ∃! solution Z of (13) on [0, T ) s.t. Z([0, T )) ⊂ F0
P } (14)

is always positive. In this section, we prove that the Cauchy trajectories are defined
globally (i. e. Tmax = +∞). This analysis extends the result proven by Alvarez et
al. [1] from a convex programming framework to our convex SDP one.
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Since Ψυ is a strictly convex and essentially smooth (cf. Proposition 2.4), we can
easily adapt the following technical results from [1]. Their proofs are then omitted.

Lemma 4.1. (i) Let {Xk} be a sequence of matrices in Sn
++ converging toward X∗

in ∂Sn
++. Then, every limit point of ∇Ψυ(Xk)

‖∇Ψυ(Xk)‖ belong to the normal cone NSn
+
(X∗).

(ii) If X∗ ∈ ∂F0
P = ∂Sn

++ ∩A−1(b), then NSn
+
(X∗) ∩ ImA∗ = {0}.

Now we state the main result of this section.

Theorem 4.2. The following statements hold:
(i) The trajectory Z(t) is well-defined for all t ≥ 0, that is, Tmax = +∞.
(ii) The mapping t 7→ f(Z(t)) is nonincreasing.
(iii) The mapping t 7→ (Z ′(t), Z ′(t))Z(t) belongs to L1([0,+∞),R).
(iv) The curve f(Z(t)) converges, when t → +∞, toward optimal value of (P ).

P r o o f . Let Z : [0, Tmax) → F0
P be a maximal solution of (13). The schedule of

the proof is the following. We first prove that the properties stated in Parts (ii) and
(iii) holds true for Z on [0, Tmax). Then, we demonstrate Part (i) (i. e. Tmax = +∞).
It implies that Parts (ii) and (iii) are true. Finally, the convergence of f(Z(t)) is
directly verified and, in order to conclude Part (iv), we only need to prove that its
limit coincides with the optimal value of (P ), which can be done using the same
arguments (related to Bregman distances) of [1, Proposition 4.4]. This part of the
proof is then omitted.

The equation (12) directly implies that Z ′ ∈ KerA. Moreover, for all Y ∈ KerA,
we also obtain from (12) that (Z ′+[∇2Ψυ(Z)]−1∇f(Z), Y +Z ′)Z = 0, or equivalently

〈∇f(Z) +∇2Ψυ(Z)Z ′, Y + Z ′〉 = 0, Y ∈ KerA. (15)

Replacing Y = 0 in (15) yields

d

dt
f(Z) + 〈∇2Ψυ(Z)Z ′, Z ′〉 = 〈∇f(Z) +∇2Ψυ(Z)Z ′, Z ′〉 = 0. (16)

Since ∇2Ψυ(Z) ≻ 0, we obtain from (16) that t 7→ f(Z(t)) is nonincreasing on
[0, Tmax). Moreover, since f is bounded from below on FP (cf. (A1)), we get that
f(Z(t)) converges when t ր Tmax. So, if we integrate (16) from 0 to t < Tmax, the
resulting expression

∫ t

0

〈∇2Ψυ(Z)Z ′, Z ′〉ds = −
∫ t

0

d

ds
f(Z)ds = −f(Z(t)) + f(Z0)

shows us that 〈∇2Ψυ(Z(·))Z ′(·), Z ′(·)〉 ∈ L1([0, Tmax);R).
Now, let us prove that Tmax = +∞ by contradiction, i. e. we assume that Tmax <

+∞. Since f(Z(t)) is nonincreasing, it follows that Z(t) ∈ Γf(Z0) := {Y ∈ FP :
f(Y ) ≤ f(Z0)}, for all t ∈ [0, Tmax). So, boundedness of Γf(Z0) (cf. (A1)) implies
that the trajectory {Z(t) : t ∈ [0, Tmax)} is bounded. Consequently, its set of limit
points, denoted by Ω, is nonempty. Define K = {Z(t) : t ∈ [0, Tmax)} ∪ Ω. This set
is clearly compact. Then, if we show that K ⊂ Sn

++, we contradict the maximality
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of Tmax. Once again we argue by contradiction, that is, we assume the existence of
X∗ ∈ K ∩∂Sn

++. Denote by {Z(tk)} the sequence in K converging toward X∗ when
k → +∞ (or tk ր Tmax). Since Ψυ is essentially smooth (cf. Proposition 2.4), we
have that ‖∇Ψυ(Z(tk))‖ → +∞, when k → +∞. So, with out loss of generality we

can assume that ∇Ψυ(Z(tk))
‖∇Ψυ(Z(tk))‖ → V , for some V ∈ Sn \ {0}. Furthermore, Lemma

4.1, Part (i), implies that V belongs to the normal cone NSn
+
(X∗). Let V0 be the

orthogonal projection of V onto KerA. Notice that V0 6= 0. Indeed, otherwise
V ∈ (KerA)⊥ ∩ NSn

+
(X∗) and Lemma 4.1, Part (ii), implies that V = 0. By

replacing Y = V0 in (15) and using (16), we get

〈∇f(Z), V0〉+ 〈∇2Ψυ(Z)Z ′, V0〉 = 0.

By integrating the expression above from 0 to tk, we obtain

〈∇Ψυ(Z(tk)), V0〉 = 〈∇Ψυ(Z
0), V0〉 −

∫ tk

0

〈∇f(Z(s)), V0〉ds. (17)

Note that the right-hand side of (17) is bounded (because f is twice continuously
differentiable and the curve {Z(t) : t ∈ [0, Tmax)} is bounded). Then, if we divide
(17) by ‖∇Ψυ(Z(tk))‖ and take limit k → +∞, we deduce that 〈V, V0〉 = 0, and
consequently V0 = 0, which is a contradiction. Hence, the theorem follows. �

Remark 4.3. Following the arguments given in [1, Theorem 4.1], the previous
theorem can be extended to the case when f is a nonconvex function. For this, some
additional (but standard) hypotheses on υ are needed1. For the sake of space we
have focused here only on the convex case.

Once we have verified that the Cauchy trajectories are well-defined, we would
like to relate them with the central path defined in Section 3. Unfortunately, this
cannot be done for our convex (nonlinear) problem (P) (a counterexample in a convex
programming framework is shown in [10]). However, it is indeed possible when f is
linear as it was shown in Cruz Neto et al. [5]. We recall this result here below.

Lemma 4.4. Suppose that f is linear. If Z0 ∈ F0
P satisfies that ∇Ψυ(Z

0) ∈ ImA∗,
then the Cauchy trajectory Z(t) coincides with the curve X(1/t), which is just a
different parameterization of the primal central path with respect to Ψυ.

We end this article illustrating the main result of this section for a particular
instance of problem (P ). That is, we establish the Cauchy problem, given by (13),
for which its solution converges to the optimum of (P ).

Example 4.5. Consider problem (P ) where the linear function A is given by AX =
trace(X) and b = 1. So, the feasible set of (P ) is given by FP = {X ∈ Sn

+ :
trace(X) = 1}. We chose the penalty function υ(s) = υ3(s) = s log(s) − s. In this
case, [∇2Ψυ(Z)]−1Y = Z1/2Y Z1/2 for all Y ∈ Sn. Then, the Cauchy problem (13)
is given by

Z ′ + Z1/2∇f(Z)Z1/2 − trace(Z∇f(Z))Z = 0. (18)

1Actually, these hypotheses are satisfied by functions υi, i = 1, . . . , 4, given in Section 2.3.
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In the particular case when f is spectrally defined, that is, when f(X) = g(λ(X))
for some symmetric function g : Rn → R ∪ {+∞}, problem (P) ca be solved as the
convex program where function g is minimized over the simplex in Rn. On the other
hand, our Cauchy problem (18) can be simplify by considering that the orthonor-
mal eigenvectors ei(Z) are constant over time, obtaining the following differential
equations on the eigenvalues λi(·) = λi(Z(·)) of Z:

λ′
i(t) + λi(t)


 ∂g

∂xi
(λ(Z(t))) −

n∑

j=1

λj(t)
∂g

∂xj
(λ(Z(t)))


 = 0, i = 1, . . . , n.

For suitable choices of g, this is a Lotka-Volterra-type system that naturally arises
in population dynamics theory. We thus recover the result obtained in Alvarez et
al.[1].

Example 4.6. Consider problem (P ) defined in the previous example and chose the
logarithmic barrier function υ(s) = υ1(s) = − log(s). In this case, [∇2Ψυ(Z)]−1Y =
ZY Z for all Y ∈ Sn. Then, the Cauchy problem (13) is given by

Z ′ + Z∇f(Z)Z − trace(Z2∇f(Z))

trace(Z2)
Z2 = 0. (19)

In the particular case when f is spectrally defined, the Cauchy problem (19) can
be simplify as before, obtaining the following differential equations on the eigenval-
ues λi(·) of Z:

λ′
i(t)+λ2

i (t)


 ∂g

∂xi
(λ(Z(t))) − 1∑n

j=1 λ
2
j (t)

n∑

j=1

λ2
j (t)

∂g

∂xj
(λ(Z(t)))


 = 0, i = 1, . . . , n.

This equation was considered by Bayer and Lagarias [4] for linear programs. For
more details, see [1, Section 4.4] and references therein.
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