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Abstract. The aim of the paper is to discuss the extreme points of subordination and weak
subordination families of harmonic mappings. Several necessary conditions and sufficient
conditions for harmonic mappings to be extreme points of the corresponding families are
established.
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1. Preliminaries

A complex-valued function f is said to be harmonic in a simply connected domain

Ω of the complex plane C if and only if both Re {f} and Im{f} are real harmonic
in Ω.

Every harmonic mapping f in Ω has the canonical decomposition

(1.1) f = h+ g,

where both h and g are analytic in Ω and g(z0) = 0 for some prescribed point z0 ∈ Ω

(cf. [6]). Moreover, a necessary and sufficient condition for f of the form (1.1) to be

locally univalent and sense preserving is that its Jacobian

Jf = |fz|2 − |fz|2 = |h′|2 − |g′|2

The research was partly supported by NSFs of China (No. 10771059 and No. 11071063)
and the program for Science and Technology Innovative Research Team in Higher Edu-
cational Instituions of Hunan Province.

145



is positive. The class of all sense-preserving univalent harmonic mappings of the

unit disk D = {z : |z| < 1} with h(0) = g(0) = h′(0) − 1 = 0 is denoted by SH, and

S0
H = {f : f ∈ SH and g

′(0) = 0}.

Definition 1.1. Let X be a topological vector space over the field of complex

numbers, and let D be a subset of X . A point x ∈ D is called an extreme point of D

if it has no representation of the form x = ty + (1 − t)z (0 < t < 1) as a proper

convex combination of two distinct points y and z in D.

We denote by ED the set of extreme points of D and by HD the closed convex

hull of D, that is, the smallest closed convex set containing D (cf. [5, §9.3]).

Let B0 denote the set of all functions ϕ analytic in D with |ϕ(z)| < 1 and ϕ(0) = 0.

Definition 1.2. We say that a harmonic mapping f is subordinate to F , denoted

by f ≺ F , if there is ϕ ∈ B0 such that f(z) = F (ϕ(z)).

Suppose f = h+ g and F = H +G, where h, g, H and G are analytic in D with

h(0) = H(0) and g(0) = G(0). If f ≺ F , then, obviously, h ≺ H and g ≺ G.

It is known that for analytic functions f and F , if F is univalent then f(D) ⊂ F (D)

if and only if f ≺ F (cf. [5]). See [3], [5], [13] and [15] for more properties of

subordinate analytic functions. But this important property is not valid for harmonic

mappings. In [10], Muir introduced the following concept for harmonic mappings.

Definition 1.3. Suppose f and F are harmonic mappings in D with f(0) =

F (0) = 0. We say that f is weakly subordinate to F if f(D) ⊂ F (D).

Extreme points of analytic functions play an important role in solving extremal

problems. Many results have appeared in literature, see [1], [2], [7], [8], [9], [14]

etc. But, up to now, there are no corresponding results for harmonic mappings.

As the first aim of this paper, we discuss the extreme points of weak subordination

families of harmonic mappings. Several necessary conditions are established. Our

main results are Theorems 2.1 and 2.3. And then, we discuss the extreme points

of subordination families of harmonic mappings. Several sufficient conditions are

proved. Theorems 3.1 and 3.2 are the main results.
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2. Extreme points of weak subordination families of

harmonic mappings

We begin this section with two concepts.

Definition 2.1. A function h analytic in D is said to belong to the Hardy space

Hp (0 < p <∞) if the integral means

Mp(r, h) =
{ 1

2π

∫ 2π

0

|h(reiθ)|p dθ
}1/p

is bounded for each r ∈ (0, 1).

We use hp to denote the set of all harmonic mappings f for which Mp(r, f) (0 <

r < 1) are bounded.

If lim
r→1

Mp(r, h) < ∞ or lim
r→1

Mp(r, f) < ∞, then we always use ‖h‖p or ‖f‖p

respectively to denote this limit although it does not give a norm when 0 < p < 1.

By [6, Theorem 1 in §8.5], if F = H + G ∈ SH, then F ∈ hp for all p < 0.0004.

Hence the radial limit lim
r→1

F (reiθ) = F (eiθ) exists for almost all θ ∈ [0, 2π] (cf. [6,

§8.5]). If F ∈ SH and f ≺ F , then lim
r→1

f(reiθ) = f(eiθ) also exists for almost all

θ ∈ [0, 2π]. This is because, under the assumptions, f ∈ hp for all p < 0.0004 (cf. [5,

Theorem 6.1]).

Definition 2.2. A function h analytic in D is said to be of class N if the integral

∫ 2π

0

log+ |h(reiθ)| dθ

is bounded for each r < 1, where log+ x = max{0, logx}.

[4, Theorem 2.1] says that an analytic function belongs to the class N if and only

if it is the quotient of two bounded analytic functions. It is clear that for each p > 0,

Hp ⊂ N .

In [1], it was proved that for a univalent analytic function H , if H ′ belongs to the

class N and ϕ ∈ EB0, then
∫ 2π

0
log d

(

H(ϕ(eiθ)), ∂DH

)

dθ = −∞, where DH = H(D)

and d
(

H(ϕ(eiθ)), ∂DH

)

denotes the distance between H(ϕ(eiθ)) and the boundary

∂DH of DH . It was conjectured that
∫ 2π

0
log d

(

H(ϕ(eiθ)), ∂DH

)

dθ = −∞ for any

univalent function H and ϕ ∈ EB0.

In [2], Abu-Muhanna and Hallenbeck discussed a weaker conjecture: If H ◦
ϕ ∈ Es(H), where ϕ ∈ B0, s(H) = {h : h ≺ H} and H is univalent, then
∫ 2π

0
log d

(

H(ϕ(eiθ)), ∂DH

)

dθ = −∞. They showed that the answer to this weaker
conjecture is affirmative under the assumption that H ′ belongs to the class N .
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The main aim of this section is to discuss the corresponding weaker conjecture for

harmonic mappings. Our result is as follows, which is a partial answer to this weaker

conjecture.

Theorem 2.1. Suppose F = H + G ∈ S0
H and H

′ belongs to the class N . Let

F be the set of all harmonic mappings f which are weakly subordinate to F . If

f = F ◦ ϕ is an extreme point of F , where ϕ ∈ B0, then

(2.1)

∫ 2π

0

log d
(

F (ϕ(eiθ)), ∂DF

)

dθ = −∞.

The following lemmas are crucial for the proof of Theorem 2.1.

Lemma 2.1. Let F = H +G ∈ S0
H. Then

1

16

(1 − r

1 + r

)α

6 d(F (z), ∂DF ) 6 a
(1 + r

1 − r

)α

,

where |z| = r, a = 2π

√
6/9 and α = sup{ 1

2
|h′′

(0)| : f = h+ g ∈ SH}.

P r o o f. Obviously, for any f = h+ g ∈ SH there exists a function f0 ∈ S0
H such

that f = f0 + b1(g)f0, where b1(g) = g′(0). By [6, Theorem 2 in §6.2],

d(0, ∂Df) = lim inf
|z|→1

|f(z)| > lim inf
|z|→1

(

1 − |b1(g)|
)

|f0(z)|

> lim inf
|z|→1

(

1 − |b1(g)|
) |z|
4(1 + |z|)2 =

1 − |b1(g)|
16

.

On the other hand, by [6, Theorem 1 in §6.2], we see that each function in SH

omits some point on the circle {z : |z| = a}, so

d(0, ∂Df) = lim inf
|z|→1

|f(z)| 6 a.

Thus

(2.2)
1 − |b1(g)|

16
6 d(0, ∂Df ) 6 a.

For each F ∈ S0
H and a fixed ζ ∈ D, let

F1(z) =
F ((z + ζ)/(1 + ζz)) − F (ζ)

(1 − |ζ|2)H ′(ζ)
.
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Then it is easy to verify that F1 = H1 +G1 ∈ SH. So

d(F (ζ), ∂DF ) = d(0, ∂DF1
)(1 − |ζ|2)|H ′(ζ)|.

It follows from (2.2) that

(2.3)
1 − |b1(G1)|

16
(1 − |ζ|2)|H ′(ζ)| 6 d(F (ζ), ∂DF ) 6 a(1 − |ζ|2)|H ′(ζ)|.

Obviously, b1(G1) = G′(ζ)/H ′(ζ). This shows

(2.4)
1

16
(1 − |ζ|2)

(

|H ′(ζ)| − |G′(ζ)|
)

6 d(F (ζ), ∂DF ) 6 a(1 − |ζ|2)|H ′(ζ)|.

From the proof of [6, Theorem in §6.4] we know that

(2.5)
(1 − r)α−1

(1 + r)α+1
6 |H ′(ζ)| − |G′(ζ)|

and

(2.6) |H ′(ζ)| 6
(1 + r)α−1

(1 − r)α+1
,

where |ζ| = r. By (2.4), (2.5) and (2.6) we complete the proof. �

Lemma 2.2. Let F ∈ S0
H and let F be the set of all harmonic mappings which

are weakly subordinate to F . If f = F ◦ ϕ is an extreme point of F , where ϕ ∈ B0,

then ϕ is an extreme point of B0.

P r o o f. Suppose, on the contrary, that ϕ is not an extreme point of B0. Then,

by a discussions similar to the proof of [2, Theorem 1], we have

(2.7) log
(

1 − |ϕ(z)|
)

>
1

2π

∫ 2π

0

Pz(θ) log
(

1 − |ϕ(eiθ)|
)

dθ,

where Pz(θ) = Re((eiθ + z)/(eiθ − z)) and θ ∈ [0, 2π).

Hence

(2.8) exp

(

1

2π

∫ 2π

0

Pz(θ) log
(

1 − |ϕ(eiθ)|
)α

dθ

)

6
(

1 − |ϕ(z)|
)α
,

where α is the same as in Lemma 2.1.

Let

f1(z) = h1(z) + h1(z),
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where

h1(z) =
z

2α+5
exp

(

1

2π

∫ 2π

0

eiθ + z

eiθ − z
log

(

1 − |ϕ(eiθ)|
)α

dθ

)

.

Obviously, f1(0) = 0 and f1 is a non-constant harmonic mapping in D. We also

know that

|f1(z)| <
1

2α+4
exp

(

1

2π

∫ 2π

0

Pz(θ) log
(

1 − |ϕ(eiθ)|
)α

dθ

)

,

which, together with (2.8), implies that

(2.9) |f1(z)| <
1

2α+4

(

1 − |ϕ(z)|
)α
.

Lemma 2.1 yields that

1

2α+4

(

1 − |ϕ(z)|
)α

6 d
(

F (ϕ(z)), ∂DF

)

= d(f(z), ∂DF ).

Hence

|f1(z)| < d(f(z), ∂DF )

for all z in D. We conclude that f(z)±f1(z) ∈ DF for any z in D, so f±f1 ∈ F , which

contradicts the assumption f ∈ EF . Hence ϕ ∈ EB0 and the proof is complete. �

We remark that Lemma 2.2 is a generalization of [2, Theorem 1] to the case of

harmonic mappings, and [2, Theorem 1] is an affirmative answer to a conjecture

raised by Abu-Muhanna in [1].

The following lemma is an analog of [1, Theorem 1] for harmonic mappings.

Lemma 2.3. Suppose F = H +G ∈ S0
H, where H

′ belongs to the class N . Then

for any f = F ◦ ϕ (ϕ ∈ B0),

(1)
∫ 2π

0
log+ d

(

f(eiθ), ∂DF

)

dθ is convergent;

(2)
∫ 2π

0
log d

(

f(eiθ), ∂DF

)

dθ = −∞ if and only if
∫ 2π

0
log

(

1 − |ϕ(eiθ)|
)

dθ = −∞,
where log+ x = max{0, logx}.
P r o o f. The proof of this lemma follows from Lemma 2.1 and a reasoning similar

to the proof of [1, Theorem 1]. �

The proof of Theorem 2.1.

P r o o f. Lemma 2.2 implies that ϕ ∈ EB0 and [4, §7.6] shows that
∫ 2π

0
log

(

1 −
|ϕ(eiθ)|

)

dθ = −∞. Hence the proof follows from the assumption that H ′ belongs to

the class N and Lemma 2.3. �

We conjecture that (2.1) holds without the hypothesis that “H ′ belongs to the

class N”. The following theorem is an indirect evidence for this conjecture, which is

also a generalization of [2, Theorem 3].
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Theorem 2.2. Suppose that F and F are the same as in Lemma 2.2 and that

f = F ◦ ϕ ∈ EF . Then

inf
r

∫ 2π

0

log d
(

F (ϕ(reiθ)), ∂DF

)

dθ = −∞.

P r o o f. As in the proof of [2, Theorem 3], we know that

(2.10) inf
r

∫ 2π

0

log
(

1 − |ϕ(reiθ)|2
)

dθ =

∫ 2π

0

log
(

1 − |ϕ(eiθ)|2
)

dθ.

Since f = F ◦ ϕ ∈ EF , Lemma 2.2 implies that ϕ ∈ EB0. Since H
′(z) 6= 0, we

know that both log |H ′(z)| and log |H ′(ϕ(z))| are harmonic, and so
∫ 2π

0

log |H ′(ϕ(reiθ))| dθ = 2π log |H ′(ϕ(0))| = 2π log |H ′(0)| = 0.

Therefore, by (2.4),

(2.11)

∫ 2π

0

log d
(

F (ϕ(reiθ)), ∂DF

)

dθ 6

∫ 2π

0

log
(

1 − |ϕ(reiθ)|2
)

dθ + 2π log a.

It follows from (2.10), (2.11) and the fact that
∫ 2π

0
log

(

1 − |ϕ(eiθ)|2
)

dθ = −∞
when ϕ ∈ EB0 that

inf
r

∫ 2π

0

log d
(

F (ϕ(reiθ)), ∂DF

)

dθ = −∞.

�

The next two results are sufficient conditions for
∫ 2π

0
log d

(

F (ϕ(eiθ)eiϑ), ∂DF

)

dθ

to be −∞.

Theorem 2.3. Let F = H +G ∈ S0
H, ϕ ∈ EB0 and |ϕ(eiθ)| < 1 for almost all θ.

If H is univalent in D, then

(2.12)

∫ 2π

0

log d
(

F (ϕ(eiθ)eiϑ), ∂DF

)

dθ = −∞

for almost all ϑ.

P r o o f. Since F ∈ S0
H and |ϕ(eiθ)| < 1 for almost all θ, we infer from (2.4) that

d
(

F (ϕ(eiθ)eiϑ), ∂DF

)

6 a
(

1 − |ϕ(eiθ)|2
)

|H ′
(

ϕ(eiθ)eiϑ
)

|
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for almost all θ, all ϑ and a = 2π

√
6/9. It follows that

∫ 2π

0

log d
(

F (ϕ(eiθ)eiϑ), ∂DF

)

dθ 6 2π log a+

∫ 2π

0

log
(

1 − |ϕ(eiθ)|2
)1/2

dθ

+

∫ 2π

0

log
(

1 − |ϕ(eiθ)|2
)1/2|H ′(ϕ(eiθ)eiϑ)| dθ.

Since H is univalent, it follows from [2, Theorem 5] that

(2.13)

∫ 2π

0

log
(

1 − |ϕ(eiθ)|2
)1/2|H ′(ϕ(eiθ)eiϑ)| dθ < +∞

for almost all ϑ. Since ϕ ∈ EB0, we know from [4, §7.6] that
∫ 2π

0
log

(

1−|ϕ(eiθ)|
)

dθ =

−∞. So (2.12) follows. �

By Lemma 2.2 and Theorem 2.3 the following result is obvious.

Corollary 2.1. Let F = H + G ∈ S0
H and ϕ ∈ B0, where |ϕ(eiθ)| < 1 for

almost all θ. Suppose that F is the same as in Lemma 2.2. If H is univalent and

F ◦ ϕ ∈ EF , then

∫ 2π

0

log d
(

F (ϕ(eiθ)eiϑ), ∂DF

)

dθ = −∞

for almost all ϑ.

In order to state the next result, we introduce a new concept.

Definition 2.3. An inner function is an analytic function h in D with |h(z)| 6 1

and |h(eiθ)| = 1 for almost all θ (cf. [4]).

As a generalization of Theorem 2.3, we have

Theorem 2.4. Suppose that F = H + G ∈ S0
H, H is univalent, ϕ ∈ EB0 and

|ϕ(eiθ)| < 1 for almost all θ. If ψ is an inner function with ψ(0) 6= 1, then

∫ 2π

0

log d
(

F (ϕ(eiθ)ψ(eiϑ)), ∂DF

)

dθ = −∞

for almost all ϑ.

The proof is similar to that of [2, Theorem 7]. We omit it here.
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3. Extreme points of closed convex hulls of

subordination families of harmonic mappings

In [8], the authors proved two results concerning the extreme points of the family

of functions subordinate to an analytic function. Specifically, two classes of extreme

points were determined. The main aim of this section is to generalize these results

to the case of harmonic mappings.

Theorem 3.1. Let F = H +G be harmonic in D with H(0) = G(0) = 0 and let

s(F ) be the family of functions subordinate to F . Then the functions f(z) = F (xz)

(|x| = 1) belong to EHs(F ).

P r o o f. Suppose, on the contrary, that f(z) = F (xz) does not belong to

EHs(F ) for some x with |x| = 1. Then there exist f1 and f2 ∈ Hs(F ) such that

f1 6= f2 and

f(z) = F (xz) = tf1(z) + (1 − t)f2(z),

where 0 < t < 1. Using H(0) = G(0) = 0, we get

H(xz) = th1(z) + (1 − t)h2(z)

and

G(xz) = tg1(z) + (1 − t)g2(z),

where f1 = h1+g1 and f2 = h2+g2. Hence either H(xz) does not belong to EHs(H)

or G(xz) does not belong to EHs(G), which contradicts [8, Theorem 6].

Hence f(z) = F (xz) (|x| = 1) belongs to EHs(F ). �

Theorem 3.2. Let F be harmonic in D and let s(F ) be the family of functions

subordinate to F . Suppose F ∈ hp, where 2 6 p <∞. If ϕ is an inner function with
ϕ(0) = 0 and |ϕ(z)| < 1, then f = F ◦ ϕ ∈ EHs(F ).

The following lemma plays an important role in the proof of Theorem 3.2.

Lemma 3.1. Let f = h + g and F = H + G be two harmonic mappings with

h(0) = H(0), g(0) = G(0) and F ∈ h2. Then f ≺ F and ‖f‖2 = ‖F‖2 if and only if

there is an inner function ϕ with ϕ(0) = 0 and |ϕ(z)| < 1 such that f = F ◦ ϕ.

Before the proof of Lemma 3.1, we introduce a result due to Ryff which is from [11].
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Lemma 3.2 (11, [Theorem 3]). In order that h ≺ H and ‖h‖p = ‖H‖p (H ∈ Hp,

0 < p <∞) it is necessary and sufficient that h = H ◦ϕ, where ϕ is an inner function
with ϕ(0) = 0.

The proof of Lemma 3.1.

P r o o f. Since ‖f‖2 = ‖h‖2 + ‖g‖2 and ‖F‖2 = ‖H‖2 + ‖G‖2, we know that

‖f‖2 = ‖F‖2 if and only if ‖h‖2 + ‖g‖2 = ‖H‖2 + ‖G‖2. It follows from f ≺ F ,

h(0) = H(0) and g(0) = G(0) that h ≺ H and g ≺ G. By [5, Theorem 6.3],

‖h‖2 6 ‖H‖2, ‖g‖2 6 ‖G‖2.

Hence

‖h‖2 = ‖H‖2, ‖g‖2 = ‖G‖2.

The proof easily follows from Lemma 3.2 and a reasoning similar to its proof

in [11]. �

The proof of Theorem 3.2.

P r o o f. Since F ∈ hp and p > 2, we see that F ∈ h2. From the assumptions it

is obvious that f ≺ F and hence f ∈ h2 by [12, Theorem 2.4]. The remaining part

of the proof easily follows from Lemma 3.1 and a reasoning similar to the proof of

[8, Theorem 7]. �

The next result is an analog of [14, Lemma 2] for harmonic mappings.

Theorem 3.3. Suppose that F ∈ SH and f ∈ s(F ). If f does not belong to

EHs(F ) and f1 ≺ f , then f1 does not belong to EHs(F ).

The proof is similar to that of [14, Lemma 2]. Here we omit it.

References

[1] Y.Abu-Muhanna: On extreme points of subordination families. Proc. Amer. Math. Soc.
87 (1983), 439–443.

[2] Y.Abu-Muhanna and D. J. Hallenbeck: Subordination families and extreme points.
Trans. Amer. Math. Soc. 308 (1988), 83–89.

[3] N.A.Dihan: Some subordination results and coefficient estimates for certain classes of
analytic functions. Mathematica 49 (2007), 3–12.

[4] P.Duren: Theory of H
p Spaces. Academic Press, New York, San Francisco, London,

1970.
[5] P.Duren: Univalent Functions. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo,
1983.

154



[6] P.Duren: Harmonic Mappings in the Plane. Cambridge university Press, New York,
2004.

[7] D. J. Hallenbeck and K.T.Hallenbeck: Classes of analytic functions subordinate to con-
vex functions and extreme points. J. Math. Anal. Appl. 282 (2003), 792–800.

[8] D. J. Hallenbeck and T.H.Macgregor: Subordination and extreme-point theory. Pacific
J. Math. 50 (1974), 455–468.

[9] T.H.MacGregor: Applications of extreme-point theory to univalent functions. Michigan
Math. J. 19 (1972), 361–376.

[10] S.Muir: Weak subordination for convex univalent harmonic functions. J. Math. Anal.
Appl. 348 (2008), 862–871.

[11] J.V.Ryff: Subordinate H
p functions. Duke Math. J. 33 (1966), 347–354.

[12] L.E. Schaubroeck: Subordination of planar harmonic functions. Complex Variables 41
(2000), 163–178.

[13] H.M. Srivastava and E. Sevtap Sümer: Some applications of a subordination theorem
for a class of analytic functions. Appl. Math. Lett. 21 (2008), 394–399.
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