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REMARKS ON THE UNIQUENESS OF SECOND ORDER ODEs*

Dalibor Pražák, Praha

Dedicated to Professor K. R. Rajagopal on the occasion of his 60th birthday

Abstract. We are concerned with the uniqueness problem for solutions to the second
order ODE of the form x′′+ f(x, t) = 0, subject to appropriate initial conditions, under the
sole assumption that f is non-decreasing with respect to x, for each t fixed. We show that
there is non-uniqueness in general; on the other hand, several types of reasonable additional
assumptions make the problem uniquely solvable.
The interest in this problem comes, among other, from the study of oscillations of lumped

parameter systems with implicit constitutive relations.
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1. Introduction

As is well known from the basic ODE theory, the problem of uniqueness of solutions

is intimately related to the continuity properties of the nonlinearities with respect

to the unknown variable. Consider the first order equation

(1.1) x′ + f(x, t) = 0.

The solution is uniquely determined by the initial condition provided f is locally

Lipschitz continuous in x. This is the most commonly used sufficient criterion of

uniqueness. Simple as it may seem, it cannot be pushed much further. If we assume,

more generally, that

|f(x, t) − f(y, t)| 6 ω(|x − y|),
then uniqueness is guaranteed provided the modulus of continuity satisfies

∫ δ

0

dη

ω(η)
= +∞;
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and this condition is actually optimal. In particular: if f is only α-Hölder continuous,

α < 1, then there is non-uniqueness. For example, the problem

(1.2) x′ − 3
3
√

x2 = 0, x(0) = 0,

is satisfied by x ≡ 0; but the function x = t3 is another solution. Indeed, one can

construct infinity of such solutions, branching at arbitrary points t0 > 0.

A different line of thought aims at employing the monotonicity properties of f . In

particular, we have

Theorem 1. Assume that f(x, t) is non-decreasing1 in x for any t fixed. Then

the solutions to (1.1) are forward unique, meaning that if two solutions x, y coincide

at some t0, then x ≡ y for all t > t0.

P r o o f. Subtract the equations for x, y and multiply by 2(x − y), yielding

d

dt
|x − y|2 6 0.

The conclusion follows immediately. �

Let us remark that the theorem requires no other properties (continuity or inte-

grability) of f . The fact that we only deduce forward uniqueness makes no harm,

and is actually in agreement with physical applications. In fact, we cannot expect

backward uniqueness by the example (1.2) above. Equivalently, there is certainly

non-uniqueness should one require that f is non-increasing in x.

It is of some interest to ask whether a conclusion analogous to Theorem 1 holds

also for the second order equation

(1.3) x′′ + f(x, t) = 0.

More precisely, we ask whether forward uniqueness is guaranteed for (1.3) provided

f is non-decreasing in x, for any t fixed. This is the main issue to be addressed in

the present paper. We will see that the answer is in the negative for the general non-

autonomous problem. The affirmative answer can be given either for the autonomous

problem, or if f satisfies additional structural assumptions.

The paper is organized as follows. In Section 2, we discuss the physical motivation

to our problem. Section 3 is devoted to the case when (1.3) is linear. Section 4 studies

the autonomous problem. Finally, Section 5 is devoted to the general case.

1 In vectorial case, this amounts to 〈f(x, t)− f(y, t), x − y〉 > 0, for any t fixed.
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R em a r k. Throughout the paper, a solution means an absolutely continuous

function satisfying the equation almost everywhere. In the case of a second order

problem, we require that the first derivative is absolutely continuous, too.

2. Physical motivation

One of the basic motivations for the study of second order ODEs comes from oscil-

lations of lumped parameter systems. Consider a mass m, attached to a spring and

a (parallel) dashpot, subject to an external force F (t). The corresponding equation

reads

(2.1) mx′′ + Fd + Fs = F (t),
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Dashpot

Spring

m

where x is the unknown displacement, and Fd, Fs are the forces in the dashpot and

the spring, respectively. It is customary to close the system by constitutive relations

of the form

Fd = f(x′),(2.2)

Fs = g(x),

which leads to a second order ODE for x. If the functions f , g are regular enough,

one obtains a well-posed problem. It might be of interest, however, to reverse the

relations and write

x′ = f̂(Fd),(2.3)

x = ĝ(Fs).
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Note that this is indeed very sensible philosophically: kinematical quantities (veloc-

ity, displacement) are a consequence, hence a function of the forces. One can think

of still more general constitutive relations

f̃(x′, Fd) = 0,(2.4)

g̃(x, Fs) = 0.

There are actually meaningful examples of materials that can only be modeled by

general implicit relations like (2.4), see [4]. The most prominent example is the

Coulomb friction, see for example [2].

The general problem (2.1), (2.4) is a differential-algebraic system of three equations

and three unknowns x, Fd, Fs. Surely enough, the first step towards its analysis is

to ask whether, at least locally or in certain regimes, one can replace (2.4) by (2.2).

While this is often possible, it would lead to nonlinearities that are not sufficiently

regular to guarantee uniqueness. If, for example, one has

x = F 3
s ,

it is indeed equivalent to

Fs = 3
√

x;

but we have seen above that Hölder continuity is not enough for uniqueness.

We emphasize that the problem of uniqueness is very important in particular in

such situations when the problem is attacked by an ad-hoc method of “patching up”

solutions obtained by solving the equation in different regimes. On the other hand,

we see that the monotonicity type of the relation is naturally preserved.

These are the problems that motivate the analysis given in the present paper. More

specifically, we neglect the influence of damping here, since the relation between Fd

and x′′ is essentially that of the first order equations, where the situation is much

easier to understand (see also Introduction). Thus, we are naturally lead to the

problem

mx′′ + h(x) = F (t),

where h lacks sufficient continuity properties (not being Lipschitz in particular), but

is a non-decreasing function. We will come back to this equation in Section 5.
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3. Linear problem

This section is devoted to the analysis of the linear variant of problem (1.3), that

is

(3.1) x′′ + Q(t)x = 0.

The assumption that f is non-decreasing in x is tantamount to

(3.2) Q(t) > 0,

while the lack of continuity of f with respect to x is reflected in the fact that in

general, we do not assume that Q(t) is integrable in time.

In view of linearity, the problem is uniquely solvable for arbitrary initial condition,

if and only if x ≡ 0 is the only (forward) solution subject to the initial condition

(3.3) x(0) = x′(0) = 0.

We will first show that (3.2) is not enough to guarantee forward uniqueness of solu-

tions. Consider a function u1, defined on [−9π/4, 0] as follows:

u1(t) =



















































sin t, t ∈
[

−1

2
π, 0

]

,

sin
1

2

(

t − 1

2
π

)

, t ∈
[

−3

2
π,−1

2
π

]

,

1

4
sin 2(t + π), t ∈

[

−7

4
π,−3

2
π

]

,

1

4
sin

(

t +
1

4
π

)

, t ∈
[

−9

4
π,−7

4
π

]

.

Observe that u1, u
′

1 are continuous, u
′

1(0−) = 1, u′

1(−9π/4+) = 1/4, and (3.1) holds

with Q(t) equal to 1, 1/2, 2 and 1 on the respective intervals. We will now repeat the

same pattern, shrinking by factor 2 in horizontal and by factor 8 in vertical direction.

We set

l =
9

4
π,

t0 = 0,

tk+1 = tk − l

2k
,

Ik = [tk+1, tk],
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Figure 1. Function u1.

and

u(t) =
1

8k
u1(2

k(t + tk)), t ∈ Ik.

Observe that by moving from Ik to Ik+1, the amplitude decreases by the factor 8,

while the derivative is 4times smaller (in particular, it is smoothly joined at the

point tk+1). It follows that Q(t) (the ratio of u and u′′) is 4times larger.

One deduces easily that

t∞ = lim
k→∞

tk = −9

2
π,

u(t∞+) = u′(t∞+) = 0.

Hence, we have constructed a nontrivial solution to (3.1), subject to zero initial

conditions at t∞.

The function Q(t) in the above example is not integrable on [t∞, t∞ + δ), for

otherwise the uniqueness would follow by standard theory. On the other hand, there

exist a non-integrable majorant for Q(t) that still guarantees the (forward) unique

solvability of (3.1).

Theorem 2. Assume that

0 6 Q(t) 6
1

4t2
, t ∈ [0, δ].

Then x ≡ 0 is the only solution to (3.1) on [0, δ] satisfying the zero initial condi-

tion (3.3).
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P r o o f. We proceed by contradiction. Let x be a nontrivial solution on [0, δ].

Our claim is that x has infinity of zeroes.

Indeed, let x(t0) > 0, t0 ∈ (0, δ]. Set

t1 = inf{τ ∈ [0, t0] : x > 0 on [τ, t0]}.

By continuity, we have x(t1) > 0, and x(t1) > 0 is only possible if t1 = 0, which,

however, contradicts (3.3). Thus x(t1) = 0 and x > 0 on [t1, t0], hence by (3.1),

x is concave on this interval, from which we deduce that x′(t1) > 0. Consequently,

t1 > 0, and x is negative on its left neighborhood. A symmetric argument yields the

existence of t2 ∈ (0, t1) such that x(t2) = 0, x′(t2) < 0. We proceed by induction to

find an infinite number of zeroes in an arbitrary right neighborhood of 0.

By the Sturm separation theorem (see [1, XI, Corollary 3.1]), any nontrivial solu-

tion to

u′′ +
1

4t2
u = 0

has infinity of zeroes in (0, δ). Yet, this is an Euler equation, with the general solution

in the form

u =
√

t(a + b ln t),

a contradiction. �

Coming back to the counterexample above, one notices that Q(t) is non-monotone.

We can prove that this is indeed necessary for the non-uniqueness to occur.

Theorem 3. Let Q(t) > 0 be monotone on (0, δ). Then x ≡ 0 is the only solution

to (3.1), (3.3) on [0, δ].

P r o o f. If Q is non-decreasing, it is bounded and hence integrable on (0, δ′) for

any δ′ < δ. The conclusion follows by standard theory.

Assume that Q is non-increasing. Multiplying (3.1) by 2x′, we have

(3.4)
d

dt
(x′)2 + Q(t)

d

dt
x2 = 0.

Integration by parts gives

∫ t0

t1

Q(t)
d

dt
x2(t) dt = [Q(t)x2(t)]t=t0

t=t1
−

∫ t0

t1

x2(t) dQ(t).

The integral on the right is taken in the sense of Lebesgue-Stieltjes. Note that it is

non-positive (t1 < t0 here) by our assumptions.
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Now, if x is a non-trivial solution, we have seen in the proof of Theorem 2 that

it has an infinity of zeroes tk → 0+ such that x′(tk) 6= 0. Integrating (3.4) between

tk+1 < tk gives

(x′)2(tk) − (x′)2(tk+1) 6 0,

which contradicts the fact that x′(tk) → x′(0) = 0 for k → ∞. �

4. Autonomous problem

This section is devoted to the (forward) uniqueness of the problem

x′′ + h(x) = 0,(4.1)

x(0) = x0, x′(0) = x1,

where h is non-decreasing.

Theorem 4. Let h : R → R be a continuous, non-decreasing function. Then the

solutions of (4.1) are forward unique.

P r o o f. We want to show that for an arbitrary initial condition, there is at most

one solution on [0, δ] with some δ > 0. The key step is to employ the first integral:

(x′(t))2 + H(x(t)) = C, t > 0,

where H = 2
∫

h and C = x2
1 + H(x0). If x1 6= 0, then

(x′(t))2 = C − H(x(t)) > 0 on [0, δ]

with a suitable δ > 0; hence

x′ =
√

C − H(x)

or

x′ = −
√

C − H(x),

depending on the sign of x1. These equations determine the solution uniquely, since

the right-hand sides are Lipschitz continuous with respect to x.

If x1 = h(x0) = 0, then

(x′(t))2 + H(x(t)) = H(x0), t > 0.

Yet h(x0) = 0 together with monotonicity of h implies that H has global minimum

at x0, hence

(x′(t))2 6 0, t > 0,
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and thus x ≡ x0 is the unique forward solution. It remains to treat the case

x1 = 0, h(x0) 6= 0.

Assume on the contrary that we have two distinct solutions x, y with the same

initial condition; moreover, for the sake of definiteness, let h(x0) < 0. It follows that

x′′(0) = y′′(0) > 0, hence x′, y′ > 0 on (0, δ). Now, z = x − y satisfies

z′′ + Q(t)z = 0,

where

(4.2) Q(t) =







0, x(t) = y(t),

h(x(t)) − h(y(t))

x(t) − y(t)
, x(t) 6= y(t).

Note that Q(t) > 0, and the zero initial conditions

z(0) = z′(0) = 0

hold. By the argument of Theorem 2, if z is not identically zero, it has infinitely

many zeroes. Taking into account also the fact that x, y are strictly increasing and

concave on [0, δ], a simple geometrical argument shows the existence of τ such that

x(t) and y(t − τ) have the same function value and the same derivative at some t̃

between the consecutive zeroes of z.

Since the problem is autonomous, we have two distinct solutions with the same

initial condition, of which the derivative part is not zero. This contradicts the unique-

ness, proved under these circumstances above. �

R em a r k. It is not necessary to assume continuity of h in the above theorem.

Indeed, a much more general case can be treated along similar lines; see [3, Theo-

rem 2].

5. Non-autonomous undamped oscillator

The last section is devoted to the analysis of the problem

(5.1) x′′ + h(x) = g(t),

subject to the initial condition

x(t0) = x0, x′(t0) = x1.
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The standing assumption is that h is a continuous, non-decreasing function, while we

want to address the problem of (forward) uniqueness of solutions. We remark that

the uniqueness follows by the standard theory, provided h is Lipschitz on some neigh-

borhood of x0. To deliberately exclude such a situation, we will impose additional

structural assumptions. Observe first that, by means of a simple transformation, we

can have

(5.2) 0 = t0 = x0 = h(x0).

Hence, we restrict ourselves to the initial condition

(5.3) x(0) = 0, x′(0) = x1,

keeping in mind that x1 and g(0) can be non-zero. Now, we will additionally require

that

h′(0) = ∞,(5.4)

h is concave on [0, η) and convex on (−η, 0].

Once again, it will be useful to note that if x, y solve (5.1) with the same initial

condition, then z = x − y solves the linear problem

z′′ + Q(t)z = 0,(5.5)

z(0) = z′(0) = 0,

where Q(t) > 0 is given by (4.2). We can thus employ the results from Section 3.

Theorem 5. Assume that (5.4) holds. Let any solution to (5.1), (5.3) be non-

decreasing (or non-increasing) on [0, δ]. Then there is at most one solution on [0, δ].

P r o o f. Let x, y be two solutions. By our assumption, they have the same

monotonicity type on some [0, δ]. More precisely, both the functions either increase

from 0 or decrease to 0 for t ց 0.

By (5.4), h′ exists and is monotone on (−η, 0) and on (0, η). In either case,

Q(t) =

∫ 1

0

h′
(

σx(t) + (1 − σ)y(t)
)

dσ

is non-increasing on [0, δ]. By Theorem 3, this entails that x ≡ y. �

Corollary 1. Let x1 6= 0 or g(0) 6= 0. Then the problem (5.1), (5.4) is uniquely

forward solvable.
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P r o o f. These assumptions guarantee, in view of (5.2), that any solution has

either x′(0) 6= 0, or x′(0) = 0 and x′′(0) 6= 0. This implies a definite sign of x′ at

some [0, δ], and we conclude by Theorem 5. �

Still another approach to ensuring monotonicity is based on additional growth

estimates of h and g.

Corollary 2. Let

|h(x)| 6 c|x|a,(5.6)

g(t) ∼ tb, t → 0+,

where a ∈ (0, 1) and

(5.7) 0 < b <
2a

1 − a
.

Then any solution to (5.1) subject to zero initial condition x(0) = x′(0) = 0 is

increasing on [0, δ]. Hence, the problem is uniquely solvable.

P r o o f. It follows from the equation that x′′(0) = 0; hence

x′′(t) = o(1),

x(t) = o(t2)

for t → 0+. Substituting again, we have

x′′(t) = g(t) + o(t2a).

If b 6 2a, we see that x′′ > 0 on some [0, δ], hence x is increasing and uniqueness

follows by Theorem 5.

If b > 2a, we improve the estimates on x(t) iteratively. Set γ0 = 2. Assume we

have

x(t) = o(tγk),

x′′(t) = g(t) + o(taγk).

If, moreover,

(5.8) b > aγk,
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we deduce

x′′(t) = o(taγk),

x(t) = o(tγk+1), γk+1 = aγk + 2.

Observe that γk ր 2/(1 − a) as long as the induction can be continued. However,

by (5.7), after a finite number of steps (5.8) will not hold anymore. This implies that

x′′ > 0 on [0, δ] and we have monotonicity (and hence uniqueness) as above. �

Concluding remarks. The results of this section prove (forward) uniqueness

of (5.1) in a number of situations; yet the general problem still remains open. More

precisely, it is not clear to us if the sole assumption that h is non-decreasing is enough.

Should there exist counterexamples, then necessarily one would need a zero initial

condition, and very slowly increasing (possibly oscillating) right-hand side. Another

possibility would be to drop the convexity/concavity assumption (5.4).
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