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On evolutionary Navier-Stokes-Fourier

type systems in three spatial dimensions

Miroslav Buĺıček, Roger Lewandowski, Josef Málek

Abstract. In this paper, we establish the large-data and long-time existence of
a suitable weak solution to an initial and boundary value problem driven by a
system of partial differential equations consisting of the Navier-Stokes equations
with the viscosity ν polynomially increasing with a scalar quantity k that evolves
according to an evolutionary convection diffusion equation with the right hand
side ν(k)|DDD(v)|2 that is merely L1-integrable over space and time. We also
formulate a conjecture concerning regularity of such a solution.

Keywords: large data existence, suitable weak solution, Navier-Stokes-Fourier
equations, incompressible fluid, the viscosity increasing with a scalar quantity,
regularity, turbulent kinetic energy model

Classification: 35Q30, 35Q35, 76F60

1. Introduction

Let Ω ⊂ R
3 be an open bounded set and T ∈ (0,∞). Our goal is to prove the

existence of a triple (v, k, p) : (0, T )×Ω → R
3×R+×R which solves, in (0, T )×Ω,

the following nonlinear system of five partial differential equations

div v = 0,(1.1)

v,t + div(v ⊗ v)− div (ν(k)DDD(v)) = −∇p,(1.2)

k,t + div(kv)− div (µ(k)∇k) + ε(k) = ν(k)|DDD(v)|2.(1.3)

We complete the system (1.1)–(1.3) by the following initial and boundary condi-
tions:

v(0, x) = v0(x)

k(0, x) = k0(x) and k0(x) ≥ 0
a.e. in Ω,(1.4)
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v · n = 0

λvτ + (1− λ) (ν(k)DDD(v)n)τ = 0
on (0, T )× ∂Ω,(1.5)

k = 0 on (0, T )× ∂ΩD,(1.6)

∇k · n = 0 on (0, T )× ∂ΩN .(1.7)

Here, DDD(v) denotes the symmetric part of the gradient of the vector field v, i.e.,
2DDD(v) = ∇v + (∇v)T , n = n(x) is the outer normal to the boundary located
at x ∈ ∂Ω, wτ := w − (w · n)n denotes the projection of a vector w = w(x)
to the tangent plane of the boundary at x, ∂ΩD and ∂ΩN are smooth subset of
∂Ω satisfying ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅. The parameter λ ∈ [0, 1]
homotopically connects a homogeneous Neumann type boundary condition for
λ = 0 with the homogeneous Dirichlet boundary condition for λ = 1. If 0 < λ < 1,
then (1.5)2 is called Navier’s slip boundary conditions. In this paper we assume
that λ is any number from [0, 1).

Concerning the functions µ, ν, ε : R+ → R+, we require that they are contin-
uous and that for certain α, β, γ ∈ [0,∞) and two positive constants C1, C2 the
following inequalities hold for all k ∈ R+:

C1(1 + k)α ≤ ν(k) ≤ C2(1 + k)α,

C1(1 + k)β ≤ µ(k) ≤ C2(1 + k)β ,

C1k
1+γ ≤ ε(k) ≤ C2k

1+γ .

(1.8)

Within the framework of weak solutions the term on the right hand side of (1.3)
is not easy to handle. Thus, it is more appropriate to “equivalently” reformulate
the system (1.1)–(1.3) in the following way. Defining the scalar quantity E as

(1.9) E :=
1

2
|v|2 + k,

we deduce the equation for E by taking the scalar product of (1.2) and v and by
adding the result to (1.3). Doing so, we arrive at the equation

(1.10) E,t + div (v(E + p))− div (µ(k)∇k) − div (ν(k)DDD(v)v) + ε(k) = 0.

Of course, assuming that the multiplication of (1.2) by v is meaningful (or in
other words, assuming that v is a possible test function in the weak formulation
of (1.2)) the identities (1.3) and (1.10) are equivalent. However, in three spatial
dimensions we usually do not know that v is an admissible test function and
we cannot conclude the equivalence of (1.3) and (1.10). The main mathematical
reason why we prefer (1.10) to (1.3) is the fact that in (1.10) all nonlinear terms
are in divergence form and belong to a better space than L1 while in (1.3) the term
on the right hand side belongs usually to L1 only. Consequently, it is easier to
identify weak limits of all nonlinear quantities in (1.10) than in (1.3). These facts
seem to be first specified and exploited in [13]. On the other hand, considering
(1.10) we see that we have to deal with p, that can be usually omitted in the
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system (1.1)–(1.3) by using divergence-free test functions in (1.2). Moreover,
assuming that we have a weak solution to (1.1)–(1.2) and (1.10) that in addition
satisfies

(1.11) k,t + div(kv)− div (µ(k)∇k) + ε(k) ≥ ν(k)|DDD(v)|2,

in a weak sense, then it is natural to call such a solution a suitable weak solution
in sense of Caffarelli, Kohn, Nirenberg, see [10]. Indeed, subtracting (1.11) from
(1.10), one deduces

(1.12) |v|2,t + div
(
v(|v|2 + 2p)

)
− div (2ν(k)DDD(v)v) ≤ 0,

that is the form of local energy inequality as appeared in the definition of suitable
weak solution to Navier-Stokes system, see [10].

In this study we establish the following result.

Theorem 1.1. Assume that µ, ν and ε satisfy (1.8) with

(1.13) 0 ≤ α <
2β

5
+

2

3
, 0 ≤ γ < β +

2

3
.

Then for any Ω ∈ C1,1, T > 0, v0 ∈ L2
n,div and k0 ∈ L1(Ω), k0 ≥ 0 a.e. in Ω, there

exists a suitable weak solution (v, p, k) to Problem (1.1)–(1.7), that in particular

fulfils (1.1)–(1.2) and (1.9)–(1.11) in the sense of distributions.

The precise definition of the solution and formulation of the result is given in
Theorem 2.1 below, see Section 2.

The system (1.4)–(1.7) with ν, µ and ε of the form (1.8) is interesting from the
point of view of mathematical analysis of PDEs, in particular, from the point of
view of regularity theory. We shall address this point next.

To simplify discussion below, we assume that ν, µ and ε are of the form

(1.14) ν(k) := ν0k
α, µ(k) := µ0k

α and ε(k) = ε0k
2−α,

where µ0 and ν0 are positive constants and ε0 ≥ 0.
We formulate the following conjecture.

Conjecture 1.1. Let α ∈ R, ν, µ and ε be of the form (1.14). Then there exist

δ > 0 and C∗ > 0 such that for any triple (v, p, k) solving (1.1)–(1.2) and (1.10)–
(1.11) in the sense of distribution the following implication holds:

If

(1.15)

∫ 0

−1

∫

B1(0)

ν(k)|DDD(v)|2 dx dt ≤ δ

then

(1.16) |v(t, x)| ≤ C∗ in (−1

2
, 0)×B 1

2
(0).
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This conjecture certainly holds for α ≡ 0 since then the system (1.1)–(1.2)
reduces to Navier-Stokes equation for which Conjecture 1.15 was proved in [10],
see also [31]. To our best knowledge, Conjecture 1.15 is open for general values of
positive α’s. In what follows, we will show how Conjecture 1.1 implies that, for
certain α’s, any suitable weak solution has bounded velocity.

Indeed, assume that a triple (v, k, p) solve (1.1)–(1.2) and (1.10)–(1.11) on
some neighborhood of (0, 0) that contains for some ℓ0 > 0 a set (−ℓA0 , 0)×Bℓ0(0)
with some A > 0 specified below. Then we rescale the triple in the following way.
For any ℓ ≤ ℓ0 we define for some B > 0

vℓ(t, x) := ℓBv(ℓAt, ℓx),

pℓ(t, x) := ℓ2Bp(ℓAt, ℓx),

kℓ(t, x) := ℓ2Bk(ℓAt, ℓx).

It is easy to show that if we choose A, B such that

A :=
2− 2α

1− 2α
, B :=

1

1− 2α

and assume that α 6= 1
2 then the triple (vℓ, pℓ, kℓ) solves (1.1)–(1.2) and (1.10)–

(1.11) in the sense of distribution in (−1, 0)×B1(0). Next, we apply Conjecture 1.1
on the rescaled velocity vℓ. Hence, using the standard substitution theorem we
see that we need to show that

δ ≥
∫ 0

−1

∫

B1(0)

ν(kℓ)|DDD(vℓ)|2 dx dt

=

∫ 1

−1

∫

B1(0)

ℓ2Bα+2B+2(k(ℓAt, ℓx))α|DDD(v(ℓAt, ℓx))|2 dx dt

=

∫ 0

−ℓA

∫

Bℓ(0)

ℓ2Bα+2B+2−A−3(k(t, x))α|DDD(v(t, x))|2 dx dt

= ℓ
6α−1
1−2α

∫ 0

−ℓA

∫

Bℓ(0)

kα|DDD(v)|2 dx dt.

(1.17)

Interestingly, we see that for 1
6 ≤ α < 1

2 we can choose ℓ so small that the premise
of Conjecture 1.1 is fulfilled. As its consequence, we conclude that vℓ is bounded
in (−1/2, 0)×B1/2(0) and v is bounded in (−(ℓ/2)α, 0)×Bℓ/2(0). Even more, it
follows from (1.17), Conjecture 1.1 and the standard covering argument procedure
that, for α < 1

6 , the Hausdorff dimension of the set S of possible singularities of v
(here, the point of singularity is defined such (t, x) that v is not bounded in any
neighborhood of (t, x)) is bounded by

(1.18) d(S) < 1− 6α

1− 2α
,
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which is consistent with the standard estimate of possible singular set for the
Navier-Stokes equations.

To summarize, the system (1.4)–(1.7) with ν, µ and ε of the form (1.14) is an
interesting system from the point of view of regularity theory. Before however one
starts to study regularity property of any solution one needs to establish its exis-
tence, and this is the subject of this paper. While the statement of Theorem 1.1
for α = 0 was investigated in [8], the case α > 0 is analyzed in this study. Note
that for ε ≡ 0 and β = α, Theorem 1.1 guarantees the existence of solution for
0 ≤ α < 10

9 .
There are two main reasons motivating us to analyze the problem (1.1)–(1.8).

The first one comes from the large-data analysis of turbulent models. The sec-
ond reason is connected with the question of large-data qualitative mathematical
properties of flows of incompressible heat-conducting Newtonian fluids. We shall
discuss the both issues in what follows.

(1) Kolmogorov model. The problem in consideration (1.1)–(1.3) is closely
related to the so-called turbulent kinetic energy model; then v represents the
statistical mean (averaged) velocity of the fluid, p is associated to the statistical
mean normal stress - the averaged pressure, ν stands for the viscosity, µ is the

eddy diffusion and k denotes the turbulent kinetic energy defined as 1
2

∑3
j=1 |v′j |2,

whereas v
′ is the velocity of fluctuations and z stands for the averaging of the

quantity z. The term on the right hand side of (1.3) represents the energy that
the large scales transmit onto the small scales, and the last term of the left hand
side of (1.3) measures the energy rate returned by the small scales to the large
scales. Usually, the quantities ν, µ and ε are depending on the mixing length
scale ℓ that is a positive given function or it is driven by another evolutionary
equation.

In fact, one of the first models of this type was proposed by Kolmogorov in [15],
see also the paper No. 48 in [16] or Appendix in [30]. Based on local properties of
turbulence and incorporating, as Kolmogorov clearly states, (unspecified) crude
approximations, he formulates a closed system of equations of the form

div v = 0(1.19)

v,t + div(v ⊗ v) = −∇
(
p

̺
+ b

)

+Adiv

(

2
b

ω
DDD(v)

)

,(1.20)

ω,t + div(ωv) = − 7
11ω

2 +A′ div

(
b

ω
∇ω

)

,(1.21)

b,t + div(bv) = −bω + 4
3A

b

ω
|DDD(v)|2 +A′′ div

(
b

ω
∇b

)

,(1.22)

where the velocity of the fluid is the sum of the averaged velocity v and the ve-

locity of fluctuations v′, p is the averaged pressure, b := 1
3

∑3
j=1 |v′j |2 is one third

of the sum of averaged square of the components of the velocity of fluctuations,
and ω is related to the length scale ℓ through the relation ω := C

√
b/ℓ, C, A,
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A′ and A′′ are constants. Equations (1.20)–(1.22) coincide exactly1 with equa-
tions (1)–(3) in [15], [16], [30], we merely completed the system by the constraint
of incompressibility (1.19). Thus, we obtain a closed system of six equations for
(v1, v2, v3, p, ℓ, b).

Next, assuming that ℓ is a given known function, equation (1.21) is redundant.

Thus, setting v := v, p := p
̺ + b and noticing that bω = C

ℓ b
√
b and b

ω = ℓ
C

√
b, the

system (1.19)–(1.22) simplifies to

div v = 0(1.23)

v,t + div(v ⊗ v) = −∇p+ div

(
2ℓA

C

√
bDDD(v)

)

,(1.24)

b,t + div(bv) = −C

ℓ
b
√
b+

4ℓA

3C

√
b |DDD(v)|2 + div

(
ℓA′′

C

√
b∇b

)

.(1.25)

Setting k := 3
2b, ν(k) := 2ℓA

C

√
b = 2

√
2ℓA√
3C

√
k, µ(k) = ℓ

√
2A′′

√
3C

√
k and ε(k) =

√
2C√
3ℓ

√
kk we arrive at the system of the form (1.1)–(1.3) that is subject of inves-

tigation in this paper. Note that the quantity E introduced in (1.9) (that plays
an important role in our analysis) is the sum of the kinetic energy associated to

the averaged velocity and the turbulent kinetic energy k = 1
2

∑3
j=1 |v′j |2.

Although the model (1.1)–(1.3) describes complicated turbulent behavior in
a simplified manner (see for example discussion in [30]), it is quite popular and
efficient in various applications. It is used for instance in oceanography ([5], [32],
[20]), in marine engineering ([22], [28]), etc., and surprisingly gives very accurate
numerical results in comparison with experimental data. In certain applications,
this model thus “prevents” the computational analysts from dealing with the
(k − ε) model (see the original work due to Launder and Spalding [17], and also
[26] for more details) that is from the computational point of view very costly.

The derivation of models such as (1.1)–(1.3) is mainly based on dimensional
analysis and physical assumptions on the turbulence (see [26] and [20]) that lead
to the following forms for ν and µ

(1.26) ν(k) = ν0 + ν1
√
k and µ(k) = µ0 + µ1

√
k ,

where ν0 ≥ 0, ν1 ≥ 0, µ0 > 0 and µ1 > 0 are constants. Note that the case (1.26)
with ν0, ν1, µ0, µ1 positive is covered by Theorem 1.1. There are also works
towards the mathematical justification of the k-equation (1.3) from the Navier-
Stokes equations ([11], [25], [12]), but a transparent and consistent derivation of
these models is, to our best knowledge, missing. The limitations and applicability
of the model in consideration are one of the topics studied in our forthcoming
paper.

1In fact, we follow the translation given by Spalding in [30]. There seems to be a misprint
concerning the definition of ǫ in [15].
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From the point of view of analysis of turbulent kinetic energy models the result
presented in this paper can be considered as a natural continuation of Theorem 4
in [21] since it solves the problem formulated in [21] that has been left open.
Also, Theorem 4 in [21] that concerns the case when both ν and µ are bounded
function of k proves that in three spatial dimensions the limit equation for k
deduced from approximated solutions satisfies a variational inequality. This paper
gives two essential novel contributions to the analysis of (1.1)–(1.3). First, the
unknown k is shown to fulfill the equation for E (see (1.10) above) rather than
equation (1.3), and second, it investigates three-dimensional flows with ν and k
that are unbounded functions of k. The price we pay for dealing with (1.10) rather
than with (1.3) is that we need to introduce globally integrable pressure and this
is the reason why we are not able to extend, at the current state, the theory to
Dirichlet boundary condition for the velocity (the case λ = 1 in (1.5)2).

We finish this part by recalling several related results and approaches. The
system (1.1)–(1.3) was first studied in [19] and [21]. Assuming that the eddy
viscosity is a bounded function of k, the author establishes the existence of weak
(distributional) solutions in the steady-state case and in the evolutionary 2D case
if both k and v satisfy homogeneous Dirichlet boundary conditions. These results
have been generalized in many ways and for other boundary conditions, as for
instance to flows of two interacting fluids such as the Ocean and the Atmosphere
([3], [4], [1]). There are very few uniqueness results that are mainly obtained
under smallness assumptions on the total variation of the eddy viscosity or the
source term, and they concern steady-state flows ([2], [6]). In order to analyze
models with unbounded eddy viscosities (that are important, see (1.26)) several
different tools were developed, mostly for some simplified models (such as steady-
state models, models without convective terms, and even without the pressure).
We refer the interested reader to Lewandowski and Murat [20, Chapter 5] for
details concerning renormalized solutions, or to [14] (energy solutions in special
function spaces) or to [18] (energy solutions with periodic boundary conditions).

(2) Navier-Stokes-Fourier system. Associating k with the internal energy
(or temperature) and setting ε ≡ 0, the system (1.1)–(1.3) describes unsteady
flows of incompressible heat-conducting fluids in which the Cauchy stress TTT and
the heat flux q are given by the constitutive equations of the form

(1.27) TTT := −pIII+ ν(k)DDD(v) and q := µ(k)∇k.

The system of equations (1.1)–(1.3) together with (1.27) is called the incompress-
ible Navier-Stokes-Fourier system, where ν denotes the kinematical viscosity of
the fluid and µ is the heat conductivity. In most liquids, that are well approx-
imated as incompressible materials, the internal energy is proportional to the
temperature and the viscosity decreases with increasing temperature. This is just
opposite scenario than that described by the assumptions (1.8). Although the
Navier-Stokes-Fourier system with the viscosity satisfying (1.8) is not reflecting
experimental observations it would be definitely of interest to know that there
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are unsteady flows of a class of Newtonian fluids that exist for large data and the
velocity is bounded.

The large data existence result presented here can be viewed as the extension
of the approach (that is based on the appropriate form of the balance of energy)
originally developed in [13] and [8] where the Navier-Stokes-Fourier system with
the bounded viscosity and the heat conductivity is treated; the spatially-periodic
problem is analyzed in [13] while flows in bounded domains satisfying the Navier’s
slip boundary conditions are studied in [8]. Naumann [27] studied the model with
the temperature dependent viscosity and the heat conductivity, he however uses
equation (1.3) instead of (1.10); due to difficulties to identify the limit the dissipa-
tive term at the right-hand side of (1.3) his concept of solution is weaker than that
introduced in [13], [8] and used in this paper as well. For the sake of complete-
ness, we remark that Lions [23, Section 3.4] studies the case where the viscosity
and the heat conductivity are positive constants (temperature independent) and
provides two approaches (different from that presented here) how the problem can
be investigated in order to establish long-time and large-data existence results.

The paper is organized as follows. After introducing relevant function spaces,
we establish, in Section 2, the main result that includes the precise definition of
suitable weak solutions to (1.1)–(1.3). Then, in Section 3, we introduce two-level
approximations depending on parameters n and m and prove the main result.
Since the existence of solutions to the (m,n)-approximation, for a fixed n and
m, is given in [8, Appendix] we focus on the analysis of the limit behavior of the
solutions (vm,n, pm,n, km,n) first as n → ∞ and then as m → ∞.

2. Main result

In order to state the main result with all details we need to clarify the notation
of relevant function spaces. For the velocity field, we define

W 1,p
n

:=
{
v ∈ W 1,p(Ω)3 : v · n = 0 on ∂Ω

}
,

W 1,p
n,div :=

{
v ∈ W 1,p

n
: div v = 0 in Ω

}
,

W−1,p′

n
:=
(
W 1,p

n

)∗
, W−1,p′

n,div :=
(

W 1,p
n,div

)∗
,

L2
n,div := W 1,2

n,div

‖ ‖2

.

We also introduce the natural space for k; for some fixed β ∈ R+ we set

Eβ :=
{

k ∈ L∞(0, T ;L1(Ω)) : k ≥ 0 a.e.,

((1 + k)s − 1) ∈ L2(0, T ;W 1,2
D (Ω)) for all s <

β + 1

2

}

,

where W 1,2
D (Ω) := {k ∈ W 1,2(Ω); k = 0 on ∂ΩD}.
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Note that by using standard interpolation technique the following continuous
embedding holds (we show it in the proof of the main theorem) for β ∈ [0, 1]

Eβ →֒ Lr(0, T ;Lr(Ω)3) ∩ Lq(0, T ;W 1,q
D (Ω)3) for all r <

3β + 5

3
and q <

3β + 5

4
.

If β > 1 then q = 2 in the above embedding.
Moreover, in what follows we use the abbreviation (a, b)A :=

∫

A ab whenever

ab ∈ L1(A). In case that A = Ω we also omit writing the subscript Ω. The same
notation is used for vector- and tensor-valued functions as well.

We formulate the main result of this paper.

Theorem 2.1. Let Ω ∈ C1,1, T > 0, v0 ∈ L2
n,div and k0 ∈ L1(Ω), k0 ≥ 0 a.e.

in Ω, be given arbitrarily. Assume that ν, µ and ε satisfy (1.8) with α, β and γ
fulfilling

(2.1) 0 ≤ α <
2β

5
+

2

3
, 0 ≤ γ < β +

2

3
.

Then there exist a triple (v, p, k) and E given as

E =
1

2
|v|2 + k,

satisfying

v ∈ Cweak(0, T ;L
2
n,div) ∩ L2(0, T ;W 1,2

n,div),(2.2)

v,t ∈ Lq′(0, T ;W−1,q′

n
) for all q < min

{
5

3
, 2− 2α

α+ β + 5
3

}

,(2.3)

k ∈ Eβ ,(2.4)

k,t ∈ M(0, T ;W−1,1+δ) for certain δ > 0 small,(2.5)

p ∈ Lq(0, T ;Lq(Ω)) for all q < min

{
5

3
, 2− 2α

α+ β + 5
3

}

,(2.6)

√

ν(k)DDD(v) ∈ L2(0, T ;L2(Ω)3×3),(2.7)

E,t ∈ L1+δ(0, T ;W−1,1+δ
D (Ω)) for certain δ > 0 small,(2.8)

and fulfilling

∫ T

0

〈v,t,w〉 − (v ⊗ v,∇w) +
λ

1− λ
(v,w)∂Ω + (ν(k)DDD(v),DDD(w)) dt

=

∫ T

0

(p, divw) dt for all w ∈ L∞(0, T ;W 1,∞
n

),

(2.9)
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∫ T

0

〈E,t, w〉 − (v(E + p),∇w) + (µ(k)∇k,∇w) + (ε(k), w) dt

= −
∫ T

0

(ν(k)DDD(v)v,∇w) dt for all w ∈ L∞(0, T ;W 1,∞
D (Ω)),

(2.10)

and

∫ T

0

〈k,t, w〉 − (kv,∇w) + (µ(k)∇k,∇w) + (ε(k), w) dt

≥
∫ T

0

(ν(k)|DDD(v)|2, w) dt for all w ∈ C(0, T ;W 1,∞
D (Ω)).

(2.11)

Moreover, the initial conditions are attained in the following sense

(2.12) lim
t→0+

(
‖v(t)− v0‖22 + ‖k(t)− k0‖1

)
= 0.

It is worth of noticing that Theorem 2.1 covers the interesting case α = β = γ
for 0 ≤ α < 10/9. In particular, the case (1.26) is included.

We also remark that all terms in (2.9)–(2.11) are meaningful; the most critical
term is the last term in (2.10) and the L1-integrability of this term leads to

the restriction (2.1)1. Indeed, noticing that ν(k)DDD(v)v =
√

ν(k)DDD(v)v
√

ν(k)

and
√

ν(k)DDD(v) ∈ L2(0, T ;L2(Ω)3×3), v ∈ L10/3(0, T ;L10/3(Ω)3) and
√

ν(k) ∈
L

3β+5
3 −s(0, T ;L

3β+5
3 −s(Ω)) we observe, by applying the Hölder inequality that

ν(k)DDD(v)v ∈ L1(0, T ;L1(Ω)) ⇐⇒ 0 ≤ α <
2β

5
+

2

3
,

which is the first condition in (2.1). The second condition (2.1)2 is required in
order to know that ε(k) belongs to a better space than L1(0, T ;L1(Ω)), which is
needed to establish the compactness of the terms involving ε(k).

3. Proof of Theorem 2.1

First we introduce a notation of various truncated functions. For any m ∈ R+,
we define the function Tm through

(3.1) Tm(y) :=

{

y if |y| ≤ m,

m sgn (y) if |y| > m,

and we use the symbol Θm to denote the primitive function to Tm, i.e.,

(3.2) Θm(y) :=

∫ y

0

Tm(τ) dτ.
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For β introduced in (1.8)2 and for arbitrary s ≥ 0, we also introduce the function
Φs by the formula

(3.3) Φs(y) :=

∫ y

0

(1 + τ)
β−s−1

2 dτ =
2

β − s+ 1

[

(1 + y)
β−s+1

2 − 1
]

.

Finally, we consider a smooth non-increasing function G such that G(y) = 1 when
y ∈ [0, 1] and G(y) = 0 for y ≥ 2, and define Gm as

(3.4) Gm(y) := G
( y

m

)

.

The primitive function to Gm is then defined through

(3.5) Γm(y) :=

∫ y

0

Gm(τ) dτ.

The first part of the proof takes inspiration in the method developed in [8].
We start with a “semi”-Galerkin approximation. Let {wk}∞k=1 be a basis of

W 1,2
n,div ∩W 2,4(Ω)d, which exists due to the separability of this space. We look for

(vn,m, kn,m), where

v
n,m :=

n∑

i=1

cn,mi (t)wi(x), and kn,m ≥ 0 a.e.

fulfill the equations

(vn,m
,t ,wi)−

(
Gm(|vn,m|2)vn,m ⊗ v

n,m,∇wi

)
+

λ

1− λ
(vn,m,wi)∂Ω

+ (ν(Tm(kn,m))DDD(vn,m),DDD(wi)) = 0 for all i = 1, . . . , n,
(3.6)

∫ T

0

〈kn,m,t , w〉 − (vn,mkn,m,∇w) + (µ(kn,m)∇kn,m,∇w) + (ε(kn,m), w) dt

=

∫ T

0

(ν(Tm(kn,m))|DDD(vn,m)|2, w) dt for all w ∈ L2(0, T ;W 1,2
D (Ω)),

(3.7)

as well as the initial conditions of the form

v
n,m(0, x) := v

n
0 (x) :=

n∑

i=1

c0iwi with c0i := (v0,wi),

lim
t→0

‖kn,m(t)− kn0 ‖22 = 0 with kn0 := k0 ∗ η 1
n
,

(3.8)

where η 1
n
is the standard regularizing kernel of radii 1

n and k0 is extended by 0

outside of Ω. Note that vn
0 → v0 strongly in L2(Ω) and that kn0 → k0 strongly in

L1(Ω).
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The existence of the solution to (3.6)–(3.8) is established in [8, Appendix] and
here we merely state the result concerning large-data and long-time existence
proved therein.

Theorem 3.1. Let arbitrary n,m ∈ N be fixed. Assume that all assumptions of

Theorem 2.1 hold. Then there exist (cn,m, kn,m) solving (3.6)–(3.8) such that

c
n,m ∈ W 1,2(0, T )n,(3.9)

kn,m ∈ L∞(0, T ;L∞(Ω)) ∩ L2(0, T ;W 1,2
D (Ω)),(3.10)

kn,m,t ∈ L2(0, T ;W−1,2
0 (Ω)).(3.11)

3.1 Limit n → ∞. Since m ∈ N is fixed in this subsection, we write (vn, kn)
instead of (vn,m, kn,m), where (vn,m, kn,m) denotes a solution to (3.6)–(3.8). Our
goal is to study the convergence in equations (3.6)–(3.7) if n → ∞. We will
follow the procedure developed in [8] that we have to modify in order to treat
unbounded coefficients ν and µ. This is why we investigate this limiting process
here rigorously and in detail.

3.1.1 Uniform estimates on v
n. Multiplying the i-th equation in (3.6) by cni

and then summing over i = 1, . . . n we get

1

2

d

dt
‖vn‖22 −

1

2
(Gm(|vn|2)vn,∇|vn|2) + λ

1− λ
‖vn‖2∂Ω,2

+

∫

Ω

ν(Tm(kn))|DDD(vn)|2 dx = 0.
(3.12)

Next, using the fact that vn · n = 0 on ∂Ω and div vn = 0 in Ω we deduce that

1

2
(Gm(|vn|2)vn,∇|vn|2) = 1

2
(vn,∇Γm(|vn|2)) = −1

2
(div vn,Γm(|vn|2)) = 0.

Thus, we conclude from (3.12) that
(3.13)

sup
t∈(0,T )

‖vn(t)‖22 + 2

∫ T

0

∫

Ω

ν(Tm(kn))|DDD(vn)|2 dx dt ≤ ‖vn
0‖22 ≤ C(v0) < ∞.

It then follows from (1.8)1 and the Korn inequality that

(3.14)

∫ T

0

‖vn(t)‖21,2 dt ≤ C(C−1
1 ,v0) < ∞.

Moreover, using the standard interpolation inequality, (3.13)–(3.14) implies that

(3.15)

∫ T

0

‖vn‖
10
3
10
3

dt ≤ C.
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Note finally that it follows from (3.6) and (3.13)–(3.14) that

(3.16)

∫ T

0

‖vn
,t‖2W−1,2

n,div

≤ C(m).

3.1.2 Estimates on kn uniform w.r.t. both m and n. Setting w := T1(k
n)

in (3.7) (note that T1(k
n) is a possible test function) we obtain the identity

d

dt

∫

Ω

Θ1(k
n) dx− (vn,∇Θ1(k

n)) + (µ(kn)∇kn, T ′
1(k

n)∇kn)

+(ε(kn), T1(k
n)) = (ν(Tm(kn))|DDD(vn)|2, T1(k

n)).

(3.17)

Since div vn = 0 in Ω and v
n ·n = 0 on ∂Ω, the second term on the left hand side

vanishes. Moreover, using (1.8), we see that the third term on the left hand side
is nonnegative. Thus, integrating (3.17) over time, using (1.8)3 to estimate the
last term on the left hand side from below and using (3.13) to bound the right
hand side of (3.17), we conclude that

(3.18) sup
t∈(0,T )

‖Θ1(k
n(t))‖1 + C

∫ T

0

‖kn‖γ+1
γ+1 dt ≤ C + ‖Θ1(k

n
0 )‖1.

Finally, using the simple estimate for the growth of Θ1 we get that

(3.19) sup
t∈(0,T )

‖kn(t)‖1 + C

∫ T

0

‖kn‖γ+1
γ+1 dt ≤ C + ‖k0‖1 < ∞.

Next, recalling that kn ≥ 0 a.e. in Ω we consider w = (1 + kn)−s − 1 with s > 0
small and observe that such w is an admissible test function in (3.7), in particular

‖w‖∞ ≤ 2 and w ∈ L2(0, T ;W 1,2
D (Ω)) for each n ∈ N. Inserting such w into (3.7),

using the fact that div vn = 0 and the estimates established in (3.13) and (3.19),
we get

∫ T

0

∫

Ω

µ(kn)(1 + kn)−s−1|∇kn|2 dx dt ≤ C(s−1).(3.20)

Consequently, using the assumption (1.8)2 and recalling the definition of Φs, see
(3.3), we conclude that (using the fact that Φs has zero trace on ΩD)

∫ T

0

‖Φs(k
n)‖21,2 dt ≤ C

∫ T

0

‖∇Φs(k
n)‖22 dt

≤ C

∫ T

0

∫

Ω

µ(kn)(1 + kn)−s−1|∇kn|2 dx dt ≤ C(s−1).

(3.21)

Using the first inequality in

(3.22) c−1((1 + x)
β−s+1

2 − 1) ≤ Φs(x) ≤ c(1 + x)
β−s+1

2 , (x ≥ 0)
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the embedding W 1,2
D (Ω) →֒ L6(Ω) and (3.21)1 we observe that

(3.23)
∫ T

0

‖kn‖β−s+1
3(β−s+1) dt ≤ C(1 +

∫ T

0

‖Φs(k
n)‖21,2 dt) ≤ C(s−1) for all s > 0 small.

Then, referring to the standard interpolation inequality

(3.24) ‖u‖β−s+ 5
3
≤ ‖u‖1−a

1 ‖u‖a3(β−s+1) with a :=
β − s+ 1

β − s+ 5
3

,

applied onto kn we conclude from (3.19) and (3.23) that

∫ T

0

‖kn‖β−s+ 5
3

β−s+ 5
3

dt ≤
∫ T

0

‖kn‖
2
3
1 ‖kn‖β−s+1

3(β−s+1) dt
(3.20)

≤
(3.23)

C(s−1) for all s > 0 small.

(3.25)

Notice that the estimate (3.25) is better than the second estimate in (3.19) since
we assume that γ < β + 2

3 , see (2.1)2. Moreover, using the Hölder inequality and
the estimates (3.15) and (3.25), it is easy to deduce that (note that the specific
value of a small parameter s differs from s in (3.25))

(3.26)

∫ T

0

‖vnkn‖
10
9

3β+5
β+5 −s

10
9

3β+5
β+5 −s

dt ≤ C(s−1) for all s > 0 small.

Concerning the estimate on the gradient of kn, we consider first the case β ∈ [0, 1]

and we set q := 3β−3s+5
4 . Combining the estimates stated in (3.20) and (3.25),

we conclude that

∫ T

0

‖∇kn‖qq ≤ C

∫ T

0

∫

Ω

(
µ(kn)(1 + kn)−s−1|∇kn|2

) q
2 (1 + kn)

q(s+1−β)
2 dx dt

≤ C

(
∫ T

0

∫

Ω

µ(kn)(1 + kn)−s−1|∇kn|2 dx dt

) q
2
(
∫ T

0

‖1 + kn‖β+
5
3−s

β+ 5
3−s

dt

) 2−q
2

≤ C(s−1).

If β > 1 we can always find s > 0 small enough so that β − s − 1 > 0. Conse-
quently2,

∫ T

0

‖∇kn‖
3β+5−s

4
3β+5−s

4

≤ C(s−1) for all s > 0 small for β ∈ [0, 1],

∫ T

0

‖∇kn‖22 ≤ C for β > 1.

(3.27)

2Note that the estimates (3.27) and (3.25) are better than those derived in [14] and [21].
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Similarly, the estimates (3.21)–(3.25) together with (1.8)2 imply that

(3.28)

∫ T

0

‖µ(kn)∇kn‖
3β+5
3β+4−s
3β+5
3β+4−s

≤ C(s−1) for all s > 0 small.

Finally, using the above established estimates it is not difficult to observe (see [7]
for details) that

(3.29)

∫ T

0

‖kn,t‖−1,r−s dt ≤ C(s−1) for all s > 0 small

with r given by

(3.30) r := min

{
3β + 5

3β + 4
,
10

9

3β + 5

β + 5

}

.

3.1.3 Limit n → ∞. Letting n → ∞ and using (3.13), (3.15), (3.16), (3.25) and
(3.27), and using the convention that a selected sequence is denoted again as the
original one, we can find a subsequence such that3

v
n ⇀∗

v weakly∗ in L∞(0, T ;L2
n,div),(3.31)

v
n ⇀ v weakly in L2(0, T ;W 1,2

n,div) ∩ L
10
3 (0, T ;L

10
3 (Ω)3),(3.32)

v
n
,t ⇀ v,t weakly in L2(0, T ;W−1,2

n,div),(3.33)

kn ⇀ k weakly in Lq(0, T ;W 1,q
D (Ω)) for all q < min

{
3β + 5

4
, 2

}

,(3.34)

kn ⇀ k weakly in Lω(0, T ;Lω(Ω)) for all 1 ≤ ω <
3β + 5

3
,(3.35)

v
n ⇀ v weakly in L

8
3 (0, T ;L

8
3 (∂Ω)3).(3.36)

In addition, using the generalized version of the Aubin-Lions compactness lemma
(see [29]) together with (3.33) and (3.29) leads to the conclusions that

v
n → v strongly in Lq(0, T ;Lq(Ω)3) for all q <

10

3
,(3.37)

v
n → v strongly in Lq(0, T ;Lq(∂Ω)3) for all q <

8

3
,(3.38)

kn → k strongly in Lq(0, T ;Lq(Ω)) for all q <
3β + 5

3
,(3.39)

and consequently we show that (at least for a suitable subsequence)

v
n → v a.e. in (0, T )× Ω,(3.40)

kn → k a.e. in (0, T )× Ω,(3.41)

3For the proof of (3.36) and (3.38) see [7].
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Φs(k
n) ⇀ Φs(k) weakly in L2(0, T ;W 1,2

D (Ω)) for all s > 0 small.

(3.42)

Moreover, using the Fatou lemma, (3.19) and (3.41) we can conclude that

(3.43) sup
t∈(0,T )

‖k(t)‖1 ≤ C.

Concerning limits in the nonlinear terms in (3.6) and (3.7) we first easily observe
(recall that ν(Tm(kn)) is a bounded a.e. convergent sequence as n → ∞) that

√

ν(Tm(kn))DDD(vn) ⇀
√

ν(Tm(k))DDD(v) weakly in L2(0, T ;L2(Ω)3×3),(3.44)

ν(Tm(kn))DDD(vn) ⇀ ν(Tm(k))DDD(v) weakly in L2(0, T ;L2(Ω)3×3).(3.45)

Next, having the assumption on γ, see (1.8)3, one can also obtain by using (3.34),
(3.39) and the Vitali theorem that

ε(kn) → ε(k) strongly in Lq(0, T ;Lq(Ω)) for all q <
3β + 5

3(γ + 1)
.(3.46)

Also, it is a consequence of (3.28) that there is some q such that

µ(kn)∇kn ⇀ q weakly in Lq(0, T ;Lq(Ω)3) for all q <
3β + 5

3β + 4
.(3.47)

In order to identify q, we first remark that it is enough to show that

lim
n→∞

∫ T

0

(µ(kn)∇kn,ϕ) dt =

∫ T

0

(µ(k)∇k,ϕ) dt for all ϕ ∈ D((0, T )× Ω).

However, using the assumption (1.8)2 concerning µ and the convergence results
(3.39) and (3.42) we observe that

∫ T

0

(µ(kn)∇kn,ϕ) dt =

∫ T

0

(µ(kn)(1 + kn)−
β−s−1

2

︸ ︷︷ ︸

strongly in L2

∇Φs(k
n)

︸ ︷︷ ︸

weakly in L2

,ϕ) dt

n→∞→
∫ T

0

(µ(k)(1 + k)−
β−s−1

2 ∇Φs(k),ϕ) dt =

∫ T

0

(µ(k)∇k,ϕ) dt.

Consequently, q = µ(k)∇k.
All above established convergence results are not sufficient to take the limit in

the nonlinear term at the right hand side of (3.7). However, since m is fixed and
v = v

m is an admissible test function in (3.6) we can use energy equality method
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here. First, we notice that it follows from (3.31)–(3.33), (3.37) and (3.45) that

∫ T

0

〈v,t,w〉 −
(
Gm(|v|2)v ⊗ v,∇w

)
dt+

∫ T

0

(ν(Tm(k))DDD(v),DDD(w)) dt

+
λ

1− λ

∫ T

0

(v,w)∂Ω dt = 0 for all w ∈ L2(0, T ;W 1,2
n,div).

(3.48)

Moreover, using (3.31)–(3.33) and (3.44) it is standard to deduce (see for example
[24]) that

v ∈ C([0, T ];L2
n,div) and v(0) = v0 .

Next, we shall show that we can replace the weak convergence in (3.45) by the
strong one. For this purpose, we first integrate (3.12) w.r.t. time t ∈ (0, T ) and
obtain
∫ T

0

‖
√

ν(Tm(kn))DDD(vn)‖22 dt = −1

2
‖vn(T )‖22 +

1

2
‖vn

0‖22 −
∫ T

0

λ

1− λ
‖vn‖22,∂Ω dt

= −1

2
‖vn(T )− v(T )‖22 +

1

2
‖vn

0 − v0‖22 −
∫ T

0

〈v,t,v
n − v〉+ 〈vn

,t,v〉 dt

−
∫ T

0

λ

1− λ
‖vn‖22,∂Ω dt.

Therefore, letting n → ∞ we deduce from (3.32), (3.33), (3.38) and (3.8) that

lim sup
n→∞

∫ T

0

‖
√

ν(Tm(kn))DDD(vn)‖22 dt ≤ −
∫ T

0

〈v,t,v〉 dt

−
∫ T

0

λ

1− λ
‖v‖22,∂Ω dt.

(3.49)

Next, setting w := v in (3.48) and using (3.49) we obtain

lim sup
n→∞

∫ T

0

‖
√

ν(Tm(kn))DDD(vn)‖22 dt ≤
∫ T

0

‖
√

ν(Tm(k))DDD(v)‖22 dt.(3.50)

Consequently, as (3.44) implies that

∫ T

0

‖
√

ν(Tm(k))DDD(v)‖22 dt ≤ lim inf
n→∞

∫ T

0

‖
√

ν(Tm(kn))DDD(vn)‖22 dt(3.51)

we finally conclude that
√

ν(Tm(kn))DDD(vn) →
√

ν(Tm(k))DDD(v) strongly in L2(0, T ;L2(Ω)3×3),(3.52)

or saying differently

ν(Tm(kn))|DDD(vn)|2 → ν(Tm(k))|DDD(v)|2 strongly in L1(0, T ;L1(Ω)).(3.53)
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Finally, using (3.7), (3.29) and (3.53) we observe that

kn,t ⇀ k,t weakly in L1(0, T ;W−1,r−s
D (Ω)) for all s > 0 small,(3.54)

with r given by (3.30). At this point, it is easy to take the limit in (3.7) and
arrive at

∫ T

0

〈k,t, w〉 − (vk,∇w) + (µ(k)∇k,∇w) + (ε(k), w) dt

=

∫ T

0

(ν(Tm(k))|DDD(v)|2, w) dt for all w ∈ L∞(0, T ;W 1,∞
D (Ω)).

(3.55)

3.1.4 Attainment of initial data k0. We first integrate (3.17) w.r.t. time over
(0, t) and obtain (note that the second term vanishes and the third and fourth
terms are nonnegative)

‖Θ1(k
n(t))‖1 ≤

∫ t

0

ν(Tm(kn))|DDD(vn)|2 dx dτ + ‖Θ1(k
n
0 )‖1.

Next, we let n → ∞. Using the nonnegativity of Θ1, the point-wise convergence
of kn, see (3.41), and the Fatou lemma we are able to take limit in the term at
the left hand side with corresponding inequality sign. On the other hand, using
(3.53) we are able to identify limit of the first term on the right hand side and
therefore we obtain for almost all time t ∈ (0, T )

(3.56) ‖Θ1(k(t))‖1 ≤
∫ t

0

ν(Tm(k))|DDD(v)|2 dx dτ + ‖Θ1(k0)‖1,

which implies that

(3.57) lim sup
t→0+

‖Θ1(k(t))‖1 ≤ ‖Θ1(k0)‖1.

Next, setting in (3.55) w := T1(k
n)(Θ1(k

n))−
1
2ϕχ[0,t] where ϕ ∈ D(Ω), ϕ ≥ 0, we

obtain (note that w is an admissible test function)

2(
√

Θ1(kn(t)), ϕ)− 2

∫ t

0

(vn
√

Θ1(kn),∇ϕ) dτ

+

∫ t

0

∫

Ω

µ(kn)

(

T ′
1(k

n)(Θ1(k
n))−

1
2 − 1

2
(T1(k

n))2(Θ1(k
n))−

3
2

)

|∇kn|2ϕ dx dτ

+

∫ t

0

(µ(kn)T1(k
n)(Θ1(k

n))−
1
2∇kn,∇ϕ) dτ

+

∫ t

0

(ε(kn), T1(k
n)(Θ1(k

n))−
1
2ϕ) dτ

=

∫ t

0

(ν(Tm(kn))|DDD(vn)|2, T1(k
n)(Θ1(k

n))−
1
2 ϕ) dτ + 2(

√

Θ1(kn0 ), ϕ).
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Observing that the integrand in the third integral is non-positive and the first
integral on the right hand side is nonnegative, we can neglect both of them by
replacing the equality sign by the inequality4. Then we let n → ∞. Applying all
convergence results established above, it is standard to conclude that for almost
all times t ∈ (0, T )

(
√

Θ1(k(t)), ϕ)−
∫ t

0

(v
√

Θ1(k),∇ϕ) dτ +
1

2

∫ t

0

(µ(k)T1(k)(Θ1(k))
− 1

2∇k,∇ϕ) dτ

+
1

2

∫ t

0

(ε(k), T1(k)(Θ1(k))
− 1

2ϕ) dτ ≥ 2(
√

Θ1(k0), ϕ).

Finally, letting t → 0+ we observe that

lim inf
t→0+

(
√

Θ1(k(t)), ϕ) ≥ (
√

Θ1(k0), ϕ) for all ϕ ∈ D(Ω), ϕ ≥ 0.

Thus, using the density argument, (3.43) and the fact that Θ1(k) has at most
linear growth in k, we finally deduce that
(3.58)

lim inf
t→0+

(
√

Θ1(k(t)), ϕ) ≥ (
√

Θ1(k0), ϕ) for all ϕ ∈ L2(Ω), ϕ ≥ 0 a.e. in Ω.

Consequently, it is then easy to observe that

lim
t→0+

‖
√

Θ1(k(t))−
√

Θ1(k0)‖22

= lim
t→0+

(

‖Θ1(k(t))‖1 + ‖Θ1(k0)‖1 − 2(
√

Θ1(k(t)),
√

Θ1(k0))
)

(3.57),(3.58)

≤ ‖Θ1(k0)‖1 + ‖Θ1(k0)‖1 − 2(
√

Θ1(k0),
√

Θ1(k0)) = 0,

which finally leads to

(3.59) lim
t→0+

‖k(t)− k0‖1 = 0.

3.2 Limit m → ∞. In the previous subsection, we established the existence of
(vm, km) fulfilling, for everym ∈ N fixed, the weak formulations (3.48) and (3.55).
Before summarizing the estimates for (vm, km) that are uniform with respect to
m, we take the advantage of considered slip boundary conditions (0 ≤ λ < 1 in
(1.5)) and introduce the integrable pressure.

For anyw ∈ W 1,2
n

we observe that the Helmholtz decompositionw = wdiv+∇ϕ
with ϕ having zero mean over Ω and solving −∆ϕ = divw in Ω and homogeneous
Neumann problem on ∂Ω is compatible with (1.5) for 0 ≤ λ < 1. Indeed, noticing

4At this level of approximation, we even do not need this simplification because we are able
to identify the limit of corresponding quantities. However, it will not be the case in the final
passage to the limit and we will be forced to use such procedure.
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that

(3.60)

∫ T

0

〈vm
,t ,w〉 dt =

∫ T

0

〈vm
,t ,wdiv〉 dt,

we can extend the definition domain for vm
,t and observe that vm

,t ∈L2(0, T ;W−1,2
n

).
Let us introduce pm as the solution of the following problem

(pm,△ϕ) = (ν(Tm(km))DDD(vm),∇(2)ϕ) +
λ

1− λ
(vm,∇ϕ)∂Ω

− (Gm(|v|2)vm ⊗ v
m,∇2ϕ) for all ϕ ∈ W 2,2(Ω), ∇ϕ ∈ W 1,2

n
.

(3.61)

Taking w ∈ L2(0, T,W 1,2
n

) arbitrarily, applying the Helmholtz decomposition on
such w, taking the sum of (3.48) with the test function wdiv and (3.61) and using
(3.60) we obtain the following identity

∫ T

0

〈vm
,t ,w〉 −

(
Gm(|vm|2)vm ⊗ v

m,∇w
)
+ (ν(Tm(km))DDD(vm),DDD(w)) dt

+
λ

1− λ

∫ T

0

(vm,w)∂Ω dt =

∫ T

0

(pm, divw) dt for all w ∈ L2(0, T ;W 1,2
n

).

(3.62)

It is easy to check from (3.62) that such normalized pm is uniquely determined
by a given solution (vn, kn).

We also recall that the m-approximation satisfies (3.55) that we repeat for
brevity. It reads as

∫ T

0

〈km,t , w〉 − (vmkm,∇w) + (µ(km)∇km,∇w) + (ε(km), w) dt

=

∫ T

0

(ν(Tm(km))|DDD(vm)|2, w) dt for all w ∈ L∞(0, T ;W 1,∞
D (Ω)).

(3.63)

Next, we recall the uniform bound on (vm, pm) and derive the uniform bound
on the pressure pm that will be needed in what follows. First, referring to lower
semicontinuity of the norms and the Fatou lemma we get from (3.13) and (3.19)

sup
t∈(0,T )

(
‖vm(t)‖22 + ‖km(t)‖1

)
+

∫ T

0

∫

Ω

ν(Tm(km))|DDD(vm)|2 dx dt

+

∫ T

0

‖km‖γ+1
γ+1 dt ≤ C.

(3.64)
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Moreover, using (3.64) and the standard embedding of Sobolev functions to the
space of traces together with the standard interpolation inequalities one can de-
duce, see [9, Lemma 1.12] for details, that

(3.65)

∫ T

0

∫

∂Ω

|vm| 83 dS dt+

∫ T

0

‖vm‖
10
3
10
3

dt ≤ C.

In addition, referring again to the lower semicontinuity of the norms we obtain
from (3.21) and (3.25)–(3.28)

∫ T

0

‖Φs(k
m)‖21,2 + ‖vmkm‖

10
9

3β+5
β+5 −s

10
9

3β+5
β+5 −s

+ ‖km‖β+
5
3−s

β+ 5
3−s

+ ‖∇km‖min(2, 3β+5
4 )−s

min(2, 3β+5
4 )−s

dt

+

∫ T

0

‖µ(km)∇km‖
3β+5
3β+4−s
3β+5
3β+4−s

dt ≤ C(s−1) for all s > 0 small.

(3.66)

Next, observing that

ν(Tm(km))DDD(vm) =
√

ν(Tm(km))DDD(vm)
√

ν(Tm(km)) ,

and recalling that according to (3.64)
√

ν(Tm(km))DDD(vm) is uniformly bounded in

L2(0, T ;L2(Ω)3×3) and according to (3.66)
√

ν(Tm(km)), which grows as

(1 + km)α/2, is bounded uniformly in L
2
α
(β+ 5

3−s)(0, T ;L
2
α
(β+ 5

3−s)(Ω)), we con-
clude that

∫ T

0

‖ν(Tm(km))DDD(vm)‖q0−s
q0−s dt ≤ C(s−1) for all s > 0 small,

with q0 :=
2(3β + 5)

3α+ 3β + 5
.

(3.67)

Similarly, incorporating also the second estimate in (3.65), we observe that

∫ T

0

‖ν(Tm(km))DDD(vm)vm‖w0−s
w0−s dt ≤ C(s−1) for all s > 0 small,

with w0 :=
10(3β + 5)

15α+ 24β + 40
.

(3.68)

Note that the assumption (2.1)1 guarantees that w0 > 1.
At this point, we can deduce from (3.61) the estimates for {pm} that will be

uniform with respect to m. We consider ϕ with zero mean over Ω solving the
homogeneous Neumann problem −△ϕ = |pm|q−2pm − 1

|Ω|
∫

Ω |pm|q−2pm dx and

inserting it into (3.61). Using the estimates on {vm} and the Hölder inequality
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we obtain

∫ T

0

‖pm‖z0−s
z0−s dt ≤ C(s−1) for all s > 0 small,

with z0 := min

(
5

3
,

2(3β + 5)

3α+ 3β + 5

)

.

(3.69)

Finally, using equation (3.62) and the above estimates we conclude that

(3.70)

∫ T

0

‖vm
,t ‖z0−s

W
−1,z0−s
n

dt ≤ C(s−1) for all s > 0 small.

Similarly as in the previous subsection, using (3.55), (3.64) and (3.66) we deduce
that

(3.71)

∫ T

0

‖km,t ‖W−1,r−s

D
dt ≤ C(s−1) for all s > 0 small and r defined in (3.30).

Having all uniform estimates (3.64), (3.65), (3.66), (3.69), (3.70) and (3.71), and
using the generalized version of the Aubin-Lions compactness lemma we find
subsequences that we again label in the same way as the original sequences such
that (we use the convention that s > 0 is small but arbitrary)

v
m ⇀∗

v weakly∗ in L∞(0, T ;L2
n,div),(3.72)

v
m ⇀ v weakly in L2(0, T ;W 1,2

n,div) ∩ L
10
3 (0, T ;L

10
3 (Ω)3),(3.73)

v
m
,t ⇀ v,t weakly in Lz0−s(0, T ;W−1,z0−s

n
) for z0 from (3.69),(3.74)

pm ⇀ p weakly in Lz0−s(0, T ;Lz0−s(Ω)) for z0 from (3.69),(3.75)

km ⇀ k weakly in Lq(0, T ;W 1,q
D (Ω)) for all q < min(2,

3β + 5

4
),(3.76)

km,t ⇀∗ k,t weakly∗ in M(0, T ;W−1,r−s
D (Ω)) for r from (3.30),(3.77)

v
m ⇀ v weakly in L

8
3 (0, T ;L

8
3 (∂Ω)3),(3.78)

v
m → v strongly in Lq(0, T ;Lq(Ω)3) for all q <

10

3
,(3.79)

v
m → v strongly in Lq(0, T ;Lq(∂Ω)3) for all q <

8

3
,(3.80)

km → k strongly in Lq(0, T ;Lq(Ω)) for all q <
3β + 5

3
,(3.81)

v
m → v a.e. in Ω× (0, T ),(3.82)

km → k a.e. in Ω× (0, T ),(3.83)

Φs(k
m) ⇀ Φs(k) weakly in L2(0, T ;W 1,2

D (Ω)).

(3.84)
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Moreover, using the same procedure as in the previous subsection we can conclude
that

(3.85) sup
t∈(0,T )

‖k(t)‖1 ≤ C.

Similarly, as in the previous subsection, see (3.47), we can verify that

µ(km)∇km ⇀ µ(k)∇k weakly in Lq(0, T ;Lq(Ω)3) for all q <
3β + 5

3β + 4
.(3.86)

Moreover, it follows from (3.64) that there is an SSS ∈ L2(0, T ;L2(Ω)3×3) such that

√

ν(Tm(km))DDD(vm) ⇀ SSS weakly in L2(0, T ;L2(Ω)3×3).(3.87)

To identify SSS we first observe that (3.83), the growth assumption (1.8)1, (3.66)
and Vitali’s theorem imply that

ν(Tm(km)) → ν(k) strongly in Lq(0, T ;Lq(Ω)) for all q <
3β + 5

3α
.(3.88)

Since the assumption (2.1) guarantees that 3β+5
3α > 2, it follows from (3.73) and

(3.88) that

(3.89) SSS =
√

ν(k)DDD(v) a.e. in (0, T )× Ω.

Similarly, using (3.67), we can deduce that

(3.90) ν(Tm(km))DDD(vm) ⇀ SSS2 weakly in Lq(0, T ;Lq(Ω)3×3) for all q < q0 .

To identify SSS2 it is then enough to combine (3.87), (3.89) and (3.88) to obtain
that

SSS2 = ν(k)DDD(v) a.e. in (0, T )× Ω.

At this point, we can complete the proof of Theorem 2.1. First note that
(3.72)–(3.88) implies that the triple (v, k, p) satisfies (2.2)–(2.7). Next, the above
established convergences (3.72)–(3.90) suffice to prove (2.9) by letting m → ∞ in
(3.62). Similarly, letting m → ∞ in (3.63) we deduce (2.11), using the weak lower
semicontinuity of the last term in (3.63).

Then, setting in (3.62) w := v
mw with arbitrary w ∈ L∞(0, T ;W 1,∞

D (Ω)) and
adding the result to (3.63) we arrive at

∫ T

0

〈Em
,t , w〉 − (vm(pm + km),∇w) − (Gm(|vm|2)vm ⊗ v

m,∇(vmw)) dt

+

∫ T

0

(ν(Tm(km))DDD(vm)vm,∇w) + (µ(km)∇km,∇w) + (ε(km), w) dt = 0,

(3.91)
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where we set

Em :=
1

2
|vm|2 + km.

Noticing that the third term in (3.91) can be simplified by using integration by
parts and also the fact that div vm = 0 in Ω, we get

(Gm(|vm|2)vm ⊗ v
m,∇(vmw))

=
1

2
(wvm,∇Γm(|vm|2) + (Gm(|vm|2)|vm|2vm,∇w))

= ((Gm(|vm|2)|vm|2 − 1

2
Γm(|vm|2))vm,∇w).

From (3.91) we can obtain the estimate on the time derivative of Em and by
selecting a subsequence observe that

(3.92) Em
,t ⇀ E,t weakly in Lq(0, T ;W−1,q

D (Ω)), where E :=
1

2
|v|2 + k,

for all 1 < q < min
{

10
9 , w0,

3β+5
3β+4

}

; w0 is introduced in (3.68).

Finally, setting m → ∞ in (3.91) it is standard to obtain (2.10).

3.2.1 Attainment of initial condition. We aim to prove (2.12). The first
part, i.e., the attainment of the initial velocity v0 is standard and we refer the
reader to [24]. To establish the second part we use the similar procedure as in
the previous subsection with only one essential change. First part follows the
procedure from the preceding subsection and we deduce that
(3.93)

lim inf
t→0+

(
√

Θ1(k(t)), ϕ) ≥ (
√

Θ1(k0), ϕ) for all ϕ ∈ L2(Ω), ϕ ≥ 0 a.e. in Ω.

To finish the proof of (2.12) it is then enough to obtain

(3.94) lim sup
t→0+

‖Θ1(k(t))‖1 ≤ ‖Θ1(k0)‖1

and the same arguments as in preceding subsection then leads to (2.12). To prove
(3.94) we have to proceed differently. Rewriting (3.56) again as

(3.95) ‖Θ1(k
m(t))‖1 ≤

∫ t

0

∫

Ω

ν(Tm(km))|DDD(vm)|2 dx dt+ ‖Θ1(k0)‖1,

we can replace the first term on the right hand side by using w := v
nχ[0,t] as a

test function in (3.62). Hence, after neglecting the boundary integral, because of
correct sign, we get

(3.96) ‖Θ1(k
m(t))‖1 ≤ −‖vm(t)‖22 + ‖v0‖22 + ‖Θ1(k0)‖1.
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Therefore, passing to the limit w.r.t. m we get after using the Fatou lemma and
weak lower semicontinuity of norm that

(3.97) ‖Θ1(k(t))‖1 ≤ −‖v(t)‖22 + ‖v0‖22 + ‖Θ1(k0)‖1.

Consequently, using also the first part of (2.12) then leads to (3.94). Thus, the
proof is complete.

References
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