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K Y BE R NE T IK A — VO L UM E 4 6 ( 2 0 1 0 ) , NU MB E R 4 , P AGE S 7 2 2 – 7 2 9

AN ADAPTIVE LONG STEP INTERIOR POINT

ALGORITHM FOR LINEAR OPTIMIZATION

Maziar Salahi

It is well known that a large neighborhood interior point algorithm for linear optimiza-
tion performs much better in implementation than its small neighborhood counterparts.
One of the key elements of interior point algorithms is how to update the barrier param-
eter. The main goal of this paper is to introduce an “adaptive” long step interior-point
algorithm in a large neighborhood of central path using the classical logarithmic barrier

function having O(n log (x0)T
s
0

ǫ
) iteration complexity analogous to the classical long step

algorithms. Preliminary encouraging numerical results are reported.

Keywords: linear optimization, interior point methods, long step algorithms, large neigh-
borhood, polynomial complexity

Classification: 90C05, 90C51

1. INTRODUCTION

In this paper we consider the following form of linear optimization problem:

(P) min{cT x : Ax = b, x ≥ 0},

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n and rank(A) = m and its dual problem is given
by

(D) max {bT y : AT y + s = c, s ≥ 0}.

Finding optimal solutions of (P ) and (D) is equivalent to solve the following system:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (1)

xs = 0,

where xs denotes the componentwise (Hadamard) product of the vectors x and s.

In the primal-dual interior point methods (IPMs) the idea is to replace the third
equation in (1) by the parametrized equation xs = µe, where e is the all one vector
and µ is a positive scalar which is usually called the barrier parameter, namely we
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have

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (2)

xs = µe.

Without loss of generality [4] we further assume that both (P) and (D) satisfy the
interior point condition (IPC), i. e., there exists an (x0, y0, s0) such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0.

It is known that if the IPC holds, then system (2) has a unique solution for each
µ > 0. This solution, denoted by (x(µ), y(µ), s(µ)), is called the µ-center of the
primal-dual pair (P ) and (D). The set of µ-centers gives the central path of (P ) and
(D) [6]. It has been shown that the limit of the central path (as µ goes to zero)
exists and converges to primal and dual solutions when µ approaches zeros [4].

If we are given a feasible starting point for problems (P) and (D), the search
directions within the primal-dual interior point algorithms which take us to the
optimal solution are the solution of the following Newton system:

A∆x = 0,

AT ∆y + ∆s = 0, (3)

s∆x + x∆s = µe − xs,

where µ is a positive scalar, which is called the barrier parameter.

It is well known that long step interior point algorithms perform better than
small step algorithms in practice [4, 7]. In the classical interior point algorithms,

the barrier parameter µ is taken a fraction of µg := xT s
n

[7]. However from practical
point of view, this might not be the best choice. For example, Mehrotra in his
predictor-corrector algorithm has suggested a heuristic which determines µ based on
predictor step’s information [1]. In this paper, our main goal is to give an adaptive
strategy of choosing µ based on the position of the current iterate in classical long
step algorithm. This is achieved by solving a one dimensional equation depending
on the position of the current iterate. Moreover, we keep all the iterates of the
algorithm in the so called negative infinity norm neighborhood, the widely used
large neighborhood, as follows:

N−

∞
(γ) :=

{

(x, y, s) ∈ F0 : xisi ≥ γµg ∀i = 1, · · · , n
}

, (4)

where γ ∈ (0, 1) is a constant independent of n, µg, and F0 denotes the interior of
the primal and dual feasible regions. Obviously when γ is closer to zero then this
neighborhood spreads almost all over the feasible region [3, 4, 7, 8].

The following technical lemma is useful in the derivation of a lower bound for the
maximum step size in the computed search direction, which will be discussed later
in this paper.
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Lemma 1.1. Let (∆x, ∆y, ∆s) be the solution of (3), then we have

||∆x∆s||−
∞

≤
1

4

(

nµ2

γµg

+ nµg − 2nµ

)

,

where ||z||−
∞

:= ||z−||∞, (z−)j = min{zj , 0}.

P r o o f . See [2]. �

2. ADAPTIVE LONG STEP ALGORITHM

To introduce our adaptive algorithm, we use the classical logarithmic barrier prox-
imity measure as follows:

Φ(x, s, µ) :=
xT s

2µ
−

n

2
+

n

2
log µ −

1

2

n
∑

i=1

log(xisi). (5)

Lemma 2.1. As a function of µ, the global minimum of (5) attains at µ = µg.

P r o o f . We have

Φ′

µ = −
xT s

2µ2
+

n

2µ
.

It is obvious that Φ′(µg) = 0 and Φ′(µ) > 0 for µ > µg and Φ′(µ) < 0 for µ < µg.
Thus µg is its global minimizer. �

For simplicity the geometric mean of the vector xs is denoted by µh i. e.,

µh = (x1s1 · · ·xnsn)
1

n ,

which obviously one has µh ≤ µg. Let us rewrite Φ(x, s, µ) as

Φ(x, s, µ) =
n

2

(

µg

µ
− 1 + log

µ

µh

)

.

Our goal is to have µ as an adaptive fraction of µg. To achieve this goal and for
simplicity, we assume

µg

µ
− 1 + log

µ

µh

= τ − 1

or
µg

µ
+ log

µ

µh

− τ = 0, (6)

where τ > 1 is a given constant. Thus the barrier parameter at each iteration is
chosen as one of the solutions of (6). In the following lemma we give a condition
under which equation (6) has two positive solutions. The smaller one is chosen as
the µ value and is denoted by µt.
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Lemma 2.2. For all (x, s) ∈ Rn
++ ×Rn

++ for which µg ≤ τµh, equation (6) has two
positive solutions, one is smaller than µg and the other one is greater than µg.

P r o o f . Let us first assume that µg = τµh. Then from equation (6) one has µt = µh

which is obviously less than µg . Now since Φ is a strictly decreasing function of µ

for µ < µg, thus Φ(x, s, µg) <
(τ−1)n

2 . Furthermore, since Φ is a strictly increasing
function of µ for µ > µg, then (6) has another solution that is greater than µg. Now
let us assume that µg = τ1µh, where 1 ≤ τ1 < τ. Obviously

Φ(x, s, µh) =
(τ1 − 1)n

2
<

(τ − 1)n

2
.

Moreover we also know that the value of the proximity measure goes to infinity when
µ approaches zero. Thus (6) has a solution which is strictly less than µh. Analogous
to the previous case, it must have another solution which is greater than µg. �

The following technical lemma plays a crucial role in our future analysis.

Lemma 2.3. For any (x, s) ∈ Rn
++×Rn

++ for which µg ≤ τµh, one has τ ≤ µg

µt
≤ 2τ.

P r o o f . Since µg ≤ τµh, then Φ(x, s, µh) ≤ (τ−1)n
2 . This together with the fact

that Φ for µ < µg is strictly decreasing imply that µt ≤ µh and from (6) we have
µg ≥ τµt. Now to prove the other side, let µg = τ1µh, where 1 ≤ τ1 ≤ τ. Then (6)
becomes

µg

µt
+ log τ1 − log

µg

µt
− τ = 0. Now this as a function of

µg

µt
is convex and has

two roots that are less than 2τ . �

Now we outline the algorithm using our new adaptive updating strategy:

Adaptive Algorithm.

A neighborhood parameter τ > 1;
An accuracy parameter ǫ > 0;
(x0, y0, s0) ∈ N−

∞
(γ) with γ = 1

τ
.

while xT s ≥ ǫ

Solve (3) with µ = µt, the smaller positive solution
of (6) and compute the maximum step size αc

such that (x(αc), y(αc), s(αc)) ∈ N−

∞
(γ);

Set (x(αc), y(αc), s(αc)) = (x + αc∆x, y + αc∆y, s + αc∆s).
end

In the following lemma we show that for any iterate of the Adaptive Algorithm,
equation (6) always has two positive solutions.

Lemma 2.4. Let (x, y, z), the current iterate of Adaptive Algorithm, be in N−

∞
(γ).

Then
µg ≤ τµh,

where τ = 1
γ
.
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P r o o f . For any (x, y, s) ∈ N−

∞
(γ) we have xisi ≥ γµg ∀i = 1, · · · , n. This implies

µh ≥ γµg. Now since τ = 1
γ
, then we have µg ≤ τµh. �

Corollary 2.5. For all (x, y, s) generated by Adaptive Algorithm, equation (6) has
two positive solutions.

P r o o f . It follows from the previous lemma and Lemma 2.2. �

The following corollary follows from Lemmas 1.1 and 2.3 that is used in the next
theorem.

Corollary 2.6. Let µt be the smaller positive solution of (6) for (x, y, s) ∈ N−

∞
(γ).

Then
||∆x∆s||−

∞
≤

nµg

4
.

Theorem 2.7. Suppose that (x, y, s), the current iterate of Adaptive Algorithm,
belong to N−

∞
(γ) with γ = 1

τ
, τ > 1 and (∆x, ∆y, ∆s) be the solution of (3) with

µ = µt as the smaller positive solution of (6). Then the maximum step size αc, that
keeps (x(αc), y(αc), s(αc)) in N−

∞
(γ), satisfies

αc ≥
2(τ − 1)

τ2n
.

P r o o f . The goal is to find the maximum nonnegative α for which the relation
xi(α)si(α) ≥ γµg(α), ∀i = 1, · · · , n. We have

xi(α)si(α) = xisi + α(µt − xisi) + α2∆xi∆si

≥ (1 − α)xisi + αµt − α2||∆x∆s||−
∞

≥ (1 − α)γµg + αµt − α2 nµg

4
,

where the second inequality follows from the fact that (x, y, s) ∈ N−

∞
(γ) and the

previous corollary. Moreover

µg(α) :=
(x(α))T s(α)

n
=

(x + α∆x)T (s + α∆s)

n
=

(

1 − α + α
µt

µg

)

µg,

where the last equality follows from the orthogonality of ∆x and ∆s and the last
equation of (3) with µ = µt.

In order to keep the next iterate in N−

∞
(γ), one has to have

(1 − α)γµg + αµt − α2 nµg

4
≥ γ

(

1 − α + α
µt

µg

)

µg,

which simplifies to

(1 − γ)µt ≥ α
nµg

4
.

Using Lemmas 2.3 and 2.4, it definitely holds for α = 2(τ−1)
τ2n

, which completes the
proof. �
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Theorem 2.8. There exists

K = O

(

n log
(x0)T s0

ǫ

)

such that
(xk)T sk ≤ ǫ ∀k ≥ K.

P r o o f . After each iteration in the direction generated by system (3) with µ = µt

and α = αc one has

µg(αc) =

(

1 − αc − αc

µt

µg

)

µg.

Now using Lemma 2.3 and the previous theorem it follows that

µg(αc) ≤

(

1 − αc − αc

1

2τ

)

µg =

(

1 − αc(
2τ + 1

2τ
)

)

µg.

Thus after k iterations we have

(xk)T sk ≤

(

1 −
δ

n

)k

(x0)T s0,

where δ = (τ−1)(2τ+1)
τ3 . Now to have (xk)T sk ≤ ǫ it is sufficient to have

(

1 −
δ

n

)k

(x0)T s0 ≤ ǫ,

or

k log

(

1 −
δ

n

)

≤ log
ǫ

(x0)T s0
.

Since − log(1 − t) ≥ t, we have

k
δ

n
≥ log

(x0)T s0

ǫ
or

k ≥
n

δ
log

(x0)T s0

ǫ
,

which completes the proof. �

3. NUMERICAL EXPERIMENTS

In this section, we present numerical results for several examples taken from the stan-
dard test library NETLIB for linear optimization problems. We have compared our
Adaptive Algorithm with the classical long step algorithm which considers µ = 0.1µg

at each iteration. For all test problems Adaptive Algorithm uses τ = 5 (Our compu-
tational experiments show this is the best choice, and other choices are sometimes
better and sometimes worse than classical approach up to one or two iterations).
For the rest of test problems in NETLIB both algorithms perform the same, so we
omitted them in Table. As we see our Adaptive Algorithm is always better than
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the classical approach. As we know Mehrotra’s predictor-corrector algorithm is the
widely used algorithm in implementation of interior point algorithms. It uses an
adaptive heuristic to update the barrier parameter at each iteration. Our prelim-
inary numerical experiments on this algorithm show the efficiency of our adaptive
approach on Mehrotra’s heuristic [1].

Table. Comparison of Adaptive and Classical Algorithms.

Problem Adaptive Algorithm Classical Algorithm
25fv47 43 44
agg 34 35
agg2 31 32
blend 19 20
bnl1 45 46
boeing1 37 38
boeing2 32 34
bore3d 29 32
capri 32 33
cycle 54 >100
perold 61 64
pilot4 62 70
pilotja 60 64
scfxm1 31 32
sc105 16 17
stocfor1 23 25

4. CONCLUDING REMARKS

In this paper a simple adaptive long step algorithm in a large neighborhood of
the central path, using the classical logarithmic barrier function, is introduced. It
is proved that it enjoys the same order of polynomial iteration complexity as the
classical long step algorithms, while taking advantages of adaptive choice of the
barrier parameter at each iteration. Finally, preliminary encouraging numerical
results are reported.

(Received January 21, 2010)
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