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Abstract. The paper deals with the dimensional reduction from 2D to 1D in magnetoe-
lastic interactions. We adopt a simplified, but nontrivial model described by the Landau-
Lifshitz-Gilbert equation for the magnetization field coupled to an evolution equation for
the displacement. We identify the limit problem by using the so-called energy method.
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1. Introduction and preliminary results

Properties of matter at nanoscale may not be as predictable as those observed at

larger scales. Important changes in behavior are caused not only by continuous mod-

ification of characteristics with diminishing size, but also by the emergence of totally

new phenomena. Designed and controlled fabrication and integration of nanomateri-

als and nanodevices is likely to be revolutionary for sciences and technology. Among

the materials being most actively studied, magnetoelastic materials stand out for

being used as actuators for converting electrical energy, or changes in the magnetic

field, to mechanical motion. These materials consist of ferromagnetic bodies which

are sensible to mechanical stress and deformations. This means that when they are

subject to an external field, then mechanical stresses, due to the interaction with the

field, arise within the bodies and consequent deformations of the bodies themselves

can be observed (magnetorestrictive materials). Viceversa, if one deforms a ferro-

magnetic bodies, the consequent mechanical stress affects the state of magnetization

of the body. On other words, there is interaction between magnetic and elastic pro-
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cesses. For the theory of magnetoelastic processes we refer for example to [2], [6].

Treatments on micromagnetics are available in [1], [5].

In this paper we are concerned with the passage from 2D to 1D in the theory

of thin magnetoelastic films. Our investigation has its starting point in the work

of Valente [9], where the author proposed a two-dimensional evolutive model and

established the existence of weak solutions. We intend to analyze the behavior of

these solutions with one diminishing edge. In order to identify the limit problem we

make use of the scaling techniques which are well known in elasticity, see for example

Ciarlet [3], Ciarlet-Destuynder [4].

Let us now describe the model equations. We consider a bounded open set Ω

of R2. The generic point of Ω is denoted by (x1, x2). Here and throughout the

paper we use bold characters to denote vector-valued functions. The calculations

combine the phenomenological constitutive equations for the magnetizationM and

the displacement W . The nonlinear parabolic hyperbolic coupled system describing

the dynamics is given by (see [9])

(1)

{
γ−1∂tM −M × (a∆M − ∂tM − λV ) = 0,

̺∂ttW − τ∆W − λ(∂x1
(M1M3) + ∂x2

(M2M3)) = 0

in Q = (0, T ) × Ω, where the vector V is given by

V = V (M ,∇W ) = (M3∂x1
W, M3∂x2

W, M1∂x1
W + M2∂x2

W ).

The first equation in (1), well known in literature, is the modified Landau-Lifshitz-

Gilbert (LLG) equation. The modification lies in the presence of the term λV . The

unknown M , the magnetization vector, is a map from Ω to S2 (the unit sphere

of R3). The symbol × denotes the vector cross product in R
3. Moreover, we denote

byMi, i = 1, 2, 3 the components ofM . The constant γ > 0 represents the damping

parameter while a > 0 is the exchange coefficient. The second equation in (1)

describes the evolution of the displacement W . The parameters ̺, λ, and τ are three

positive constants. As the initial and boundary conditions we assume

W (0, ·) = W0, ∂tW (0, ·) = W1, M(0, ·) = M0, |M0| = 1 in Ω,(2)

W = 0, ∂νM = 0 on Σ = (0, T )× ∂Ω,(3)

where ν is the outer unit normal at the boundary ∂Ω.

We introduce the functional E(t) defined as

(4) E(t) =
a

2

∫

Ω

|∇M |2 dΩ +
τ

4

∫

Ω

|∇W |2 dΩ +
̺

2

∫

Ω

|∂tW |2 dΩ
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and put

(5) E(0) =
a

2

∫

Ω

|∇M0|
2 dΩ +

τ

4

∫

Ω

|∇W0|
2 dΩ +

̺

2

∫

Ω

|W1|
2 dΩ.

The following result has been proved (see [9]).

Theorem 1 ([9]). Given W0 ∈ H1(Ω), W1 ∈ L2(Ω), and M0 ∈ H1(Ω) with

|M0| = 1 a.e. in Ω, there exists a weak solution (M , W ) to the problem (1)–(3) in

the sense that

• M ∈ H1(Q) with |M | = 1 a.e. in Q, W ∈ L2(0, T ; H1
0(Ω)) and ∂tW ∈

L2(0, T ; L2(Ω));

• for each couple (p, g) such that p ∈ C∞(Q) vanishes at t = 0 and t = T , and

g ∈ H1(Q) ∩ C0(Q), one has

∫

Q

(
γ−1∂tM · p+ a

2∑

j=1

M × ∂xj
M · ∂xj

p(6)

+(M × ∂tM) · p+ λ(M × V ) · p

)
dΩ dt = 0,

∫

Q

(−̺∂tW∂tg + τ∇W · ∇g + λM3(M1∂x1
g + M2∂x2

g)) dΩ dt = 0,(7)

where the dot product operation denotes the Euclidean scalar product on R
3.

Moreover, there exist two constants c1 and c2 such that if M and W are solutions

of the problem (1)–(3) the estimate

(8) E(t) +

∫ t

0

∫

Ω

|∂tM |2 dΩ dt 6 c1E(0) + c2

holds for all t ∈ (0, T ).

The rest of the paper is organized as follows. In the next section we consider

the dimensional reduction from 2D to 1D. We introduce the natural scaling for the

problem and prove uniform bounds for the solutions, with respect to the vanishing

parameter, which allows us to identify the limit problem. The last section concludes

the paper and provides future directions for this work.
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2. Dimensional reduction from 2D to 1D

Let ε be a real parameter taking values in a sequence of positive numbers con-

verging to zero. We consider flat magnetoelastic domains represented by Ωε =

(0, 1) × (0, ε). We shall be interested in getting the asymptotic behavior of the

solutions when ε → 0.

2.1. Scaling and uniform bounds

Let (M , W ) be a solution of the problem posed in Ωε. We introduce the change

of variables (x1, x2) = (x, εy) with (x, y) = X ∈ Ω = (0, 1) × (0, 1). For functions

R(x1, x2) and S(x1, x2) defined in Ωε we introduce the functions rε(x, y) and sε(x, y)

defined on Ω by setting

(9) R(x1, x2) = rε(x, y); S(x1, x2) = sε(x, y).

Let (mε, wε) be the fields associated with (M , W ). The scaled equations satisfied

by (mε, wε) are

γ−1∂tm
ε −mε ×

(
a
(
∂xxm

ε +
1

ε2
∂yym

ε
)
− ∂tm

ε − λṼ ε
)

= 0,(10)

̺∂ttw
ε − τ

(
∂xxwε +

1

ε2
∂yywε

)
− λ∂x(mε

1m
ε
3) −

λ

ε
∂y(mε

2m
ε
3) = 0,(11)

where Ṽ ε is the vector defined by

(12) Ṽ ε =
(
mε

3∂xwε,
1

ε
mε

3∂ywε, mε
1∂xwε +

1

ε
mε

2∂ywε
)
.

The associated energy Eε(t), defined in (4), becomes

Eε(t) =
a

2

∫

Ω

|∂xm
ε|2 dΩ +

a

2ε2

∫

Ω

|∂ym
ε|2 dΩ +

τ

4ε2

∫

Ω

|∂ywε|2 dΩ(13)

+
τ

4

∫

Ω

|∂xwε|2 dΩ +
̺

2

∫

Ω

|∂tw
ε|2 dΩ.

The energy equation as well as the saturation constraint on magnetization (see (2))

remain unchanged which is written as

(14) |mε(t, X)|2 = |mε
0(X)|2 = 1

for almost every (t, X). The following estimates hold true for all t > 0:

(15) Eε(t) +

∫ t

0

∫

Ω

|∂tm
ε|2 dΩ dt 6 c1E

ε(0) + c2.
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To get uniform bounds for the solutions we discuss the admissibility criterion for the

initial data. An initial data (mε
0, w

ε
0) are said to be admissible if we have

(16) Eε(0) < ∞.

The admissibility criterion reads

a

2

∫

Ω

|∂xm
ε
0|

2 dΩ +
a

2ε2

∫

Ω

|∂ym
ε
0|

2 dΩ +
τ

4ε2

∫

Ω

|∂ywε
0|

2 dΩ(17)

+
τ

4

∫

Ω

|∂xwε
0|

2 dΩ +
̺

2

∫

Ω

|wε
1|

2 dΩ < ∞.

Thus, since |mε
0|

2 = 1 a.e., to satisfy the criterion we assume that there exists C > 0

independent of ε such that

(18)

{
|∂xm

ε
0|L2(Ω) 6 C, |∂ym

ε
0|L2(Ω) 6 Cε, |mε

0(x, y)|2 = 1 a.e.,

|∂xwε
0|L2(Ω) 6 C, |∂ywε

0|L2(Ω) 6 Cε, |wε
1|L2(Ω) 6 C.

Condition (18) means that the couple (mε
0, w

ε
0) is essentially independent of the

variable y and its strong limit (m0, w0) is independent of y.

R em a r k 1. If the initial data are not admissible, then we expect that the initial

layer occurs when ε tends to zero.

2.2. Passing to the limit

Let (mε, wε) be a solution of the problem associated with an admissible initial

data (mε
0, w

ε
0). We have

(19)

{
mε

0 ⇀ m0 weakly-∗ in L∞(Ω) and weakly in H1(Ω),

wε
0 ⇀ w0 weakly in H1(Ω).

Moreover, m0(x, y) = m0(x) is independent of y. For subsequences, the solutions

verify the convergences

(20)

{
mε ⇀ m weakly-∗ in L∞(R+ × Ω) ∩ L∞(R+, H1(Ω)),

wε ⇀ w weakly in L2(0, T, H1
0 (Ω))

and

(21)





∂ym
ε → 0 strongly in L∞(R+, L2(Ω)),

∂ywε → 0 strongly in L∞(R+, L2(Ω)),

∂tm
ε ⇀ ∂tm weakly in L2(R+, L2(Ω)),

∂tw
ε ⇀ ∂tw weakly in L2(0, T ; L2(Ω)).
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Hence, the couple (m, w) is independent of the variable y. By Aubin’s compactness

results, we have

(22) (mε, wε) → (m, w) strongly in L2
loc(R

+, L2(Ω)).

Moreover, the Sobolev imbedding theorem W 1,2(Q) → Lq(Q) (2 6 q 6 6) yields the

compactness result

(23) mε
im

ε
j → mimj strongly in L2(Q), i, j = 1, 2, 3.

Recall that Q = (0, T ) × Ω with Ω = (0, 1) × (0, 1).

In order to pass to the limit we look at the variational formulation of the scaled

problem (10)–(11) by using oscillating test functions. Let ψε(t, x, y) and gε(t, x, y) be

regular test functions depending on ε. Multiplying equation (10) byψε, equation (11)

by gε and integrating by parts, we get the weak formulations

γ−1

∫

Q

∂tm
ε ·ψε dΩ dt +

∫

Q

(mε × ∂tm
ε) ·ψε dΩ dt(24)

= −

∫

Q

a(mε × ∂xm
ε) · ∂xψ

ε dΩ dt

−
1

ε2

∫

Q

a(mε × ∂ym
ε) · ∂yψ

ε dΩ dt − λ

∫

Q

mε × Ṽ ε ·ψε dΩ dt

and

−̺

∫

Q

∂tw
ε∂tg

ε dΩ dt + τ

∫

Q

∂xwε∂xgε dΩ dt +
τ

ε2

∫

Q

∂ywε∂ygε dΩ dt(25)

+ λ

∫

Q

(mε
1m

ε
3)∂xgε dΩ dt +

λ

ε

∫

Q

(mε
2m

ε
3)∂ygε dΩ dt = 0.

To pass to the limit we need the following convergence result:

Lemma 1. Define Θε := ε−1∂ywε. Then

(26) Θε ⇀ Θ = −
λ

τ
m2m3 + K weakly-∗,

where K is a function of the variable x.

P r o o f. We multiply (11) first by ε then by a function g ∈ D(Q). Integrating

by parts, one gets

ε

(
−̺

∫

Q

∂tw
ε∂tg dΩ dt + τ

∫

Q

∂xwε∂xg dΩ dt + λ

∫

Q

(mε
1m

ε
3)∂xg dΩ dt

)
(27)

+

∫

Q

(τ

ε
∂ywε + λ(mε

2m
ε
3)

)
∂yg dΩ dt = 0.
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Hence, passing to the limit, by using convergences (21), (22), and (23), we deduce

that the weak-∗ limit Θ of the sequence Θε satisfies ∂y(τΘ + λm2m3) = 0, which

allows to get (26). �

R em a r k 2. In the sequel and without loss of generality we will assume that

K ≡ 0.

Now we are able to pass to the limit. We set QT = R
+ × (0, 1). We choose in the

above weak formulations test functions of the form

(28)

{
ψε(t, x, y) = ψ0(t, x) + εψ(t, x, εy),

gε(t, x, y) = g0(t, x) + εg(t, x, εy).

We pass to the limit in each term of (24) by using the convergence results (21), (22),

and (23). Hence, we first get

∫

Q

∂tm
ε ·ψε dΩ dt →

∫

QT

∂tm ·ψ0 dxdt,(29)

∫

Q

∂t(m
ε × ∂tm

ε) · ψε dΩ dt →

∫

QT

(m× ∂tm) ·ψ0 dxdt.

Next, we have

(30)

∫

Q

a(mε × ∂xm
ε) · ∂xψ

ε dΩ dt →

∫

QT

(m× ∂xm) · ∂xψ0 dxdt.

We also get

(31)
1

ε2

∫

Q

a(mε × ∂ym
ε) · ∂yψ

ε dΩ dt → 0.

Recall that

(32) Ṽ ε =
(
mε

3∂xwε,
1

ε
mε

3∂ywε, mε
1∂xwε +

1

ε
mε

2∂ywε
)
.

We pass to the limit in the last term of (24) by using the convergence of Lemma 1.

In passing to the limit, we use the following facts: ∂yψ
ε = ε2(∂yψ

ε)(εy) and ∂xψ
ε =

∂xψ0 + ε∂xψ(εy).

Similarly we pass to the limit in the weak formulation (25). The convergences (21)

and (22) allow to get

∫

Q

∂tw
ε∂tg

ε dΩ dt →

∫

QT

∂tw∂tg0 dxdt,(33)

∫

Q

∂xwε∂xgε dΩ dt →

∫

QT

∂xw∂xg0 dxdt.
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Next, we have

(34)

∫

Q

(mε
1m

ε
3)∂xgε dΩ dt →

∫

QT

m1m3∂xg0 dxdt.

We also get

(35)
1

ε2

∫

Q

∂ywε∂ygε dΩ dt → 0,

and

(36)
1

ε

∫

Q

(mε
2m

ε
3)∂ygε dΩ dt → 0.

We have proved the result.

Theorem 2. Let (mε, wε) be a solution of the problem associated with the

admissible initial data (mε
0, w

ε
0). Then we have (mε, wε) → (m, w) strongly in

L2
loc(R

+, L2(Ω)), mε ⇀ m weakly-∗ in L∞(R+, H1(Ω)) and wε ⇀ w weakly in

L2(R+, H1
0 (Ω)). The couple (m, w) is independent of the variable y and in R+×(0, 1)

satisfies |m(t, x)|2 = 1 and the one dimensional coupled system

(37)

{
γ−1∂tm+m× ∂tm = −m× (a∂xxm+ λṼ ),

̺∂ttw − τ∂xxw − λ∂x(m1m3) = 0,

where

(38) Ṽ =
(
m3∂xw,−

λ

τ
m2m

2
3, m1∂xw −

λ

τ
m2

2m3

)
.

The associated initial and boundary conditions are given by

w(0, x) = w0, ∂tw(0, x) = w1, m(0, x) = m0, |m0| = 1 in (0, 1),(39)

w(t, j) = 0, ∂xm(t, j) = 0 for j = 0, 1,(40)

where w1 is the weak limit of w
ε
1 in L2(Ω).
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3. Concluding remarks

The limiting behavior obtained in this work concerns the simplified two-dimen-

sional system. It can be used as a toy model for introducing the mathematical

approach which can be adapted to more realistic models. It would be interesting to

consider the general model which consists of the three-dimensional case with total

energy (see [9])

E(t) =
1

2

∫

Ω

a|∇M |2 + τ1|∇U |2 + τ2(div U)2(41)

+ λ1δklij∇iUjMkMl + λ2|M |2 div U + 2λ3(∇Ui ·M)Mi,

where δijkl = 1 if i = j = k = l and δijkl = 0 otherwise. The parameters τ1, τ2,

λ1, λ2, and λ3 are positive constants. As a direction for future research one may

try to establish an existence result for the last model and justify classical dimen-

sional reductions. We finally mention that the effect of roughness on magnetoelastic

materials is also of interest.
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