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On AP spaces in concern with

compact-like sets and submaximality

Mi Ae Moon, Myung Hyun Cho, Junhui Kim∗

Abstract. The definitions of AP and WAP were originated in categorical topology
by A. Pultr and A. Tozzi, Equationally closed subframes and representation of

quotient spaces, Cahiers Topologie Géom. Différentielle Catég. 34 (1993), no. 3,
167–183. In general, we have the implications: T2 ⇒ KC ⇒ US ⇒ T1, where
KC is defined as the property that every compact subset is closed and US is
defined as the property that every convergent sequence has at most one limit.
And a space is called submaximal if every dense subset is open.

In this paper, we prove that: (1) every AP T1-space is US, (2) every nodec
WAP T1-space is submaximal, (3) every submaximal and collectionwise Haus-
dorff space is AP. We obtain that, as corollaries, (1) every countably compact
(or compact or sequentially compact) AP T1-space is Fréchet-Urysohn and US,
which is a generalization of Hong’s result in On spaces in which compact-like sets

are closed, and related spaces, Commun. Korean Math. Soc. 22 (2007), no. 2,
297–303, (2) if a space is nodec and T3, then submaximality, AP and WAP are
equivalent. Finally, we prove, by giving several counterexamples, that (1) in the
statement that every submaximal T3-space is AP, the condition T3 is necessary
and (2) there is no implication between nodec and WAP.

Keywords: AP, WAP, door, submaximal, nodec, unique sequential limit

Classification: 54D10, 54D55

1. Introduction

The purpose of this paper is to introduce some systemization into the dis-
cussion, to point out its importance, and to show some surprising contact with
concepts of AP and submaximality which have been studied by several authors
(see [2], [3]).

The spaces determined by almost closed subspaces were first introduced by
G.T. Whyburn [22] who baptized them accessibility spaces and studied the prop-
erties of pseudo-open continuous functions onto accessible spaces. Twenty years
later this concept appeared in the paper of A. Pultr and A. Tozzi [19] in the con-
text of categorical topology. Concepts of Whyburn and weakly Whyburn spaces
appeared and disappeared repeatedly, under various names. Then they became
subjects of an intensive study in context of pseudoradial and related spaces.

∗ Corresponding author.
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When A. Bella [4] and P. Simon [20] studied topological properties of AP
spaces not being aware of the paper of Whyburn, they used the terminology
of [19]. The situation changed recently when A.V. Arhangel’skii communicated
to the specialists in the field, that the concept of an AP space was first introduced
by G.T. Whyburn. As a traditional measure, some authors use the old terms, but
we will use the terminology defined by A. Pultr and A. Tozzi, and P. Simon.

Notice that the AP space is a natural generalization of Fréchet-Urysohn and
the WAP space contains all sequential spaces.

A. Bella and I.V. Yaschenko [6] discovered that every compact AP space is
Fréchet-Urysohn. After a few years, V.V. Tkachuk and I.V. Yaschenko [21] gave
a more general result of this, that is, any countably compact AP space is Fréchet-
Urysohn.

W. Hong [15] defined the space having the property of Approximation by Count-

able Points , for short, ACP . He also defined a WACP space as a generalization
of a ACP space. It has shown that WACP implies WAP. He proved that every
WACP space has countable tightness.

Section 2 is devoted to spaces in which compact-like sets are closed, and related
spaces. It is well known that every compact subset of a T2-space is always closed.
However, we may not say that every compact (countably compact, sequentially
compact) subset of any space is closed. A topological space X is said to be KC

(resp. C-closed, SC-closed) if every compact (resp. countably compact, sequen-
tially compact) subset of X is closed. A space X has unique sequential limits , for
short, US , if every sequence of points of X may converge to at most one limit. It
follows from definitions that every sequentially compact space is countably com-
pact and that every C-closed space is SC-closed. Also we have that every C-closed
space is KC.

One can easily prove by definitions that T2 ⇒ KC ⇒ US ⇒ T1. A. Wilansky
first studied the relationships of the above four properties in [23]. More spe-
cially, he proved that no converse implication holds even if the space is compact.
W. Hong [16] showed that every C-closed space as well as every SC-closed space is
US. Also it was shown that the following properties are equivalent when a space
is sequential: (1) US; (2) KC; (3) C-closed; and (4) SC-closed.

It is known that a compact T1-space need not be US ([23]), but we will show
that every AP T1-space is US in Section 2. It makes us to improve Corollary 2.15
in [16] by dropping the unnecessary condition “weakly discretely generated” as
follows: every countably compact (or compact or sequentially compact) AP T1-
space is Fréchet-Urysohn.

Section 3 deals with AP spaces and submaximal spaces. It was proved in [10]
that every door space is submaximal. It is well known that every submaximal
space is nodec. Giving additional conditions, it was shown that every irreducible
submaximal space is a door space ([10]) and that every submaximal T3-space is
AP ([6]).



On AP spaces in concern with compact-like sets and submaximality 295

We construct some counterexamples related to the digital line or the product
of two real lines equipped with a suitable topology such that submaximal spaces
which are not door (Example 3.11, 3.12 and 3.13). As a main theorem in Section 3,
we prove that every nodec WAP T1-space is submaximal. This guarantees the
following properties are equivalent when a space is nodec and T3: (1) submaximal;
(2) AP; and (3) WAP. We also prove that if X is submaximal and collectionwise
Hausdorff, then X is AP.

2. On compact-like sets

All spaces are assumed to be topological spaces, and our terminologies are
standard and follow [3] and [13].

The following definitions of AP and WAP were originated in categorical topol-
ogy by A. Pultr and A. Tozzi [19]. P. Simon [20] was first to study these properties
from a general topological point of view.

Definition 2.1 ([19]). A space X is said to have the property of Approximation

by Points (Weak Approximation by Points), for short, AP (WAP), if for every
non-closed set A and every (some) point x ∈ A\A there is a subset B ⊂ A such
that B\A = {x}.

Such a set B is also called almost closed , and denoted by B → x.

Clearly any AP space is WAP but the converse is not true.
We say that a subset A of a space X is AP-closed if for every F ⊂ A the

relation |F\A| 6= 1 holds.
The following property is well known.

Proposition 2.2. X is a WAP space if and only if every AP-closed subset of X
is closed.

Definition 2.3 ([15]). A space X is said to have the property of Approximation

by Countable Points , for short, ACP , provided that for every non-closed set A
and every point x ∈ A\A there is a countable subset B ⊂ A such that B\A = {x}.

A topological space X is said to be KC if every compact (not necessarily T2)
subset of X is closed. Of course, each T2-space is KC. On the other hand, if a
space is KC then clearly its singletons are closed, i.e., the space is T1. Under this
point of view, the KC property may be envisaged as a kind of separation axiom
between T1 and T2 ([5]).

A topological space X is C-closed ([17]) (SC-closed ([16])) if every countably
compact (sequentially compact) subset of X is closed. A space X has unique se-

quential limits ([14]), for short, US , if every sequence of points of X may converge
to at most one limit.

Since a sequentially compact space is countably compact, every C-closed space
is SC-closed. Also since a compact space is countably compact, every C-closed
space is KC.
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Theorem 2.4 ([23, Theorem 1]). T2 ⇒ KC ⇒ US ⇒ T1; but no converse

implication holds even if the space is compact.

A compact T1-space need not be US. The simple counterexample is a countably
infinite set equipped with the cofinite topology, but we show the following.

Theorem 2.5. If X is an AP T1-space, then X is US.

Proof: We will show this by the way of contradiction. Suppose that X is an AP
T1-space and suppose that there exists a sequence (xn : n ∈ ω) which converges
to two distinct points a and b in X . Let Ia = {n ∈ ω : xn = a} and Ib = {n ∈ ω :
xn = b}. If Ia is infinite, then pick a constant subsequence (xnk

= a : nk ∈ Ia)
of the sequence (xn : n ∈ ω). Since X is T1, there exists an open neighborhood
U of b such that a /∈ U . Then U ∩ {xnk

: nk ∈ Ia} 6= ∅ since b is a limit of the
subsequence {xnk

: nk ∈ Ia}. This is impossible. Hence Ia is finite. Similarly we
have that Ib is finite. Take a set A = {xn : n ∈ ω\(Ia ∪ Ib)}. Then a ∈ A\A.
Since X is AP, there exists a subset F of A such that F = F ∪ {a}. Because F is
infinite, b ∈ F = F ∪ {a}, i.e., b ∈ F ⊂ A. This is a contradiction. Therefore, X
is US. �

A space X is called weakly discretely generated ([12]) if for each non-closed
subset A of X there exist x ∈ A\A and a subset D of A such that D is discrete
and x ∈ D. Note that X is weakly discretely generated if it is a sequential
T1-space or a compact T2-space.

W.C. Hong proved the following two theorems:

Theorem 2.6 ([16, Theorem 2.11]). Every weakly discretely generated AP T1-

space is C-closed.

Theorem 2.7 ([16, Corollary 2.15]). Every countably compact (or compact or se-

quentially compact) weakly discretely generated AP T1-space is Fréchet-Urysohn

and US.

From Theorem 2.6, it is natural to ask whether every weakly discretely gener-
ated WAP T1-space is C-closed. But the answer is negative. Note that ω1+1 is a
discretely generated WAP T1-space which is not C-closed, and ω1 is a countably
compact subset which is not closed.

By Theorem 2.5, the condition “weakly discretely generated” in Theorem 2.7
can be dropped since every sequential (or countably compact) AP space is Fréchet-
Urysohn.

Corollary 2.8. Every countably compact (or compact or sequentially compact)
AP T1-space is Fréchet-Urysohn and US.

3. Around AP and submaximality

A space X is called a door space ([18]) if every subset of X is open or closed.
The term “door” was introduced by Kelley [18, p. 76, Problems C]. Here are

some easy facts about door spaces.
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Proposition 3.1. (1) The discrete space is a door space.

(2) A T2 door space has at most one accumulation point ([18]).
(3) In a T2 door space if x is not an accumulation point, then {x} is open

([18]).
(4) Every subspace of a door space is a door space ([10, Theorem 2.6]).

A space X is called submaximal ([8]) if every dense subset of X is open or,
equivalently, every subset with empty interior is closed and discrete. It is clear
that every submaximal space is a T0-space.

Theorem 3.2 ([7, Theorem 3.1]). Let X be a topological space. Then the fol-

lowing statements are equivalent:

(1) X is submaximal;

(2) A\A is closed, for each A ⊂ X ;

(3) A\A is closed and discrete, for each A ⊂ X .

A non-empty space X is said to be irreducible if it satisfies the following equiv-
alent conditions:

(1) Every two non-empty open subsets of X intersect.
(2) X is not the union of a finite family of closed proper subsets.
(3) Every non-empty open subset of X is dense.
(4) Every open subset of X is connected.

An irreducible space is called sometimes hyperconnected (in fact quite often).

Theorem 3.3 ([10, Theorem 2.7]). Every door space X is submaximal.

In general, the converse of Theorem 3.3 is not true ([1, Example 2.8 and 2.9]).

Theorem 3.4 ([10, Theorem 2.8]). Every irreducible submaximal space X is

a door space.

A space X is nodec ([11]) if every nowhere dense subsets of X is closed.
One can easily show that every submaximal space is nodec. But the converse

is not true. The following example is a nodec space which is not submaximal.

Example 3.5. Every cofinite topology on an infinite set X is a nodec space which
is not submaximal.

Suppose A is infinite in the cofinite topology on X . Then A is dense (every
non-empty open set misses only finitely many elements of X) and so IntA =
IntX = X , and A is not nowhere dense. So every nowhere dense subset of X
must be finite and thus closed. Hence X is nodec. However, it is not submaximal
because every infinite set in X is dense (as before), but only cofinite sets are
open. �

Remark 3.1. By Example 3.5, every infinite set X with the cofinite topology is
a nodec space which is neither submaximal nor WAP.
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Proposition 3.6 ([2, Proposition 2.1]). Every subspace of a submaximal (nodec)
space is a submaximal (nodec) space.

A space X is called ACP, if for every non-closed subset A of X and each
x ∈ A\A there exists a countable subset B of A such that B\B = {x}.

Proposition 3.7 ([6, Proposition 1.3]). Every submaximal T3-space is AP.

The following basic diagram exhibits the general relationships among the pro-
perties mentioned above:

door ✲
✛

irreducible

submaximal ✲ nodec

❄

T3 or

collectionwise Hausdorff

ACP ✲ AP ✲ WAP
❍

❍
❍

❍
❍❨

nodec T1

Theorem 3.8. Every nodec WAP T1-space is submaximal.

Proof: Suppose X is not submaximal. Then there exists a non-closed A ⊂ X
such that IntA = ∅. Since X is WAP, there exist x ∈ A\A and F ⊂ A such
that F = F ∪ {x}. Since F is not closed and since X is nodec, IntF 6= ∅. Since
IntF ⊂ IntA and IntA = ∅, IntF = ∅. So x ∈ IntF . Since x is an accumulation
point of F , ∅ 6= F ∩ (IntF\{x}) = IntF\{x} ⊂ F . Since X is T1, IntF\{x} is
non-empty open. So IntF 6= ∅. This is a contradiction. �

Corollary 3.9. Let X be a nodec T3-space. Then the following are equivalent:

(1) X is submaximal;

(2) X is AP;

(3) X is WAP.

The following is a submaximal space which is not WAP.

Example 3.10. We topologize the set of integers Z with a base {{2m−1, 2m, 2m+
1}, {2m+ 1} : m ∈ Z}.

The space X is submaximal but neither door nor T1 ([1, Example 2.8]). Also
X is not WAP. For, let A = {1}. Then A = {0, 1, 2}. If ∅ 6= F ⊂ A, then F = {1}
and F = {0, 1, 2}, i.e., F is not almost closed. �

Recall that every door space is submaximal. The following example gives us
an information that the converse does not hold though a space X is submaximal
and AP (more strongly, ACP).

Example 3.11. We topologize the set of integers Z with a base B = {{2m, 2m+
1}, {2m + 1} : m ∈ Z}. Then the space X is submaximal and AP, but neither
door nor T1.

Claim 1: X is not door.

Let A = {1, 2}. Then A is not open and A is not closed because IntA = {1}
and A = {0, 1, 2}.
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Claim 2: X is submaximal.

Let X = Zo ∪ Ze where Zo = {2n + 1 : n ∈ Z} and Ze = {2n : n ∈ Z}. For
every n ∈ Zo, {n} is open, and Ze is closed and discrete. Let A be any subset
of X with IntA = ∅. Then A ⊂ Ze. Since every subset of a closed and discrete
subset is closed, A is closed. Thus X is submaximal.

Claim 3: X is ACP.

Let A\A 6= ∅ and n ∈ A\A. Then n ∈ Ze (n = 2m). Since 2m ∈ {2m, 2m+1} ∈
B, {2m, 2m + 1} ∩ A 6= ∅. So 2m + 1 ∈ A. Take F = {2m + 1} ⊂ A. Then
F = {2m, 2m + 1} = F ∪ {2m}. Since the whole space X is countable, X is
ACP. �

Note that every submaximal T3-space is AP (Theorem 3.7). The following
example explains that the condition T3 is necessary in the statement.

Example 3.12. Let X = R × {0, 1} be a set. We define a basic open set for
x ∈ X as follows:

(i) every point of R× {0} is isolated;
(ii) 〈x, 1〉 ∈ R× {1} has a local basis consisting of the form

UK(x) = (U\K)× {0} ∪ {〈x, 1〉}

where U is an open subset of the Euclidean space R such that x ∈ U and
K is a countable subset of R.

Then X is T2 but not T3.

Claim 1: X is submaximal.

If IntA = ∅, then A ⊂ R× {1}. Since R × {1} is closed and discrete in X , A
is closed and discrete in X . Hence X is submaximal.

Claim 2: X is not door.

Let A = (R+ × {0}) ∪ (R− × {1}). Then IntA = R
+ × {0} 6= A and A =

A ∪ (R+ ∪ {0}) × {1} 6= A. Hence A is neither open nor closed. Thus X is not
door.

Claim 3: X is not WAP.

Suppose X is WAP. Let A = C×{0} where C is the Cantor set on [0, 1]. Then
A = C×{0, 1}. (A\A = C×{1}.) SinceX is WAP, there exist p ∈ A\A and F ⊂ A
such that F = F ∪{p}. Without loss of generality, we may assume that p = 〈0, 1〉.
Since p is an accumulation point of F , for any basic open neighborhood UK(0)
of p, UK(0) ∩ F is uncountable. Let Vn = (− 1

n
, 1

n
) ⊂ R and let Bn = Vn\Vn+1

for each n ∈ N. Then there exists m ∈ N such that (Bm × {0}) ∩ F (= G) is
uncountable. (If not, [(

⋃
m∈N

Bm)× {0}] ∩ F = [(−1, 1)× {0}] ∩ F is countable.
This is impossible.)
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Since G is a subset of C × {0}, we can take a sequence {Cn ⊂ [0, 1] : n ∈ N}
such that

• each Cn is a closed interval which can be chosen in each stage of construc-
tion of the Cantor set C;

• Cn+1 ⊂ Cn for each n ∈ N;
• (Cn × {0}) ∩G is uncountable for each n ∈ N.

Since the Cn’s are closed subsets of the compact space C with finite intersection
property, we can choose y ∈

⋂
n∈N

Cn. Since (U ×{0})∩G is uncountable for any
open neighborhood U of y in the subspace C of the Euclidean space R, 〈y, 1〉 ∈
G ⊂ F , 〈y, 1〉 6= 〈0, 1〉 and 〈y, 1〉 /∈ F . This is a contradiction to F = F ∪ {〈0, 1〉}.
Thus X is not WAP. �

We now give an example of a submaximal AP T2-space which is neither T3

nor door. It is obtained by replacing the word “countable subset” K with “finite
subset” K of R in Example 3.12.

Example 3.13. Let X = R × {0, 1} be a set. We define a basic open set B(x)
for x ∈ X as follows:

(i) every point of R× {0} is isolated;
(ii) 〈x, 1〉 ∈ R× {1} has a local basis consisting of the form

UK(x) = (U\K)× {0} ∪ {〈x, 1〉},

where U is an open subset of the Euclidean space R such that x ∈ U and
K is a finite subset of R.

Then X is T2 but not T3. One can show that X is submaximal but not door by
the same argument of Example 3.12.

Claim: X is ACP.

Let p ∈ A\A. Then p = 〈x, 1〉 ∈ R × {1}. For each Un = (x − 1

n
, x + 1

n
),

there exists 〈xn, 0〉 ∈ (Un × {0}) ∩ A. Then xn → x (in the usual topology). Let
pn = 〈xn, 0〉 and let F = {pn : n ∈ N}. Then F is a countable subset of A such
that F = F ∪ {p}. Therefore X is ACP. �

A space X is said to be collectionwise Hausdorff provided that for each closed
and discrete subset A of X the points in A can be separated by pairwise dis-
joint open subsets of X . It follows from the definition that every collectionwise
Hausdorff space is Hausdorff.

Theorem 3.14. If X is submaximal and collectionwise Hausdorff, then X is AP.

Proof: Let p ∈ A\A. Since Int(A\A) = ∅, A\A is closed and discrete in X .
Take a family {Vx : x ∈ A\A} of pairwise disjoint open subsets of X such that
x ∈ Vx for each x ∈ A\A. Let F = Vp ∩ A. Then p ∈ F because U ∩ F =

U ∩ Vp ∩ A ⊃ (U ∩ Vp) ∩ A 6= ∅ for every open neighborhood U of p.

Since Vx ∩ Vp = ∅ for all x ∈ A\A with x 6= p, Vx ∩ Vp = ∅. Hence Vx ∩ F = ∅,
i.e., x /∈ F for all x ∈ A\A with x 6= p.
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To prove that F is almost closed, it is sufficient to show that F ∩A = F . Since

Vp is closed in X , F is closed in A. Hence F ∩ A = F
A
= F .

Therefore X is AP. �

Remark 3.2. The space X in Example 3.12 is a submaximal T2-space which is
neither AP nor collectionwise Hausdorff.

Acknowledgment. The authors would like to thank the referee for his/her valu-
able comments which improve the presentation of this paper.
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