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SUBORDINATION RESULTS FOR SOME
SUBCLASSES OF ANALYTIC FUNCTIONS

R. M. EL-AsHawaH, M. K. AOUF, A. SHAMANDY, E. E. ALI, Mansoura

(Received April 6, 2010)

Abstract. We introduce two classes of analytic functions related to conic domains, using
a new linear multiplier Dziok-Srivastava operator D;L_'lq’s (ne€Ng={0,1,...}, ¢ <s+1;

q,s € Ng, 0 < a<1, A >0,!>0). Basic properties of these classes are studied, such as
coefficient bounds. Various known or new special cases of our results are also pointed out.
For these new function classes, we establish subordination theorems and also deduce some

corollaries of these results.
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1. INTRODUCTION

Let A denote the class of functions of the form:
(1.1) f(2) zz—l—Zakzk,
k=2

which are analytic in the open unit disc U = {z: z € C and |z| < 1}.
For functions f(z) € A given by (1.1) and g(z) € A defined by

g(z)=z+ Zbkzk,
k=2
the Hadamard product (or convolution) of f(z) and g(z) is given by
(f*9)(z) =2+ Y arbpz* = (9% f)(2) (2 €U).
k=2
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Given vy (0 < v < 1), a function f € A is said to be in the class of starlike functions
of order v in U, denoted by ST(v), if

Re{zjjég)}>'y (zelU, 0<y<1).

On the other hand, a function f € A is said to be in the class CV(y) of convex
functions of order v in U if

2f"(2)
f'(2)

In particular, the classes CV = CV(0) and ST = ST(0) are, respectively, the familiar
classes of convex and starlike functions in U.

R{l—i— }>'y (zeU, 0<y<1).

A function f € A is said to be in the class of uniformly convex functions of order
~ and type 3, denoted by UCV(3, ), see [10], if

o+ i) o)

where 5 >0, v € [-1,1) and 8+ > 0, and is said to be in the corresponding class
denoted by SP(4, ) if

2f'(2) 2f'(2)
Rl ey > ey
where 8 >0, v € [-1,1) and § ++v > 0.

It is obvious that f(z) € UCV(3,~) if and ouly if z f'(z) € SP(8, ). These classes
generalize various other classes. For 8 = 0, we get, respectively, the classes CV (%)
and ST(7y). The functions of the class UCV(1,0) = UCV are called uniformly convex
functions and were introduced by Goodman with geometric interpretation in [15].
The class SP(1,0) = SP is defined by Ronning in [29]. The classes UCV(1,v) =
UCV(v) and SP(1,v) = SP(y) are investigated by Ronning in [28]. For v = 0, the
classes UCV(f3,0) =  — UCV and SP(3,0) = 8 — SP are defined, respectively, by
Kanas and Wisniowska in [16] and [17].

Geometric interpretation ([1]). f € UCV(3,v) and f € SP(8,7) if and only
if 14 2f"(2)/f'(2) and zf'(2)/f(2), respectively, take all the values in the conic
domain Rg  which is included in the right half plane, such that

(1.2) Rgy={u+iv: u> B/ (u—1)2+0v2+~}.

Denote by o(Pg,) (6 2 0, —1 < < 1) the family of functions p such that p € g
and p < P34 in U, where ¢ denotes the well-known class of Carathléodory functions
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and the function Pg, maps the unit disc conformally onto the domain Rgs . such
that 1 € Rg . and ORg - is a curve defined by the equality

ORg . = {u+iv: v* = (Bv/(u—1)2 +v2 +7)?}.

From elementary computations we see that 0Rg -, represents the conic sections
symmetric about the real axis. Thus R, is an elliptic domain for 3 > 1, a parabolic
domain for 8 = 1, a hyperbolic domain for 0 < # < 1 and a right half plane u > ~
for g =0.

The functions which play the role of extremal functions of the class o(Pg,,) were
obtained in [1] as follows:

14 (1—2
+( v)z’ B0,
1—2z
2(1 — ) 1+vzY
1 1 =1
+ TE2 (Ogl_\/z’ ﬁ )
Lt 2 i\ 1EVEL By
(18) Pos(e) = § 1peosf (Beos 8)itos TEL - S0 0 <<,
1—~ - eV 1
B2 =1 2K(t) Jo V1—a2y1— 1222
B =
e 1
+ﬂ2_1) /8>7

where u(z) = (z —Vt)/(1 —V/tz), t € (0,1), z € U and t is chosen such that 3 =
cosh(nK'(t)/4K (t)), K(t) is Legendre’s complete elliptic integral of the first kind
and K'(t) is the complementary integral of K (t).

For 3 = 0 obviously Py (2) = 14+2(1—~)z+2(1—7)z%2+..., for 8 =1 (compare
[21] and [29]) P14(z) =1+ 87 %(1 —v)z + &n~2(1 —7)z% + ..., by comparing the
Taylor series expansion in [18] we get for 0 < 8 < 1

o 2 E S0 G

k=1 *l=

where B = 2n ! cos™! 3, and for 5 > 1

2(1 — ) X{ 4K2(t) (1% + 6t + 1) — 72 2+...}.

o) =14 i - DR + 0 2AVIRE()(1 +1)

For complex parameters

ai,...,oq and Gr,...,8s (B; ¢ Z, ={0,—-1,-2,...}; j=1,2,...,s)
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we now define the generalized hypergeometric function (Fs(a1,...,aq; Bi,- .., Bs; 2)
by (see, for example, [36, p. 30])
k

(1.4) JFo(aty g By B 2) Z ﬁg))k %

=0
(g <s+1; q,sENofNU{O}, N :{1,2,...}, zeU),
where (), is the Pochhammer symbol defined in terms of the Gamma function I'" by

(v =0; 0 € C\{0}),

r'@+v) 1
60 —1)...0+v—1) (reN; 0eC).

(15) (O =" =

Corresponding to the function h(aq,...,aq;01,...,0s;2) defined by

(1.6) hat,...,aq 81,05 2) = 2 ¢Fs(ax,...,aq 01,...,0s; ),

we consider a linear operator H (o, ...,aq;51,...,0s;2): A — A which is defined
by the following Hadamard product (or convolution):

(17) H(ala--'aaq;ﬁlw'-vﬁs;z)f(z) = h(alw"vaq;ﬁlw'wﬁs;z) *f(Z)

We observe that for a function f(z) of the form (1.1) we have

oo

, (a1)r-1---(ag)e—1 K
(L8) Aoyt B0 =0 G ), e ™
=z+ ka(al)akz ,
k=2
where ) )
. o1 )k—1 - (Qg)k—1
Tilon) = (B1)k—1- (ﬁe)k 1(Dg—1
For convenience, we write
(1.9) Hys(a1) =H(at,...,0q¢;81,---,0s)-

»q,S

We define the linear extended multiplier Dizok-Srivastava operator D" as fol-

lows:

(1.10) DY f(2) = f(2),
DYE* f(2) = (1= N Hys(01) £(2)
+ W(zl%s(m)ﬂz))’ (A= 01> 0),

DY° f(z) = DLI(DYE° £(2)),
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and (in general)
(1.11) DY f(z) = DYDY V" f(2)) (n€N).

If f is given by (1.1), then from (1.8) and (1.11) we see that

(1.12) DY f(z) =2+ Z B (a1, N, Darz®  (n € Np),
k=2
where
l+1+XEk—-1 n
(1.13) By (g, N 1) = [%Pk(al)} .

By virtue of (1.7) and (1.13), DY’"* f(2) can be written in terms of convolution as

(1.14) Dy f(2)
= [(h(al, ces O By B 2) 2 gag(2)) %
*(h(alv ceey O‘q;ﬂla ceey 68; Z) * g)\,l(z))] *f(z)a

n-times

where (z)_ (l+1)z—(l+1—)\)22 _Z—(1—>\/(l+1))22
gri(z) = I+ 1)1 =2) - (1—2)? .

By specializing the parameters q, s, a1, 51,1 and A, we obtain the following opera-

tors studied by various authors:

(i) Forg=2,s=1, a1 =2, aa =1, 01 =2—a (o« # 2,3,4,...) and | = 0,
we have D;Lf)’l (z) = DY f(2) (see Al-Oboudi and Al-Amoudi [3] and Aouf and
Mostafa [5]);

(i) Forg=2,s=1, a1 =a(a>0),as =1, 1 =c (¢ >0) and [ = 0, we have
Df\lglf(z) = I} . \f(2) (see Prajapat and Raina [26]);

(iii) For g = 2, s =1 and o = ag = 1 = 1, we have Dgfflf(z) =TI"(\1)f(2) (see
Catas [11]);

D;’glf(z) = DV f(z) (see Al-Oboudi [2]) and Df’g’lf(z) = D" f(z) (see Sala-
gean [32]);

(iv) Dé:g’s (2) = Hy s(0q) (see Dziok and Srivastava [13]).

Using the operator DY’/"°f(2), we define the following classes. Let UCVy'[*
(a1, B1;8,7) be the class of functions f € A satisfying

2Dy f(2))"

D9s "
Z( ALl f(z)) _’Y}>6 (D;L’lqgf,(z)),

(1.15) Re{l + Dr )

)
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where 32 0,v€[-1,1),64+~720,g<s+1,¢,5s€Ny, A>0,1>0andn € Ny.
Observe that DY'[° f(2) € UCV(8, ).

Let SPY'["*(u, B1; B, 7) be the corresponding class consisting of functions f(z) € A
satisfying

2Dy () 2Dy ()
DL I) DL
where 32 0,v€[-1,1), 64+720,g<s+1,¢,5s€Ny, A >0,1>0and n € Ny.

Observe that D'/"" f(2) € SP(3,7).
From (1.15) and (1.16) we have

(1.16) Re{ —7} >3 —1],

(117) f(Z) € UCV’;:?’S(QD 61; ﬂv 7) ~ Zf,(Z) € SPT;:?’S(QD 61; ﬂv 7);
and
UCVS\ZZ?’S(QD 61; ﬂv 7) - SPT;:?’S(QD 61; ﬂv 7)
Geometric interpretation. By virtue of (1.15) and (1.16), f(z) € UCVy[*
(ahﬁl; ﬁa’}/) and f(Z) € SPS\L:?’G (ahﬁl; ﬁa’y) if and Ol’lly if
(DY f(2)
Dy (z)

2Dy f(2))"

e

and p(z) =

respectively, take all values in the conic domain Rg ~ given in (1.2) which is included
in the right half plane. We may rewrite the conditions (1.15) and (1.16) in the form

(1.18) p < Pgy

where the functions Pg ., are given by (1.3).

By virtue of (1.15), (1.16) and by the properties of the domain Ps ., we have,

respectively,
Z(Dﬁ’zq’sf(z))”} B+
1.19 Red 1+ 2t =20 L > zeU),
(149 Ry ) 2 g CeY
and
Z(D?’?’Sf(Z))’} B+
1.20 R TS > el),
(1:20) { D) ) 1es C€Y
which means that
n S n S +

(1.21) f(z) € UGV (ay, B1; B,7) = DI f(2) € CV (i—g) cav,
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and
B+

F2) €SP (an, i ,) = DY (2) e ST (£

)gST.

We note that:

(i) SPY'¢" (a1, B B,7) = SP?*(n, A; B,7) (see Srivastava et al. [38]);

(i) SP;’_’g’l(Q, 1;2—a; 3,7) = SP, (B,7) (Al-Oboudi and Al-Amoudi [3] and Aouf
and Mostafa [4]);

(iii) SPé:g’s(al, 61;3,7) = SP?(a1;3,7) (see Aouf and Murugusundarmoor-
thy [6));

(iv) SP1 2, 1(a, 1;¢,8,7) = SP(a,¢; 8,7) (a > 0,c > 0) (see Murugusungaramoor-
thy and Magesh [24] and Frasin [14]);

(v) SP(l):(Q)’l((S +1,1;1; 8,7) = SP(6;8,7) (6 > —1) (see Rosy et al. [31]);

(vi) SP(l)f)’l(Z, 1,2 — ;8,7) = SP(i;8,7) (0 < p < 1) (see Srivastava and
Mishra [37]);

(vii) SP?”g’l(l, 1;1;8,7) = SP(n;08,7) (see Rosy and Murugusungaramoor-
thy [30]).

Also, we note that:

(i)

SPyat ([2,1;m + 1]; 8,7) = SP(m; 3,7)
2(Im f(2))' 2(Im f(2))'
= {f(z) € A: Re{ Inf(2) —'y} >6‘ Tnf(2) - 1],
1<y <1, B3>0, m>—1,zeU},

where I,,, is the Noor operator considered by Noor and Noor [25];
(i)
2(Lsuf(2)) )) Ls,uf(2))
= z) € A: Re > —— - ]
{f( ) { Iguf( ) } 6‘ Iguf Z)
—-1<v<1, 620, 5>—1,u>0,zeU},

where I5,, is the Choi-Saigo-Srivastava operator [12];
(iii)
SPyd (v + 1,150+ 2;8,7) = SP(v; 8,7)
2(Juf(2)) 2(Juf(2))
= A: _ _— -
{7z) € 4: Ref T, (2) 1}> 4 T
—1<v<1, 320, v>—1, zeU},

)

where J, (v > —1) is the generalized Bernardi-Libera-Livingston operator ([9], [19]
and [20]);
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SPK:?’l(u,l;Ml;ﬂ,v):SP';l(u,aH-g, ")

(I (2)) 5
- < o LT o} T
0

—1<9<, =20, A20,1> 0,u>0,5>—1,neN0,zeU},

)

where

n
:| akzk;

I+14+AMk—1) (k-
In,ué
M +Z[ I+1 0+ 1)1

(v)
SPYP (6 +1,a,¢:8,7) = SPY (0 + 1,a,¢;8,7)
(I3 (a,0) f(2))' s 5‘z<12,’l°‘<a,c>f<z>>/
I (a,0)f () I (a,¢) f(2)
1<y <1, 820,220,120, 6>0, a>0, ¢>0, neNo, zeU},

:{f(z)eA: Re{ _1‘,

where
n,8 l+1+/\ ) (a)k_1(6+1)k_1 n .
IA,l (a, =z 4+ Z { 1 O } aipz";
(vi)
SPY 2 ([2, 1m + 1]; ,7) = SPY(2,m + 15 5, >
(L") " (z))’
= AZ - LIRS |
—1<y<1, 820,220,120, m>—1, neNo,zeU},
where
mm ) = 1A —1) (s 1t
I)\7 - Z|: 1+1 (m+1)k_1:| ARz,
(vii)

SPYP (v + 1, 1w + 25 8,7) = SP, (1 5,7)

(I3 f(2) AL )
:{f(z)GAI Re{W } 5‘%

—1<’y<1,6>0,/\>O,Z>O,u>—1,nel\lo,zeU},

_1‘,
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where

I+ 14+ Mk 1qm
J;\Lly Z[-i— + -v+ K

P 1+1 V+ki| Ak

In this paper we establish subordination results for the associated classes SP"’q’

(a1, B1;8,7) and UCVZ:?’ (a1, 15 8,7) in U whose coefficients satisfy (2.9) and
(2.10), respectively (defined below). Some consequences of the subordination results
are mentioned in the concluding section.

Before we state and prove our main results we need the following definitions and
lemmas.

Definition 1. Let g(z) be analytic and univalent in U. If f(z) is analytic in U,
£(0) = ¢(0) and f(U) C g(U), then we say that the function f(z) is subordinate to
g(z) in U and we write f(z) < g(2), see [8], [22] and [23].

Definition 2. A sequence {by},- ; of complex numbers is called a subordinating
factor sequence if, whenever f(z)of the form (1.1) is analytic, univalent and convex
in U, we have the subordination given by

(1.22) > apbret < f(2) (2 €U, =1).

Lemma 1 [39]. The sequence {by},- , is a subordinating factor sequence if and
only if

(1.23) Re {1 + 2ibkzk} >0 (zel).
k=1

Lemma 2 [Rogosinski’s Theorem, 27]. Let h(z) = 1+ 3. c¢2* be subordinate to
k=1

H(z)=1+ kzl Crz® in U. If H(2) is univalent in U and H(U) is convex, then

lexl < [Cul, k> 1.
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2. COEFFICIENT BOUNDS

Unless otherwise mentioned we shall assume throughout the paper that —1 < v <
1,820,6+v20,¢g<s+1;q,5€Ny, A>0,1>0,n¢eNy, a,...,aq and
0B1,.-.,0s are positive and real.

In this section we give bounds for the coefficients of series expansions of functions
belonging to the classes SPY'["* (1, B1; 8,7) and UCVY* (a1, B1; 3,7), and sufficient
conditions for a function to belong to these classes.

Taking into account the fundamental relation

2D fo.4(2))
D1 fo.4(2)

(2.1) Ppq(2) =

between the extremal functions in the class o(Pg ) and the extremal functions fg .
of the class SP}'/"* (a1, f1; 8,7) and in view of (1.12) and (2.1), we have for P, (2) =
1+ Piz+ ... which is defined in (1.3) and for

(2.2) for(2) =2+ Ag2® + ...

a coefficient relation

k—1
(k= DA@pn(on, M) =Y P jA;i®n(an, A1), Ay =1

j=1
In particular, by a straightforward computation we obtain

1

= 7}’ M
Dy (o, A1)

(2.3) Ay

observe also that the coefficients Ay are nonnegative, since ®5 (a1, A, 1) > 0 and Py
are nonnegative.

As simple consequences of the above and the result given in [17], we give the sharp
bound on the second coefficient for functions of the class SPy"/"* (a1, B1; B, 7).

Theorem 1. If a function f(z) of the form (1.1) is in SPY'"* (a1, 81; 3,7), then

|a2| < AQ.
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Theorem 2. If a function f(z) of the form (1.1) is in SPY'"* (a1, 81; 3,7), then

1 (P1)k—1
24) S Gt D M P
where
8(1 —7)(cos™! B)?
TEQ(].—ﬂQ) ’ 0<ﬁ<17
(1 —7)
wiE ka0 "

Proof. Let f(z) defined by (1.1) be in the class SPY/"* (a1, B1; 8, 7). By (1.18),

we obtain o
(DY f(2))

7%137 Z)
I TE R

Define .
R 1C)
q('z) = : KK =1+ Cpz .
Dy () 2

The function Ps ., is univalent in U and Pj(U), the conic domain, is a convex
domain. Then by using Lemma 2 we have

(26) |Ck| < Pl, k = ].,
where P, = Pi(f3,7) is given by (2.5). Now writing
2(D3°f(2)) = q(2) (DX f(2))

and comparing the coefficients at z* on both sides, we get

k—1
(2.7) (k= Dag®rn(ar, 1) =Y cr—ja;®n(an, A1),  ap =1
j=1
From (2.7) we get
ag] = ————— o1 < —
P By (o N D) S By (e, N D)
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So the result is true for £ = 2. Let k > 2 and assume that the inequality (2.4) is
true for all j < k — 1. By using (2.6), (2.7) and applying the induction hypothesis
to |a;| we get

k
1
R e e LR Z|ck_j||aj|¢j,n<a1,x,1>]
n ) =
k—1
< P [1+ (Pl)j1:|
(k—l)@k,n(al,)\,l) = (1)j_1

By applying mathematical induction one more time, we find that

W‘
H

— (P1)j-1 (1+P1)(2+P2)~~~((k—2)+P1).

Ml m s T (k—2)!

J

||
v

Thus we get the inequality (2.4).
Applying (1.17), we observe that the extremal function of UCV b (ax, Br; By ),
denoted by Fj ~(z), is given by

(2.8) Fs-( / J25(8) 4¢.
where fg ,(2) is given by (2.2). By (2.3), for
Fs(2) =2+ Ba2® + ...

we get

1
By=—— P
27 20y (an, A0

Applying relation (1.17), we can prove the following two corollaries.

Corollary 1. Ifa function f(z) of the form (1.1) is in UCVY'["*(u, B1; B, 7), then

|a2| < BQ.
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Corollary 2. Ifa function f(z) of the form (1.1) is in UCVY'["*(u, B1; B, 7), then

1 (P1)k—1
ag| <
N S W R TI

)

where Py = Py (3,7) is given by (2.5).
Remark 1. The results of Theorem 2 and Corollary 1 are sharp for £k = 2 or

8 =0.
Remark 2. Puttingg=2,s=1, 01 =2, e =1, 01 =2—a (« # 2,3,4,...)
and ! = 0 in Theorem 2, we obtain the result obtained by Al-Oboudi and Al-Amoudi

[3, Theorem 4].

Now we obtain a sufficient condition for f to be in the class SPY* (a1, 815 8, 7).

Theorem 3. A function f(z) of the form (1.1) is in SP;L:?’S(al,Bl;B, v) if

(2.9) DR+ B) = (B+7)] @rnlan, A1) ax] <1 -7,
k=2

where @y, , (a1, A\, 1) is defined by (1.13).

Proof. It suffices to show that
2(DYT8 F(2)) 2(DYT8 F(2))
E L I (L S

Dy f(z) DY f(2)
We have
(DR f(2)) ‘ { 2DRFR) }
S e I WX T
ADYFR)
DR I T
(14 8) 3 (k = 1)@ (e, A, 1)ax] |25
< =2
1= ®pp(ar, N\ )|agl|z])F1
k=2
(14 8) 3 (k= D)@k n(or, A1) lax]
< h=2
1-— Z ¢k7n(a1,A,l) |ak|
k=2

The last expression is bounded above by (1 — ) if (2.9) is satisfied.

By virtue of (1.17) and Theorem 3 we have
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Corollary 3. A function f(2) of the form (1.1) is in UCVY'["*(au, f1; 3,7) if

(2.10) D k[EQ+B) = (B+ )] rnlon, A1) |ak| <1 —1.

k=2

Remark 3. Puttingg=2,s=1, a1 =2, =1, /1 =2 —«a (a #2,3,4,...)
and [ = 0 in Theorem 3 and Corollary 3 we obtain the results obtained by Al-Oboudi
and Al-Amoudi [3, Theorem 3.3 and Corollary 3.3, respectively].

3. SUBORDINATION RESULTS

Employing the techniques used earlier by Attiya [7], Srivastava and Attiya [35],
and Singh [34], we state and prove the following theorem.

Theorem 4. Let f(z) € A defined by (1.1) be in the class /S\P;L:?’S(oq,ﬁl;ﬁ,’y).
Then

[2(1 + ﬂ) — (6 + 7)] @2,71(051; Avl)

(3.1) 2{2(1+8) = (B+ V] Pon(aa, A1) + (1 =)}

(f xp)(2) < p(2)
(z e U;p € CV),

and

21+ 8) = B+ Ponla, A\ D)+ (1—7)
2(148) = (B +7)] Ponlai, A1)

[2(14+8) = (B+M]P2.n (@1,M,)
2{[2(14+8) = (B+7)]®2,n (o1, \,[)+(1—7)}

(3.2)  Re{f(x)}>— (z € V).

is the best estimate.

The constant

Proof. Let f(z) € §PZ:?’S(Q1,51;B, 7), and let p(2) = z + > c2* be any
k=2
function in the class CV. Then

201+ B) = (B4 7)] Pa.n (a1, A1) o
2R+ ) — (Bt )] Banlar, M D) + (=7~ )

2(14 8) — (B+7)] Po,n(a1, A1)
2{2(1+ B) — (B+ 7] Pan(ar, A1) + (1 — <+Z>

(3.3)

Thus, by Definition 2, the assertion of the theorem will hold if the sequence

o0

{ 2(148) = (B+7)] Panlar, Al) u }
2{2(1+B) — (B+ )] Pzn(ar, 1) + (1 —7)} " Ja=

(3.4)
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is a subordination factor sequence, with a; = 1. In view of Lemma 1, this is equiva-
lent to

- [2(1 + 6) — (ﬁ + 7)] @QW(O‘M)"Z) k
(3.5) Re{1+; B+ )= (G )] Fanlon A1) £ (7)™ }>0 (z€U).

Now

oo

[2(1 + 6) — (ﬁ + 7)] (I>27n(0‘1a /\7l) k
Re{”; 2L+ ) = (B+ )] anlan, AD) + (L—7) }
e 2(1+8) = (B+1)] P2nlorAD)
1
TRATH) — B Panlar A (1 7)

x S [201+8) — (B+7)] ¢k,n<a1,x,l>akzk}
k=2

2(148) = B+ Pam(aa, A1)

2+ 8)— (B+ )] Penlar, M)+ (L-7)
1
T 20+ 8) = (B+7)] Pan(a, A1) + (1 —7)
XZ 1+6 ﬂ+7)]q)k,n(a1a>‘vl)|ak|rk
k=2
R (R R G L RACT )

21+ 8) = (B+ )] Panlan, M)+ (1—7)
B (1-7)

201+ 8) — (B+7)] ®znlan, A1) + (1 —7)
=1-r>0 (]z]=r).

r

Thus (3.5) holds true in U. The proof of (3.1), (3.2) follows by taking ¢(z) =
z/(1—z) in (3.1).
Now we consider the function fo(z) € S\P?L:?’S(al, b1, 5,7) given by

(1-9) 2

B6) o) = G T () Bamtan D)

(-1<y<1; 620)

which is a member of the class gP;f:f’S(al, B1;8,7). By using (3.1), we have

20 +8) = (B+7)] Panlar, A1) P

G R+ - BN Faman D+ 1= T2
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It can be easily verified that
(3.8)

| 201+ 5) = (84 7] Ban(ar, ), D) N
i Re | BT (7 B a3 T )] =3 e

[2(148) = (B+N]P2.n (a1,A,1)
1+B8) = (B+7)]P2,n (a1, A\ D) +(1—7)}
This completes the proof of Theorem 4.

hence the constant 5 el

is the best possible.

Remark 4. (i) Puttingg=2,s=1, 01 =2, a0 =1, 01 =2—a (a # 2,3,4,...)
and ! = 0 in Theorem 4, we obtain the result obtained by Aouf and Mostafa [5,
Theorem 2.4].

(ii) Putting g =2, s =1, a1 =a (@ >0),as =1, 61 =c(¢c>0)and l =0 in
Theorem 4, we obtain the result obtained by Prajapat and Raina [26 Theorem 1].

(iii) Putting g =2,s =1, a1 =a (a>0),a2=1,61=c(¢c>0)and I = A =01in
Theorem 4, we obtain the result obtained by Frasin [14, Theorem 2.1].

Similarly, by using (1.17) and Theorem 4 we can prove the following corollary.

Corollary 4. Let f(z) € A defined by (1.1) be in the class GCV?:?’S(al, B1; 8,7)-
Then

2(148) = (B+ )] Pon(a1, A1)

B9 BRI+ =B+ Bam(an M)+ L))

(f*)(z) < 0(2)
(z e U;p e CV),

and

[2(1 + 6) — (ﬂ + 7)] (I)2,n(a17>\al) + (1 — 7)
2[2(1 + 8) — (B + )] 2.n(a1, A1)

(310)  Re{f(2)} > -2 (= U).

[2(1+ﬁ)7(5+7)]q’2,'rt(0‘1:)‘7[)
2(1+8) = (B+7)]@2,n (a1, XD +(1—7)}

The constant ol is the best estimate.

Also, we establish subordination results for the associated subclasses §P(m; B8,7),
§P(u, 5;8,7), gP(V;B, v), /S\Pf\LJ(,u, 0+1;8,7), /S\le(é—i— 1,a,c¢; B,7), /S\P§7l(2, m+1;
B,7) and §Pf\b7l(u;ﬁ, ) whose coefficients satisfy (2.9) or (2.10), in the special cases
as mentioned above.

Putting A=1=0,n=1,¢=2,s=1, a1 =2, aa=1land Sy =m+1 (m > —1)
in Theorem 4, we obtain the following corollary.
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Corollary 5. Let f(z) € A defined by (1.1) be in the class §P(m;ﬂ,'y). Then

2(1+8) = B+ mf(2)
2{(1+8) = B+ mf(z) + (1 =)}

(3.11) (f*x9)(2) < p(z) (z € Us;p € CV),

and
2+ 8) = B+ Inf(z) + (1 —7)
21+ 08) = (B+ N Inf(2)

2(1+8)—=(B+V)Im f(2)
2{[2(1+3) = (B+7)m f(2)+(1-7)}

Re{f(2)} > - (z € ).

The constant is the best estimate.

Putting A=1=0,n=1,¢g=2,s=1, a1 =p (u>0),ac =1land 1 =6 +1
(6 > —1) in Theorem 4, we obtain the following corollary.

Corollary 6. Let f(z) € A defined by (1.1) be in the class SP (u,; 3,7). Then

20 +8) = B+ suf(2)
2{20+8) = B+ Luf(z) + (1 =)}

(3.12) (f x)(2) < p(2)

(z e U;p e CV),
and

20+8) - B+ Luf(z)+ 1 =7)
200+ 8) = (B+ V] Lsuf(2)

Re{f(2)} > - (z €U).

[2(1+8)=(B+2)L5,. f (2) ; :
The constant 2{[2(1+,3)7(ﬁ+v)]ls,“;(2)+(177)} is the best estimate.

Putting A=1=0,n=1,¢=2,s=1, a1 =v+1,ac =1and f; = v +2
(v > —1) in Theorem 4, we obtain the following corollary.

Corollary 7. Let f(z) € A defined by (1.1) be in the class SP(v; 3,7). Then

2(+8) - B+ f(2)
2{R20+8) - B+ f(z)+ (1 =)}

(3.13) (f+xp)(2) < p(2) (z € U;p € CV),

and
20 +8) - B+ f(z)+(1—7)
21+ 8) = B+ I f(2)

[2(1+8) =B+ ] f(2) ; ;
The constant 2{[2(1+,3)7(ﬁ+v)]],/f(2)+(177)} is the best estimate.

Re{f(2)} > — (z €U).

Putting ¢ = 2, s =1, a1 = p (g >0), ag =1land By =6+1 (0 > —1) in
Theorem 4, we obtain the following corollary.
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Corollary 8. Let f(z) € A defined by (1.1) be in the class S\PK’Z (1,0 + 1; 8,7).
Then

(3.14)

21+ 8) — (B+NIHF> 5 N
2{[2(1+ 8) — (8 + )][BER2 #]nﬂl_m(f ©)(2) < ©(2)

(z € U;p € CV),

and
201+ 8) - (B+I[EE2 5" + (1 - )
2(1+ 8) — (B + )| [EE2 555

n

= is the best estimate.

Re{f(2)} > -

[2048)—(B+][ 25 1 5
2{21+8)- B+ FR2 24T +(

The constant

Putting g =2,s=1, 01 =6+1 (6§ >0), e =a (a >0) and 81 =c (¢ > 0) in
Theorem 4, we obtain the following corollary.

Corollary 9. Let f(z) € A defined by (1.1) be in the class §Pf\b7l (0+1,a,¢;8,7).
Then

2(1+ B) — (B + 7)][LEAE2 a0t
2{[2(1+ B) — (B + )] FE2 el n 4 (1 — 4}

(3.15) (f xp)(2) < p(2)

(z € U;p € CV),

and

2(1 + B) — (B +)][ A2 20D n 4 (1 — )

zeU,).
R+ )~ o+ EER T )

Re{f(2)} > -

[2(148) (B[ H2 =]

{205 — (B[ 2 (1)) is the best estimate.

The constant

Putting g =2,s=1, 01 =2, s =1l and 4 =m+1 (m > —1) in Theorem 4, we
obtain the following corollary.

Corollary 10. Let f(z) € A defined by (1.1) be in the class /S\ng’l (2,m+1; 8,7).
Then

201+ 8) = B+ H wm )"
2{200+8) = (B+H ] + =)}

(3.16) (fx9)(2) < ¢(2)

(z e U;p € CV),
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and
2(1+8) — (B+ V[ 251"+ (1 —7)

2(1+ ﬁ) - (ﬁ + NI I

[2(1+8)— (B+7)] [ =
2{2(1+8)— (B+7)] [lﬁ? =) +

Re{f(z)} > -

(z €U).

The constant

=7 is the best estimate.

Putting¢g=2,s=1, a1 =v+1,as =1 and f; =v+2 (v > —1) in Theorem 4,
we obtain the following corollary.

Corollary 11. Let f(z) € A defined by (1.1) be in the class /S\ng’l (v; B,7). Then

2(1+ 8) — (B +7)][HAFR2 L
2{2(1+8) — B+ EF2 L+ (1 - )}

(3.17) (f *9)(2) < »(2)

(z € U;p € CV),

and
2(1+5) — (B +IEA2 23" + (1 - 7)
2(1+5) — (B + N5 S
20+8)— (B[ 3> ¥45]"
H{RO+8) -G+ T + 0=
Remark 5. (i) Putting =0, n=1,A=1=0,¢=2,s=1and a1 = ay =
B1 = 1 in Theorem 4, we obtain the result obtained by Prajapat and Raina [26,
Corollary 3].
(ii) Puttingy=6=0,n=1,A=1=0,g=2,s=1landag =ae =1 =1 in
Theorem 4, we obtain the result obtained by Singh [33, Corollary 2.2].

Re{f(2)} > -

(z€U).

The constant

T is the best estimate.
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