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Abstract. In 1932 Whitney showed that a graph G with order n > 3 is 2-connected if
and only if any two vertices of G are connected by at least two internally-disjoint paths.
The above result and its proof have been used in some Graph Theory books, such as in
Bondy and Murty’s well-known Graph Theory with Applications. In this note we give a
much simple proof of Whitney’s Theorem.
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We consider a finite undirected simple graph G with the vertex set V (G). If

x, y ∈ V (G) then d(x, y) denotes the distance between x and y, a path in G with

end-vertices x and y will be denoted by (x, y).

In 1932 Whitney [2], [3] showed the following well-known result.

Theorem. A graph G with order n > 3 is 2-connected if and only if any two

vertices of G are connected by at least two internally-disjoint paths.

Whitney’s Theorem is Theorem 3.2 in [1]. However, the proof in [1] (pp. 44–45)

used Theorem 2.3 [1] (pp. 27–28), so the proof is more complex than the one given

here.

S i m p l e P r o o f o f T h e o r e m. If any two vertices of G are connected by at

least two internally-disjoint paths, then, clearly, G is connected and has no 1-vertex

cut. Hence G is 2-connected.

Conversely, let G be 2-connected graph and assume there exist two vertices u

and v without two internally-disjoint (u, v)-paths. Let P and Q be two (u, v)-paths

with the common vertex set S as small as possible. Let w ∈ S \ {u, v} and P1, P2
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denote the sections of P from u to w and w to v and Q1, Q2 denote the sections

of Q from u to w and w to v, respectively. Since G is 2-connected, let R denote

a shortest path from some vertex x of (V (P1) ∪ V (Q1)) \ {w} to some vertex y of

(V (P2) ∪ V (Q2)) \ {w} without passing through {w}. We may assume, without loss

of generality, that x is in P1 and y in Q2. Let T denote the (u, v)-path composed

of the section of P1 from u to x and the section of Q2 from y to v together with R.

Clearly the common vertices of T and the (u, v)-path composed of Q1 and P2 are

all in S \ {w}. This contradicts the choice of both P and Q as having the smallest

number of vertices. �
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