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Abstract. We analyse the effect of the mechanical response of the solid phase during
liquid/solid phase change by numerical simulation of a benchmark test based on the well-
known and debated experiment of melting of a pure gallium slab counducted by Gau &
Viskanta in 1986. The adopted mathematical model includes the description of the melt
flow and of the solid phase deformations. Surprisingly the conclusion reached is that, even
in this case of pure material, the contribution of the solid phase to the balance of the
momentum of the system influences significantly the numerical solution and is necessary
in order to get a better match with the experimental observations. Here an up-to-date
list of the most meaningful mathematical models and numerical simulations of this test is
discussed and the need is shown of an accurate revision of the numerical simulations of
melting/solidification processes of pure materials (e.g. artificial crystal growth) produced
in the last thirty years and not accounting for the solid phase mechanics.

Keywords: liquid/solid phase change, deformation, convection, numerical simulation,
finite differences
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1. Introduction

Solidification and melting are associated with many practical applications, ranging

from industrial processes to environmental engineering, so that their proper under-

standing is not only of scientific interest; just to mention few applications, they are

*This work has been partially developed within a project funded by Agenzia Spaziale
Italiana (contract No. I/R/238/02).
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relevant to industry for artificial crystal production and metal casting, to planetol-

ogy for studying the evolution of the crust of icy planets, to ecology for forecasting

the perennial glacier melting, and to energy production for preventing crystal forma-

tion in the cooling system of energy storage apparata (space stations, nuclear power

plants). In the sequel we go, briefly, through the main steps of recent research de-

voted to the description and understanding of the mechanisms of liquid/solid (L/S)

phase transitions.

The first fundamental approach to mathematical modelling was due to Stefan [49]

who studied the melting of the ice polar cap and started the fortune of the “Stefan

model”. Afterwards, numerous and more general models have been produced for

the description of general L/S phase transition processes, that take into account dif-

ferent thermodynamical mechanisms more and more detailed [12]. In the seventies,

experimentalists started to characterize the influence of dynamics: in 1970 Szekeley

& Chambra [50] were probably the first to provide quantitative evidence (through

experiment and analytical results) of the effect of melt natural convection on the

phase front shape by operating in a rectangular cavity with heat source and sink on

the two opposite vertical walls. In 1977, Chiesa & Guthie [10] and, seven years later,

Gau & Viskanta [22] shew experimentally that melt convection reduces (increases)

the rate of solidification (melting) of a metal. Finally, in 1986, with the well-known

experiment of melting (solidification) of a pure gallium slab heated (cooled) from

a vertical side [23], Gau & Viskanta definitely confirmed the importance of natural

convection even in this case of low Prandtl material. Then, the analysis of the mech-

anisms of solidifying/melting systems, both via experimental work and via numerical

simulation, has been especially focused on the characterization of the fluid dynamics

of the melt and its effects on the process [20], and, in most cases, the processes have

been classified as convection dominated ones [33].

In literature, works on pure materials appeared first. The paper by Hurle [32] deals

with the transitions of the horizontal convective flow of the melt in artificial crystal

growth systems. On this issue a bunch of papers have been published throughout

the following years to nowadays (e.g., more recently, Viswanath & Jaluria [55], De

Groh III & Lindstrom [16], Rady & Mohanty [44], Voller [57], Yeoh et al. [58], Chen

et al. [9], Bertrand et al. [5], Sampath & Zabaras [45], Bansch & Smith [4], Kim

et al. [35]). The applicative interest in this specific matter is due to the fact that

oscillatory instabilities in the melt flow are one of the main causes of the appearance

of dishomogeneities and defects in the final crystal. Actually the solidifying material

is usually mixed to solutes, added in order to diminish the melting temperature

and to slow down the process for easier control; but oscillatory melt motion induces

non uniform distribution of such substances and, consequently, non uniform phase

change. So these studies were aimed at providing the knowledge how to drive the
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growth technique in order to avoid oscillations in the melt and build improved crystals

without dishomogeneities. The mathematical models typically adopted were based

on the classical heat balance equation for the whole system, melt and solid phases,

combined with the momentum balance equation for the melt.

When the material is non-euthectic (e.g. alloys), the interaction between the melt

and the growing (or shrinking) solid, while phase transition takes place, is very strong

through the rigid dendrites or the granules of the mush, that is the characteristic

intermediate phase [8].

In fact, it appears that such interaction is effective also in the case of euthectic

materials according to what has been found via X-ray measurements during experi-

ments of melting of pure metals (Gondi et al. [25], Costanza et al. [11]): structural

variations in the solid portion close to the phase interface have been observed and

may be correlated to the melt convection. Mathematical and numerical assessments

have been, however, invoked by the authors as the measured physical quantities are

very small and might have been spoiled by experimental errors. The present work is

to be inserted at this point of the research landscape of this field as it contributes to

shed light upon the mechanisms accompanying a pure material L/S phase change.

The following overview of mathematical models, typically built for the simulation

of non-euthectic materials, might be assumed, then, to provide hints also for the

treatment of euthectic materials. Such models designed for studying the combined

effect of the dynamics of the liquid and of the solid phases, can be grouped into en-

thalpy models, granular models and multiphysics models. For the description of the

energy conservation of the system, the enthalpy models introduce the total enthalpy,

including with sensible heat the amount of latent heat absorbed from/released to the

environment during melting/solidification; in addition, the dynamics of melt, mush

and solid phases is described through a single momentum equation, by either the

porous medium model or the viscoplastic model or a parametrical combination of

models. In the first case liquid and solid phases are included as limit cases respec-

tively with null and infinite porosity coefficients (see, for example, Voller et al. [56],

Lamazouade et al. [37], Stella & Giangi [48] and Kang & Ryou [34]); in the second

case liquid, solid and mushy phases are represented within a temperature dependent

viscoplastic model (Song et al. [47]), whereas, in the third case, the three phases con-

tribute parametrically to the momentum balance as a viscous fluid, a porous medium

and a Hooke’s thermoelastic material (Teskeredzic et al. [52]). In each of the mod-

els a unique equation for the whole system holds for each pertaining conservation

law (momentum, mass and energy), so that the explicit moving boundary (phase

front) computation is avoided. This is the case also for the model proposed by Hills

and Roberts in the 90’s that describes a liquid/solid phase changing system as a

binary “reacting” granular mixture relaxing toward a state of local thermodynamic
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equilibrium with the phases at the same interfacial pressure [28]. About ten years

later this idea has been embedded by De Fabritiis et al. [15] and by Miller et al. [43]

into the formalism of the thermal lattice Boltzmann method; they included a “reac-

tion” mechanism enhanced by the thermal field as soon as the critical temperature is

reached; the parallelism with the chemical “reaction” recovers the absorption/release

of heat according to the characteristic latent heat, typical of the process.

The above mentioned “fixed grid” (enthalpic and granular) models provide easily

phase fronts of any shape. However, when they are reduced for euthectic materials

(no mush forming), an accurate numerical solution requires a priori very fine dis-

cretization meshes, due to the fact that the phase front is detected as a region, and

not as a line, and requires necessarily at least one discretization cell wide.

Finally, multiphysics models describe the solidification/melting processes by repre-

senting the multiple mechanisms involved through separate equations in each phase.

This approach then allows to treat each aspect with the necessary numerical reso-

lution and ad hoc numerical tools overcoming the limitation of the previous set of

models. The challenge, here, is to match the numerical variables typically computed

upon different scales, a procedure that requires specific care in order to avoid addi-

tional inaccuracies. Bailey et al. in [2] adopted multiphysics modelling for studying

metal casting and Cross et al. in [13] extended the model also to metal electromag-

netic melting processes.

Among the models and papers mentioned so far the ones by Teskeredzic et al. [52]

have to be pointed out as, although without any explicit justification, the authors

adopted an enthalpic model with a thermoelastic solid phase also for the simulation

of melting and solidification of pure materials. This choice is not at all obvious

because several characteristics of the phase change processes, that are response to

solid phase mechanics (e.g. bubble formation), are indeed absent in pure materials,

so that solid mechanics seems to be negligible. In fact, in the present work we show

definitely that it is not true.

We approach the numerical simulation of L/S phase transitions by a multiphysics

mathematical model that, beside melt dynamics, heat transport phenomena and

evolution of the phase front, provides also the description of the solid phase motion

(Baldoni [3]). As in any real occurrence of L/S phase change, the prognostic variables

considered are the velocity of the process, the shape of the interface and the value of

the stresses between the phases. Here, we shall see how much solid phase mechanics

affects such quantities by developing the numerical simulation of the experiment by

Gau & Viskanta [23] (melting from a side of a pure gallium slab). This experiment

is particularly suitable to this purpose as it has been numerically simulated, without

solid dynamics, by many specialists in the literature of the recent past years and

both the mechanisms of the physical process and the details of the mathematical and
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numerical modelling have been deeply analysed, although some exciting elements of

discussion are still left.

This paper is organized as follows: the mathematical model is presented in Sec-

tion 2, the description of the Gau & Viskanta experiment is provided in Section 3, the

numerical solution technique is sketched in Section 4, the numerical results are dis-

cussed versus the experimental observations in Section 5 and conclusions are drawn

in Section 6.

2. The mathematical model of L/S phase change

The equations that govern the evolution of a continuum sample undergoing L/S

phase transition have to include the representation of the conservation laws of mo-

mentum, of energy and of mass; for their structure we refer to the books on classical

mechanics (e.g. [46]). A set of equations for each single phase is obtained together

with the jump conditions for the balance of momentum, energy and mass across the

phase interface. In the jump condition for the energy conservation law (the so called

Stefan condition [12]), the most important is the contribution due to the release or

the adsorption of latent heat corresponding respectively to the solidification or the

melting processes.

In the model adopted here the liquid phase and the solid phase are described

respectively as an incompressible viscous fluid [53] and an isotropic linearly elastic

incompressible material [31], [30]. This choice allows to keep at average the level of

difficulty of the final system of equations to be solved. Obviously, for the solid, a

more appropriate model would be the one describing correctly the specific material

symmetry but, here, we aim at providing a first insight into the effects of the me-

chanical response of the solid within the transition process. Additional simplifying

assumptions are:

i) the densities of the liquid and solid phases are constant and their difference is

negligible; moreover, the Boussinesq-Oberbeck approximation applies in order

to account for the buoyancy force,

ii) the radiating heat is negligible,

iii) liquid and solid interfacing particles do not slip over each other,

iv) the material coefficients of the two phases are constant and the thermophysical

properties are the same.

The Boussinesq-Oberbeck approximation [19], mentioned in i), allows just (linear)

density changes due to temperature variations to support the buoyancy effects; these

are particularly important in our study case, the Gau & Viskanta experiment in [23],

as they include also the convective motions. All the above assumptions have been
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diffusely adopted in the published numerical simulations of this experiment referred

in the present work; in the next section, we shall discuss their feasibility in the specific

experimental context.

If t is the time and (x, y) the space cartesian coordinates, let us denote by DL,

DS and Γ(t) the domains occupied respectively by the melt, the solid and the phase

interface. Supposing that heat conduction follows the classical Fourier’s law, the

governing equations of the melt flow, holding in DL, read

̺
dvL

dt
= −∇pL + µL∇

2vL − ̺[1 − α(TL − Tp)]g,(2.1)

∇ · vL = 0,(2.2)

̺c
dTL

dt
= k∇2TL + µL

[(∂u

∂x

)2

+
1

2

(∂u

∂y
+
∂v

∂x

)2

+
(∂v

∂y

)2]

(2.3)

with vL = (u, v), pL, TL and ̺ respectively the velocity, the pressure, and the

temperature of the melt, and with ̺ the density of the sample at the the reference

temperature Tp (here, chosen to be coincident to the initial temperature). These

equations are coupled with the following ones for the solid phase holding in DS:

̺
∂2U

∂t2
= −∇pS + µS∇

2U − ̺[1 − α(TS − Tp)]g,(2.4)

∇ ·U = 0,(2.5)

̺c
∂TS

∂t
= k∇2TS,(2.6)

with U = (Ux, Uy), pS and TS respectively the displacement, the (indetermined)

pressure and the temperature of the solid phase. The symbols c, k and α indicate

respectively the specific heat, the conductivity and the thermal expansion coefficients

for the whole sample, whereas µL and µS are the viscosity coefficient of the melt and

the second Lamé constant of the solid. Taking into account that vL and U are

solenoidal, the jump conditions, holding in Γ(t), are

vL = vS,(2.7)

(−pLI + µL(∇vL + (∇vL)T )) · n̂ = (−pSI + µS(∇U + (∇U)T )) · n̂,(2.8)

−̺Λ(vL · n̂ − un) − k∇TS · n̂ + k∇TL · n̂ = 0(2.9)

with vS the solid velocity computed from U, n̂ the normal unitary vector on Γ(t),

Λ the latent heat and un the normal speed of the interface. The set of equations (2.1)–

(2.9) is completed by initial and boundary conditions according to the known require-

ments of the classical fluid and solid mechanics models [46]. We focus on the fact

that, at the phase front, the classical no-slip condition, which holds for viscous fluids
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on a rigid wall, is replaced by (2.7) that expresses the fact that the interfacing fluid

and solid particles are compelled to move sticking to each other at the same velocity.

On the contrary, in models for L/S phase change that neglect the solid deformations,

the no-slip condition implies that the fluid particles at the phase front have null

velocity.

This model has already provided numerical results in agreement with the analytical

solution in the case of the solidification of a semi-infinite water layer [41]. In the case

of two-dimensional applications, by observing that the vectors vL and U are both

required to be solenoidal, we have obtained a reformulation of the model on the basis

of the Helmoltz-Hodge decomposition in order to meet more accurately and easily

such constrain. The theorems supporting this decomposition are recalled below in

the three-dimensional more general case [1]:

Theorem 1. Assume D is a closed set in R3 with ∂D continuously differentiable.

Then for every q ∈ [C2(D)]3 can be decomposed as a sum of a gradient of a scalar

field p ∈ C3(D) (the so called scalar potential) and a solenoidal vector u ∈ [C2(D)]3

parallel to ∂D:

q = ∇p+ u.

Theorem 2. Assume D is a closed simply connected set in R
3 with ∂D contin-

uously differentiable. Then, for q ∈ [C2(D)]3, there is a vector field ψ ∈ [C3(D)]3

(the so called vector potential) such that

q = ∇× ψ

if and only if q is divergence-free.

The procedure is well known and experimented for the numerical simulation of

incompressible flows [40] and, in the two-dimensional case, leads to the scalar po-

tential/streamfunction/vorticity (ϕ, ψ, ω) formulation [29] through the following re-

lations with the primitive variables (here referred to the melt flow nomenclature):

vL = ∇ϕ+ ∇× ψL =
(∂ϕ

∂x
+
∂ψL

∂y
,
∂ϕ

∂y
−
∂ψL

∂x

)

,(2.10)

ωL =
∂v

∂x
−
∂u

∂y
.(2.11)

In [42] we have extended this approach also to the treatment of the solid phase equa-

tions. As non-homogeneous Dirichlet boundary conditions on the normal component
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of U are not expected, only streamfunction-like, ψS, and vorticity-like, ωS, are re-

quired as new unknowns (see Theorem 1); they are linked to U through the following

relations:

U = ∇× ψS =
(∂ψS

∂y
,−

∂ψS

∂x

)

,(2.12)

ωS =
∂Uy

∂x
−
∂Ux

∂y
.(2.13)

By adopting the expressions (2.10), (2.11), (2.12), and (2.13) and applying the

curl operator to the vector equations (2.1) and (2.4), the scalar equations for ωL

and ωS are obtained; ψL and ψS result from the Poisson equations derived from the

definition of ωL and ωS, whereas ϕ comes from the Laplace equation corresponding to

the incompressibility constrain on vL. Finally, in the new formulation, the governing

equations for the liquid phase are

̺
dωL

dt
= µL∇

2ωL − ̺αg
∂TL

∂x
,(2.14)

∇
2ϕ = 0,(2.15)

∇
2ψL = −ωL,(2.16)

̺c
dTL

dt
= k∇2TL + µL

[(∂2ψL

∂x∂y
+
∂2ϕ

∂x2

)2

(2.17)

+
1

2

(∂2ψL

∂y2
−
∂2ψL

∂x2
+ 2

∂2ϕ

∂x∂y

)2

+
(

−
∂2ψL

∂x∂y
+
∂2ϕ

∂y2

)2]

,

while, for the solid phase, the governing equations are

̺
∂2ωS

∂t2
= µS∇

2ωS + ̺αg
∂TS

∂x
,(2.18)

∇
2ψS = −ωS,(2.19)

̺c
∂TS

∂t
= k∇2TS.(2.20)

It is worth noticing that in the transformed momentum equations, (2.14), and (2.18),

the gradient of pressure is cancelled by the curl operator so that pressure is no longer

in the unknowns list. In the jump conditions (2.7)–(2.9), the expressions (2.10),

(2.11), (2.12), and (2.13) are also to be taken into account; in addition, the jump

condition (2.8) is transformed via the application of the curl operator to the left and

right momentum equations. Initial and boundary conditions for the new systems are

computed in terms of the derived variables by substitution of the primitive initial

and boundary values into the relating expressions.
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We stress that the reformulation adopted, whatever the accuracy of the numeri-

cal computation of ψS is, yields a numerical displacement field U that, due to the

decomposition (2.12), meets automatically the equation for mass conservation (2.5).

Also in the melt, solenoidality of the numerical velocity field vL is much more eas-

ily recovered through the solution of the intensively studied Laplace equation (2.15)

rather than with some tricky algorithm for the evaluation of pressure that, now, does

not need to be computed. Another appreciable advantage of the adopted reformula-

tion is the reduction of the number of PDEs of the whole final system from eight to

six equations (the gain is, obviously, more evident in the three-dimensional case).

3. The Gau & Viskanta experiment

The experiment simulated here is the melting of a gallium slab heated on a side

presented in [23]. Initially the gallium sample has a rectangular shape and is con-

fined in a rigid cavity whose horizontal walls are adiabatic (dimensions of the layer,

8.89 cm×6.35 cm). The initial temperature is Tp = 28 ◦C, below the melting temper-

ature that is Tm = 29.78 ◦C. Suddenly a vertical wall, let us say the left one, is su-

perheated at temperature TH = 38 ◦C while the vertical wall at the right side is kept

at TS = Tp in order to induce the melting process in a unidirectional way. As Gau &

Viskanta [23] and Brent et al. [6] noticed, the melting process is mainly governed by

the heat transfer in the liquid strip, so the physical properties of the liquid phase,

rather than those of the solid phase, dominate the phase change process. Moreover,

the range of temperature used by the experimentalists is quite narrow (10 ◦C) and,

also, the melt flow has an averaging effect so that the assumption (in the previous

section at iv)) of constant material coefficients and thermo-physical properties (made

at iv) in the previous section) appears indeed reasonable. In agreement with these

observations, in our simulation test, the values of density, volumetric thermal expan-

sion, thermal conductivity and specific heat are assumed equal to those of the liquid

phase (at 32 ◦C) throughout the two phases, that is, respectively, ̺ = 6093 kg ·m−3,

α = 1.2× 10−4 K−1, k = 32 W ·m−1 ·K−1 and c = 381.5 J · kg−1
·K−1. In a solidifi-

cation process, the highly anisotropic behaviour of the polycrystalline gallium could

not have been ignored and assumption iv) could not have been made.

As indicated in [23], other physical parameters of interest in the experiment have

the following values: dynamic viscosity of the melt µL = 1.81 × 10−3 kg · m−1 · s−1

and latent heat of fusion Λ = 80160 J · kg−1; the second Lamé constant of the solid

phase is assumed to be µS = 10 GPa.
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4. Numerical solution procedure

We approach the solution of the PDE model in Section 2 via a finite difference

method based on the first order Euler scheme for first order time derivatives, the

second order backward scheme for second order time derivatives, and centred second

order schemes for space derivatives. In doing so, the unknowns, ωL, ωS, TL, and TS,

result explicitly determined from the discrete form of the evolutive equations within

a time marching algorithm. The Laplace equation for the scalar potential and the

Poisson equations for the stream-functions are solved by a Bi-CGStab method [54],

supported by a pre-conditioner based on the ILU factorization [24].

A fundamental aspect of our solution procedure consists in the application of

a front-fixing technique [12] that overcomes the difficulties related to the moving

boundary formulation: for each phase, a coordinate transformation is adopted in

order to transform the time dependent spatial domains, DL and DS, into the unitary

square and make the finite difference discretization straightforward. Obviously, such

transformations generate new factors to the differential operators of the model which

depend on the function of the unknown curve of the phase front. At each time step

the discrete points of this curve are properly advanced according to the value of un,

the normal speed of the front, computed by the Stefan condition.

We stress that at the initial time t = 0 s, in order to start the numerical compu-

tation we needed to introduce as a numerical artifact the existence of a melt strip

that we chose to be 0.1 cm thick.

In this paper we do not want to devote more space to the description of the numer-

ical method as it is standard although supported by a good know-how in computing

techniques, indispensable for the accomplishment of this very lengthy simulation (this

aspect is confirmed by the other researchers that challenged themselves in this task,

e.g. Stella & Giangi [48]). We rather want to draw the attention of the reader to our

numerical results and their innovative impact in the literature on the simulations of

the Gau & Viskanta experiment and even on the mathematical numerical modelling

of L/S phase change.

Those who have simulated this experiment know that it is highly desirable to keep

the number of discrete unknowns as low as possible and to use time steps as large as

possible in order to cope with the long computing time required to cover the 19 min

of experimental observation time. In our case the space discretization grid used for

the results that will be presented shortly is 17 × 60 both in DL and in DS, and the

larger time step allowed by numerical stability constrain was ∆t = 10−6 s.

For the severe time step limitation, certainly, the explicit schemes for momentum

and energy equations are mostly responsible but also the intrinsic nonlinear nature

of a moving boundary model comes into play in this matter. About the choice
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of the space mesh, it is supported by mesh refinement analysis whose results are

summarized in the drawing in Fig. 1, where the melt horizontal velocity profiles at
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0

0.002
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0.006

0.008

0.01

0 0.01 0.02 0.03 0.04 0.05 0.06

u

17 x 60
25 x 90

y

11 x 40

Figure 1. Melt horizontal velocity profiles at x = 0.57 cm (about the middle of the recircu-
lation cell) computed at t = 32 s on progressively refined meshes (m and m/s are
respectively the measure units over (x) and (y) axes).

the abscissa x = 0.57 cm and at time t = 32 s are shown for three different space

meshes (11 × 40, 17 × 60, and 25 × 90). Though such profiles are not sufficient to

state convergence, we rely on them as they are very close to the corresponding ones

computed by Stella & Giangi in [48] with finer space grids. In Tab. 1 we also list

the maximum and minimum values of ψ, u and v for each tested mesh on the whole

domain. From the values of ψ it seems that the overall method is second order

accurate in space. The small differences registered between the values on the grids

17×60 and 25×90 guarantee that the solution on the coarser one is accurate enough

for our purposes. It is worth noting that the relative errors of u and v are generally

higher than that of ψ according to expectations as u and v are derived quantities in

the ϕ/ψL decomposition.

11× 40 17× 60 25× 90

ψmax 7.551 · 10−3 3.982 · 10−2 2.760 · 10−2

ψmin −1.893 −1.631 −1.577

umax 8.168 · 10−3 6.159 · 10−3 5.788 · 10−3

umin −7.105 · 10−3 −6.284 · 10−3 −5.698 · 10−3

vmax 3.946 · 10−2 2.899 · 10−2 2.024 · 10−2

vmin −1.246 · 10−3
−1.283 · 10−3

−1.300 · 10−3

Table 1. Mesh sensitivity analysis at t = 32 s: maximum value and minimum value of ψ (in
m2/s), u and v (in m/s) on the whole domain.
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5. Simulation results and experimental observations

Let us draw now the attention to Fig. 2, the plot of the computed phase fronts at

the observation times reported by Gau & Viskanta, nine profiles from t = 2 min up to

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

y

x

Figure 2. Simulated L/S phase fronts (solid mechanics included in the modeling) at the
observation time instants of the experiment (m is the measure unit over (x) and
(y) axes).

t = 19 min. The shape of the interface is initially a vertical line in accordance with the

uniform heating of the left vertical wall, then it becomes more and more curved due

to the convective motion of the melt induced by the horizontal temperature gradient.

The plot in Fig. 2 has to be compared with the one in Fig. 3 (redrawn from Gau &

2 3 6 8 10 1712.5 15 19 Time (min)

Figure 3. Experimental L/S phase fronts traced by Gau & Viskanta at preselected times
(C. Gau and R. Viskanta, Melting and solidification of a pure metal on a vertical
wall, Transaction of the ASME 108 (1986), 174–181).
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Viskanta’s plot at Fig. 2 (a) in [23]), where the corresponding experimental profiles

are drawn. In comparison with numerical simulations in literature, which will be

recalled and discussed in the next section, we report here a very good agreement,

both in terms of the shape of the profiles and of the velocity of the phase change. In

order to appreciate the advantage of the mathematical model adopted, we present

in Fig. 4 also the numerical phase fronts obtained by “freezing” the solid mechanics:

we notice that the plot in Fig. 2 is definitely much closer to the experimental than

the last one. At first glance, looking at the unphysical bumps of the fronts in Fig. 4,

one might be tempted to conclude that, when solid mechanics is not included in

the model, the computed melt flow assumes an undesired multicellular structure,

responsible of those shapes due to heat transfer.
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Figure 4. Simulated L/S phase fronts (solid mechanics neglected in the modeling) at the
observation time instants of the experiment (m is the measure unit over (x) and
(y) axes).

And one might extrapolate that the melt flow obtained from the complete model is

unicellular. On the contrary, in both cases, as is shown by the melt flow streamlines at

t = 6 min in Fig. 5 (solid mechanics included) and Fig. 6 (solid mechanics “frozen”),

the computed melt flow is multicellular. This is possible as, within the complete

model, the solid phase, through the stress developed at the interface and transferred

to the melt, by virtue of the jump condition (2.8), locally counteracts the anomalous

melting which carries the bumpy fronts even though the computed melt velocity

is about 10% larger when solid mechanics is included, consistently with the jump

condition (2.7).

In comparison with other numerical simulations in literature, in our results the

role of the viscous dissipation (see equation (2.3)) that is usually neglected, has to

be recognized.
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y

x

Figure 5. Melt flow streamlines (solid mechanics included in the modeling) at t = 6min
(m is the measure unit over (x) and (y) axes).

x

y

Figure 6. Melt flow streamlines (solid mechanics neglected in the modeling) at t = 6min
(m is the measure unit over (x) and (y) axes).

For the sake of completeness, we include in Fig. 7, Fig. 8 and Fig. 9 the vector plot

of the displacement field of the solid phase computed respectively at t = 1 min, 8 min,

and 19 min (appropriate magnifying factors have been used in order to make the plots

readable). We stress that the typical oscillatory structure of a solution of a hyperbolic

vector equation is caught; furthermore, the average modulus of displacement appears
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Figure 7. Simulated displacement field at t = 1min (m is the measure unit over (x) and
(y) axes, factor scale for the arrow length is 3000).
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Figure 8. Simulated displacement field at t = 8min (m is the measure unit over (x) and
(y) axes, factor scale for the arrow length is 800).

increasing with time along with the increase of the average modulus of velocity of

the convected melt. At time t = 19 min, the maximum modulus of the computed

displacement vectors amounts to 0.5 mm.

6. Conclusions

The analysis of the past (till very recent) literature on the two-dimensional numer-

ical simulation of this Gau & Viskanta experiment leads to the following significant

considerations:
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Figure 9. Simulated displacement field at t = 19 min (m is the measure unit over (x) and
(y) axes, factor scale for the arrow length is 20).

i) the multicellular flow structure of the melt convection meets expectations from

fluid dynamics (Lee & Korpela [38], Derebail & Koster [17]), and from ad hoc

stability analysis of melting from a side (Le Quere & Gobin [39]),

ii) the multicellular flow structure of the melt convection appears combined with

unphysical wavy shaped phase fronts (Dantzig [14], Stella & Giangi [48], Han-

noun et al. [27]),

iii) certain low order numerical schemes yield one main cell melt flow and produce

smoother phase fronts, surprisingly closer to experimental observation (Brent

et al. [6], Viswanath & Jaluria [55]),

iv) some specialists, counting on highly accurate numerical discretizations, have

started to explain the inconsistencies by conjecturing that the mathematical

models in use for phase change with convection are not adequate for this exper-

iment (Hannoun et al. [26], Tenchev et al. [51]).

It is worth mentioning that Cerimele et al. [7] gave a further interpretation to this

mismatching based on the observation that the sequence “stop and go” at each

measurement step of the experiment has never been properly reproduced and, by

simulating more carefully the procedure conducted by Gau & Viskanta, obtained

numerical results with melt flows still multicellular but slower, with a lower number

of cells and, consequently, with phase fronts with a lower number of bumps.

Our simulation results successfully incorporate observation i) and iv) and definitely

embody neither the limitation ii) nor iii). Although in [26], even in the title of their

paper, Hannoun et al. claim to have resolved any controversy among the scientists

on this experiment, in fact they do not give any explicit suggestion for improving

132



the quality of the numerical simulations. Whereas, with the results presented in

Section 5, we show that, just by including in the mathematical model the description

of the mechanics of the solid phase, we reach a much more successful match with the

Gau & Viskanta observation.

For the sake of completeness of this discussion, we want to refer also to the three-

dimensional simulation developed by Kumar et al. [36] where the authors present

multicellular convection flow of the melt as well as a good comparison with the

evolving interface. This result, indeed published without mesh refinement analysis,

is compatible with the presence of walls in the third direction as they weaken the melt

convection rolls and consequent heat transfer, preventing the formation of a wavy

shaped phase front. However, we recall again that, in our simulation, when solid me-

chanics is included, the opposite happens, that is, the solid phase slightly speeds up

the melt convection due to the “pulling action” at the interface where solid particles

are themselves under motion at the same velocity of the liquid phase particles; actu-

ally, the absence of bumps at the L/S interface is not at all due to an intuitive, though

untrue, damping effect of the solid phase over the liquid phase but it is driven by the

overall dynamical mechanisms in being. Moreover, on providing the two-dimensional

plot of the interface in Fig. 3, Gau & Viskanta pointed out that the physical interface

was “smooth and flat in the direction perpendicular to the front and back walls of the

test cell. This suggests that fluid motion and heat transfer in that direction was small,

and the effect of natural convection recirculation on the interface motion can justifi-

ably be neglected.” Nevertheless, we are aware that two-dimensional modelling may

introduce a priori a significant approximation of the overall real process but, in the

present case, our results meet also the considerations from the experiment conducted

by Costanza et al. [11] and Gondi et al. [25] who observed that solid phase dynami-

cally interacts with melt during the phase transition process. Upon this convinction,

we suggest the revision of the numerical simulations without the solid phase effects,

in particular, the numerous applications to artificial crystal growth reported in the

literature of the past thirty years and other ones where phase front shape represents

a particularly critical aspect (e.g. Gadkari et al. [21], De Vahl Davis et al. [18]).
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