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Abstract. The positive solution is studied for a (k, n − k) conjugate boundary value
problem. The nonlinear term is allowed to be singular with respect to both the time
and space variables. By applying the approximation theorem for completely continuous
operators and the Guo-Krasnosel’skii fixed point theorem of cone expansion-compression
type, an existence theorem for a positive solution is established.
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1. Introduction

Let n > 2 and 1 6 k 6 n− 1 be two fixed integers. We study positive solutions of

the nonlinear (k, n − k) conjugate boundary value problem

(P)











(−1)n−ku(n)(t) = h(t)f(t, u(t)), 0 < t < 1,

u(i)(0) = 0, 0 6 i 6 k − 1,

u(j)(1) = 0, 0 6 j 6 n − k − 1.

Here, we call the function u∗ ∈ C[0, 1] a positive solution of the problem (P), if

u∗(t) is a solution of (P) and u∗(t) > 0, 0 < t < 1. We will allow the nonlinear term

h(t)f(t, u) to be singular at t = 0, t = 1 and u = 0.

Because of widespread applications in physics and engineering (see [1], [2]) in the

past 20 years, there has been much attention paid to the nonlinear higher order

boundary value problems. Particularly, the nonlinear (k, n− k) conjugate boundary

value problem (P) has been studied by some authors, for example, see [3]–[8]. In 1997,
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Eloe and Henderson proved the following existence theorem for a positive solution

(see Theorem 7 in [3]).

Theorem 1.1. Assume that

(a1) h(t) ≡ 1 and f : (0, 1) × (0, +∞) → (0, +∞) is continuous;

(a2) f(t, u) is decreasing in u for each fixed t ∈ (0, 1);

(a3)
∫ 1

0
f(t, u) dt < +∞ for each fixed u ∈ (0, +∞);

(a4) lim
u→+0

min
t∈W

f(t, u) = +∞ for each compact subset W ⊂ (0, 1);

(a5) lim
u→+∞

max
t∈W

f(t, u) = 0 for each compact subset W ⊂ (0, 1);

(a6) for each r > 0,
∫ 1

0
f(t, rq(t)) dt < +∞, where

q(t) = 2ktk, 0 6 t 6
1

2
;

q(t) = 2n−k(1 − t)n−k,
1

2
6 t 6 1.

Then problem (P) has at least one positive solution u∗ ∈ C[0, 1] and there exists

θ > 0 such that u∗(t) > θq(t), 0 6 t 6 1.

In Theorem 1.1, f(t, u) may be singular at t = 0, t = 1 and u = 0. This is

an outstanding advantage. For the existence of a positive solution to the singular

(k, n − k) conjugate boundary value problem (P), Theorem 1.1 is a powerful tool.

The purpose of this paper is to improve Theorem 1.1 and prove a new existence

theorem, that is, Theorem 3.1. In Theorem 3.1, the conditions (a1), (a2), (a4)–(a6)

are relaxed. And since the condition (a3) can be derived from (a2) and (a6), we omit

it. Particularly, Theorem 3.1 does not require that f(t, u) be decreasing in u. There-

fore, the improvement is essential. In Remark 4.1, we will show that Theorem 1.1 is

a corollary of Theorem 3.1. Finally, we will illustrate that the improvement is true

by Example 4.2.

In order to establish the main result we will apply the approximation theorem for

completely continuous operators, the Guo-Krasnosel’skii fixed point theorem of cone

expansion-compression type and the localization method used in papers [9]–[14].
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2. Preliminaries

Let C[0, 1] be Banach space with the norm ‖u‖ = max
06t61

|u(t)|. Let p(t) =

min{tk, (1 − t)n−k} and let

K = {u ∈ C[0, 1] : u(t) > ‖u‖ p(t), 0 6 t 6 1}.

Then K is a cone of nonnegative functions in C[0, 1]. Write

K(r) = {u ∈ K : ‖u‖ < r},
∂K(r) = {u ∈ K : ‖u‖ = r},

K[r1, r2] = {u ∈ K : r1 6 ‖u‖ 6 r2}.

Let G(t, s) be the Green function of the problem (P) when f(t, u) ≡ 0. According

to [7], the Green function G(t, s) has the exact expression

G(t, s) =



















∫ t(1−s)

0 τk−1(τ + s − t)n−k−1 dτ

(k − 1)!(n − k − 1)!
, 0 6 t 6 s 6 1,

∫ s(1−t)

0 τn−k−1(τ + t − s)k−1 dτ

(k − 1)!(n − k − 1)!
, 0 6 s 6 t 6 1.

So G : [0, 1] × [0, 1] → [0, +∞) is continuous and G(t, s) > 0, 0 < t, s < 1.

Lemma 2.1. G(t, s) 6 kk(n − k)n−k/nn(k − 1)!(n − k − 1)!, 0 6 t, s 6 1.

P r o o f. By Lemma 1 in [7] we have

G(t, s) 6
sn−k(1 − s)k

(k − 1)!(n − k − 1)!
, 0 6 t, s 6 1.

Simple computations give that

max
06s61

sn−k(1 − s)k =

(

n − k

n

)n−k (

1 − n − k

n

)k

=
kk(n − k)n−k

nn
.

The conclusion is derived directly from these facts. �

By Theorem 4.1 in [4] we have
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Lemma 2.2. Assume that u ∈ C(n−1)[0, 1] ∩ C(n)(0, 1) is such that











(−1)n−ku(n)(t) > 0, 0 6 t 6 1,

u(i)(0) = 0, 0 6 i 6 k − 1,

u(j)(1) = 0, 0 6 j 6 n − k − 1.

Then u(t) > ‖u‖p(t), 0 6 t 6 1.

In order to prove the main result, we need the following approximation theorem

for completely continuous operators and the Guo-Krasnosel’skii fixed point theorem

of cone expansion-compression type.

Lemma 2.3. Let X, Y be two Banach spaces, let V ⊂ X be a closed bounded

set, let Tm : V → Y be a completely continuous operator for each m, let an operator

T : V → Y be given. If sup
u∈V

‖Tmu − Tu‖ → 0, then T : V → Y is a completely

continuous operator.

Lemma 2.4. Let X be a Banach space, let K be a cone in X , let Ω1, Ω2 be two

bounded open subsets in K such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let T : Ω2 \ Ω1 → K

be a completely continuous operator. Assume that one of the following conditions is

satisfied:

(1) ‖Tx‖ 6 ‖x‖, x ∈ ∂Ω1 and ‖Tx‖ > ‖x‖, x ∈ ∂Ω2,

(2) ‖Tx‖ > ‖x‖, x ∈ ∂Ω1 and ‖Tx‖ 6 ‖x‖, x ∈ ∂Ω2.

Then T has a fixed point in Ω2 \ Ω1.

3. Main result

We obtain the following existence theorem for a positive solution.

Theorem 3.1. Assume that

(b1) h : (0, 1) → [0, +∞), f : (0, 1) × (0, +∞) → [0, +∞) are continuous and

0 <
∫ 1

0
h(t) dt < +∞;

(b2) there exist functions ϕ(t, u) and g(t, u) such that

f(t, u) 6 ϕ(t, u) + g(t, u), (t, u) ∈ (0, 1) × (0, +∞),

where ϕ : (0, 1) × (0, +∞) → [0, +∞) and g : [0, 1]× [0, +∞) → [0, +∞) are contin-

uous, ϕ(t, ·) : (0, +∞) → [0, +∞) is nonincreasing for each fixed t ∈ (0, 1);

(b3)
∫ 1

0
h(t)ϕ(t, rp(t)) dt < +∞ for any r > 0;
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(b4) lim inf
r→+∞

j(r)/r < (nn(k − 1)!(n − k − 1)!/kk(n − k)n−k)
[∫ 1

0
h(t) dt

]−1
, where

j(r) = max{g(t, u) : (t, u) ∈ [0, 1]× [0, r]};

(b5) there exist 0 6 α < β 6 1 such that lim inf
u→+0

min
α6t6β

h(t)f(t, u) > 0.

Then problem (P) has at least one positive solution u∗ ∈ K.

P r o o f. Define an operator T by

(Tu)(t) =

∫ 1

0

G(t, s)h(s)f(s, u(s)) ds, 0 6 t 6 1, u ∈ K \ {0}.

S t e p I. We prove that T : K[r1, r2] → K for any 0 < r1 < r2.

Let u ∈ K[r1, r2], then r1p(t) 6 u(t) 6 r2, 0 6 t 6 1. Applying Lemma 2.1 and

the conditions (b1)–(b4), we get that

(Tu)(t) 6
kk(n − k)n−k

∫ 1

0 h(s)[ϕ(s, u(s)) + g(s, u(s))] ds

nn(k − 1)!(n − k − 1)!

6
kk(n − k)n−k

∫ 1

0
h(s)ϕ(s, r1p(s)) ds

nn(k − 1)!(n − k − 1)!
+

kk(n − k)n−kj(r2)
∫ 1

0
h(s) ds

nn(k − 1)!(n − k − 1)!
.

Therefore, ‖Tu‖ = max
06t61

(Tu)(t) < +∞ and Tu is well defined for any u ∈ K[r1, r2].

For fixed u ∈ K[r1, r2] consider the (k, n − k) boundary value problem











(−1)n−kw(n)(t) = h(t)f(t, u(t)), 0 < t < 1,

w(i)(0) = 0, 0 6 i 6 k − 1,

w(j)(1) = 0, 0 6 j 6 n − k − 1.

By (b2) and (b3), h(·)f(·, u(·)) ∈ L1[0, 1]. By the property of the Green function

G(t, s), w(t) has the unique expression

w(t) =

∫ 1

0

G(t, s)h(s)f(s, u(s)) ds = (Tu)(t), 0 6 t 6 1.

Therefore,











(−1)n−k(Tu)(n)(t) = h(t)f(t, u(t)) > 0, 0 < t < 1,

(Tu)(i)(0) = 0, 0 6 i 6 k − 1,

(Tu)(j)(1) = 0, 0 6 j 6 n − k − 1.

By Lemma 2.2, (Tu)(t) > ‖Tu‖p(t), 0 6 t 6 1 and Tu ∈ K.
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S t e p II. We construct a sequence {Tm}∞m=1 of completely continuous operators

in order to approximate the operator T .

Define functions fm as follows:

fm(t, u) =

{

min
u6v61/m

f(t, v), 0 6 u 6 1/m,

f(t, u), 1/m 6 u < +∞.

Then 0 6 fm(t, u) 6 f(t, u), (t, u) ∈ (0, 1) × [0, +∞). The function h(t)fm(t, u) has

the following properties:

(p1) For each fixed t ∈ (0, 1), h(t)fm(t, ·) : [0, +∞) → [0, +∞) is continuous.

(p2) For each fixed u ∈ [0, +∞), h(·)fm(·, u) : (0, 1) → [0, +∞) is lower semi-

continuous. Consequently, h(·)fm(·, u) : (0, 1) → [0, +∞) is measurable.

(p3) For any r > 0 and (t, u) ∈ (0, 1) × [0, r],

h(t)fm(t, u) 6 h(t)f(t, u) 6 h(t)

[

ϕ

(

t,
1

m
p(t)

)

+ max

{

j

(

1

m

)

, j(r)

}]

.

For u ∈ K and 0 6 t 6 1, define operators Tm, Am and B as follows:

(Tmu)(t) =

∫ 1

0

G(t, s)h(s)fm(s, u(s)) ds,

(Amu)(t) = h(t)fm(t, u(t)),

(Bu)(t) =

∫ 1

0

G(t, s)u(s) ds.

Then Tm = B ◦ Am.

Let ui, u0 ∈ K, i = 1, 2, . . . and ‖ui −u0‖ → 0. Then max
06t61

|ui(t)−u0(t)| → 0. By

the property (p1), we have

|h(t)fm(t, ui(t)) − h(t)fm(t, u0(t))| → 0 (i → ∞), 0 < t < 1.

Let r̄ = max{‖ui‖ : i = 1, 2, . . .}. Then 0 6 ui(t) 6 r̄, t ∈ [0, 1], i = 1, 2, . . .. By (p3),

we have

h(t)fm(t, ui(t)) 6 h(t)

[

ϕ

(

t,
1

m
p(t)

)

+ max

{

j

(

1

m

)

, j(r̄)

}]

, 0 < t < 1.

Here h(t)
[

ϕ
(

t, m−1p(t)
)

+ max {j (1/m) , j(r̄)}
]

is a nonnegative integrable function
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on [0, 1] by the conditions (b1)–(b4). By the Lebesgue dominated convergence the-

orem (see [15]), we get that

lim
i→∞

∫ 1

0

|h(t)fm(t, ui(t)) − h(t)fm(t, u0(t))| dt

=

∫ 1

0

lim
i→∞

|h(t)fm(t, ui(t)) − h(t)fm(t, u0(t))| dt = 0.

This implies that Am : K → L1[0, 1] is continuous.

Applying the Arzela-Ascoli theorem, we can prove that B : L1[0, 1] → C[0, 1]

is completely continuous. Imitating the proof in Step I, we have Tm : K → K.

Therefore, Tm : K → K is completely continuous.

S t e p III. We prove that T : K[r1, r2] → K is completely continuous for any

0 < r1 < r2.

Let E(rp, m) = {t ∈ [0, 1] : rp(t) 6 1/m} for r > 0. If mr > 2max{k,n−k}, then

E(rq, m) =

[

0,
1

k
√

mr

]

∪
[

1 − 1
n−k
√

mr
, 1

]

.

Consequently, E(rq, m) → {0, 1}, m → ∞.
By (b3),

∫ 1

0
h(t)ϕ(t, rp(t)) dt < +∞. From the condition (b1),

∫ 1

0
h(t) dt < +∞.

By the absolute continuity of the integral (see [15]), we have

lim
m→∞

∫

E(rp,m)

h(t)ϕ(t, rp(t)) dt = 0,

lim
m→∞

∫

E(rp,m)

h(t) dt = 0.

Let u ∈ K[r1, r2] and let E(u, m) = {t ∈ [0, 1] : u(t) 6 1/m}. Since r1p(t) 6

u(t) 6 r2, 0 6 t 6 1, we have

E(u, m) ⊂ E(r1p, m),

ϕ(t, u(t)) 6 ϕ(t, r1p(t)), g(t, u(t)) 6 j(r2).
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Since f(t, u) > fm(t, u), (t, u) ∈ (0, 1) × (0, +∞), we obtain that

sup
u∈K[r1,r2]

‖Tu − Tmu‖ = sup
u∈K[r1,r2]

max
06t61

[(Tu)(t) − (Tmu)(t)]

= sup
u∈K[r1,r2]

max
06t61

∫ 1

0

G(t, s)h(s)[f(s, u(s)) − fm(s, u(s))] ds

6 sup
u∈K[r1,r2]

max
06t61

∫

E(u,m)

G(t, s)h(s)f(s, u(s)) ds

6 sup
u∈K[r1,r2]

max
06t61

∫

E(r1p,m)

G(t, s)h(s)f(s, u(s)) ds

6 sup
u∈K[r1,r2]

max
06t61

∫

E(r1p,m)

G(t, s)h(s)[ϕ(s, u(s)) + g(s, u(s))] ds

6
kk(n − k)n−k

nn(k − 1)!(n − k − 1)!

[
∫

E(r1p,m)

h(s)ϕ(s, r1p(s)) ds + j(r2)

∫

E(r1p,m)

h(s) ds

]

→ 0 (m → ∞).

By Lemma 2.3, T : K[r1, r2] → K is a completely continuous operator.

S t e p IV. We prove that the problem (P) has a positive solution u∗ ∈ K.

Let ε = 1
2

[

nn(k − 1)!(n − k − 1)!/kk(n − k)n−k
∫ 1

0
h(t) dt − lim inf

r→+∞
j(r)/r

]

. By

(b4), ε > 0.

Let η = max
06t61

∫ β

α G(t, s)h(s) ds. By the inequality G(t, s) > 0, 0 < t, s < 1 and

the condition (b5), η > 0 and there exists r0 > 0, γ > 0 such that f(t, u) > γ,

(t, u) ∈ [α, β] × (0, r0].

Let r̄1 = min{r0, γη}. If u ∈ ∂K(r̄1), then 0 6 u(t) 6 r̄1 6 r0, 0 6 t 6 1 and

f(t, u(t)) > γ, t ∈ [α, β]. It follows that

‖Tu‖ > max
06t61

∫ β

α

G(t, s)h(s)f(s, u(s)) ds

> γ max
06t61

∫ β

α

G(t, s)h(s) ds = γη > r̄1 = ‖u‖.

On the other hand, if r > 1, then ϕ(s, rp(s)) 6 ϕ(s, p(s)) and

lim
r→+∞

1

r
sup

u∈∂K(r)

max
06t61

∫ 1

0

G(t, s)h(s)ϕ(s, u(s)) ds

6 lim
r→+∞

kk(n − k)n−k

rnn(k − 1)!(n − k − 1)!

∫ 1

0

h(s)ϕ(s, rp(s)) ds

6 lim
r→+∞

kk(n − k)n−k

rnn(k − 1)!(n − k − 1)!

∫ 1

0

h(s)ϕ(s, p(s)) ds = 0.
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So, there exists r̄2 > max{1, r0} such that

sup
u∈∂K(r̄2)

max
06t61

∫ 1

0

G(t, s)h(s)ϕ(s, u(s)) ds 6
kk(n − k)n−k

nn(k − 1)!(n − k − 1)!
εr̄2,

j(r̄2) 6

(

nn(k − 1)!(n − k − 1)!

kk(n − k)n−k
− ε

) [
∫ 1

0

h(t) dt

]−1

r̄2.

Consequently, j(r2)
∫ 1

0
h(t) dt 6 (nn(k − 1)!(n − k − 1)!/kk(n − k)n−k − ε)r̄2.

If u ∈ ∂K(r̄2), then

‖Tu‖ 6 max
06t61

∫ 1

0

G(t, s)h(s)[ϕ(s, u(s)) + g(s, u(s))] ds

6 max
06t61

∫ 1

0

G(t, s)h(s)ϕ(s, u(s)) ds + max
06t,s61

G(t, s)j(r̄2)

∫ 1

0

h(s) ds

6 max
06t61

∫ 1

0

G(t, s)h(s)ϕ(s, u(s)) ds +
kk(n − k)n−k

nn(k − 1)!(n − k − 1)!
j(r̄2)

∫ 1

0

h(s) ds

6
kk(n − k)n−k

nn(k − 1)!(n − k − 1)!
εr̄2

+
kk(n − k)n−k

nn(k − 1)!(n − k − 1)!

(

nn(k − 1)!(n − k − 1)!

kk(n − k)n−k
− ε

)

r̄2

= r̄2 = ‖u‖ .

By Lemma 2.4 there exists u∗ ∈ K[r̄1, r̄2] = K(r̄2) \ K(r̄1) such that Tu∗ = u∗.

By the equivalence between the integral equation Tu = u and the problem (P), u∗

is a solution of (P). Since u∗(t) > r̄1p(t) > 0, 0 < t < 1, u∗ is a positive solution. �

4. Remark and example

R em a r k 4.1. Theorem 1.1 is a simple corollary of Theorem 3.1.

Assume that the conditions (a1)–(a5) are satisfied. Then we have h(t) ≡ 1. In

Theorem 3.1, let g(t, u) ≡ 0, ϕ(t, u) = f(t, u). It is clear that the conditions (b1),

(b2) and (b4) are satisfied. Moreover, the condition (b5) can be derived from (a4).

Since 2−max{k,n−k}q(t) 6 p(t) 6 q(t), we have

min{2k, 2n−k}p(t) 6 q(t) 6 max{2k, 2n−k}p(t), 0 6 t 6 1.

This shows that the condition (a6) is equivalent to (b3) with h(t) ≡ 1. Therefore,

we can prove Theorem 1.1 by applying Theorem 3.1.
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E x am p l e 4.2. The example illustrates that Theorem 3.1 improves Theorem 1.1

even if h(t) ≡ 1.

Consider the (2, 4 − 2) conjugate boundary value problem







u(4)(t) =
√

|1 − 2t|u(t) +
|1 − 2t|(1 + sin(u(t)))

3

√

u(t)
, 0 < t < 1,

u(0) = u′(0) = u(1) = u′(1) = 0.

In this example n = 4, k = 2, p(t) = min{t2, (1 − t)2}, nn(k − 1)!(n − k − 1)!/

kk(n − k)n−k = 16, h(t) ≡ 1, f(t, u) =
√

|1 − 2t|u + |1 − 2t|(1 + sinu)/ 3
√

u.

Let g(t, u) =
√

|1 − 2t|u. Then

j(r) = max
{
√

|1 − 2t|u : (t, u) ∈ [0, 1]× [0, r]
}

=
√

r.

So lim
r→+∞

j(r)/r = 0. Let ϕ(t, u) = 2/ 3
√

u. Then f(t, u) 6 g(t, u)+ϕ(t, u) and ϕ(t, u)

is nonincreasing in u for each fixed t ∈ [0, 1]. Moreover, for any r > 0,

∫ 1

0

ϕ(t, rp(t)) dt 6

∫ 1

0

2 dt
3

√

rp(t)
=

2
3
√

r

∫ 1

0

dt
3

√

[min{t, (1 − t)}]2
< +∞.

Therefore, the conditions (b1)–(b5) are satisfied. By Theorem 3.1, the problem

has a positive solution u∗ ∈ K.

However, f(t, u) is not decreasing in u and the conditions (a4) and (a5) are not

satisfied. The existence conclusion cannot be derived from Theorem 1.1.
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