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KYB ERNET IK A — VO LUME 4 7 ( 2 0 1 1 ) , NUMBER 6 , PAGES 8 1 4 – 8 3 9

RANDOMIZED GOODNESS OF FIT TESTS

F. Liese and B. Liu

Classical goodness of fit tests are no longer asymptotically distributional free if param-
eters are estimated. For a parametric model and the maximum likelihood estimator the
empirical processes with estimated parameters is asymptotically transformed into a time
transformed Brownian bridge by adding an independent Gaussian process that is suitably
constructed. This randomization makes the classical tests distributional free. The power
under local alternatives is investigated. Computer simulations compare the randomized
Cramér–von Mises test with tests specially designed for location-scale families, such as the
Shapiro–Wilk and the Shenton–Bowman test for normality and with the Epps–Pulley test
for exponentiality.

Keywords: goodness of fit tests with estimated parameters, Kolmogorov–Smirnov test,
Cramér–von Mises test, randomization

Classification: 64E17, 62E20

1. INTRODUCTION

Classical goodness of fit tests for the simple null hypothesis H0 : F = F0 versus the
alternative HA : F 6= F0 are based on suitable functionals of the empirical process
Gn =

√
n(F̂n − F0) where

F̂n(t) =
1
n

∑n

i=1
I(−∞,t](Xi)

is the empirical distribution function. If a functional of Gn is invariant under time
transformation then the distribution of the resulting test statistic does not depend
on F0 under the null hypothesis. Examples are the Kolmogorov–Smirnov and the
Cramér–von Mises statistic. A principal component analysis of the power of the
Cramér–von Mises test under local alternatives can be obtained from the Kac–
Siegert decomposition of the Brownian bridge.

The case of a simple null hypothesis is atypical in applications. In order to test
whether the sample X1, . . . , Xn originates from the parametric model (Fθ)θ∈Θ a
consistent estimator θ̂n is plugged in Fθ and the Kolmogorov–Smirnov, the Cramér–
von Mises statistic or other functionals are applied to the estimated empirical process

Ĝn =
√

n(F̂n − Fbθn
).
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Durbin [5] and [6] was the first to show that Ĝn tends in distribution to some centered
Gaussian process Zθ with a covariance function Kθ = cov(Zθ(s), Zθ(t)) that depends
on the unknown θ. This implies that the classical goodness of fit tests are no longer
asymptotically distributional free, the critical values for the tests are unknown and
depend on the unknown θ. For a location-scale model 1

σ f((t− µ)/σ) the covariance
function Kθ, θ = (µ, σ) satisfies

Kθ(s, t) = K0,1

(
s− µ

σ
,
t− µ

σ

)
.

This invariance property implies that the asymptotic quantiles of the Kolmogorov–
Smirnov and the Cramér–von Mises statistics depend only on the parent density f
but not on the concrete value of θ = (µ, σ). For special location-scale families the
corresponding critical values were obtained by numerical methods and simulations,
see [4] and [15] for details and an overview. Using these critical values one easily
obtains an asymptotic goodness of fit test.

A principal component analysis of the power of goodness of fit tests with param-
eters estimated is impossible, in general, as the eigenfunctions and eigenvalues of
K0,1 can be obtained by numerical methods only, see [15], p. 236.

Outside of the class of location-scale models the asymptotic quantiles of the
Cramér–von Mises statistic and the Kolmogorov–Smirnov statistic depend directly
on the unknown parameter and the tests are even not asymptotically distributional
free if the null hypothesis is a special parametrized family. As a way out bootstrap
techniques can be applied. For details and simulation results we refer to [7, 18, 19]
and the references therein. The general message is that bootstrap methods work well
under the null hypothesis. But there is no systematic method to study the power
under local alternatives.

A breakthrough was achieved by Khmaladze [10] who constructed a kernelKθ(t, τ)
that transforms the estimated empirical process Ĝn =

√
n(F̂n−Fbθn

) into the Wiener
process. This transformation makes the classical goodness of fit tests asymptotically
distributional free and provides, on the other side, a principal component analysis of
the power where the known eigenfunctions and eigenvalues of the covariance function
of the Wiener process are employed. The difficulty in applications is that Kθ(t, τ)
depends in a convoluted manner on the score function of the model and can be
evaluated numerically only. Explicit expressions for Kθ(t, τ) are obtained in [8] for
the family of exponential distributions. Even for the family of normal distributions
the kernel Kθ(t, τ) can not be evaluated in a closed manner.

To overcome the above mentioned difficulties we use the MLE θ̂n and introduce
a randomization of Ĝn by adding a suitably constructed centered Gaussian process
Rn,θ that is independent of Ĝn. The background for this new transformation is
that the covariance function of Ĝn is asymptotically not larger than the covariance
function of a time transformed Brownian bridge. One of the main results of this
paper is that Ĝn + Rn,θ and Ĝn + Rn,bθn

tend in distribution to B(Fθ), where B
denotes the Brownian bridge.

To study the asymptotic power of the tests we consider local alternatives Pn /∈
(Pθ)θ∈Θ for which the sequence {P⊗n

n } is contiguous with respect to {P⊗n
θ } and has
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the tangent a, where θ ∈ Θ ist the true parameter. We show that Ĝn + Rn,bθn
tends

under P⊗n
n in distribution to

B(Fθ) +
∫

I(−∞,·)(s)(Π⊥θ a)(s)Pθ(ds), (1)

where Π⊥θ a is the projection of a on the orthogonal complement of the tangent space
of the model (Pθ)θ∈Θ at θ. The application of the principal component decomposition
of the Brownian bridge to (1) gives an asymptotic approximation for the power of the
Cramér–von Mises test if the observed data deviate from the model in the direction a.
This means that for a given model we can find the directions for which the Cramér–
von Mises test has good power, for which the power is medium and directions for
which the power is poor.

In the last section we check the actual size of selected randomized goodness of
fit tests by computer simulations. Finally, we compare the power of the randomized
Cramér–von Mises test for the family of normal distributions and for the family
of exponential distributions with tests that are specially designed for these special
location-scale models. The general conclusion is that these tests have a better per-
formance than our new randomized tests but the difference of the power functions
is not big. This result is easy to explain. The new principle of making goodness of
fit tests distributional free is universal and applicable to any parameterized model.
Therefore these new tests will hardly achieve or even extend the power of tests that
are tailor made for location-scale models.

2. EMPIRICAL DISTRIBUTION FUNCTIONS
WITH ESTIMATED PARAMETERS

For i.i.d. X1, X2, . . . with common distribution function F we denote by

F̂n(t) =
1
n

∑n

i=1
I(−∞,t](Xi) and Gn =

√
n(F̂n − F )

the empirical distribution function and the empirical process, respectively. Gn is a
random element of the Skorokhod space D[−∞,∞] that is equipped with the uniform
metric and the σ-algebra B generated by the balls or, equivalently, by the coordinate
projections. The Donsker theorem, see [13], p. 97, originally proved for D[0, 1], states

L(Gn) ⇒ L(B(F )), (2)

where ⇒ is the symbol for weak convergence, i. e. Eϕ(Gn) → Eϕ(B(F )) for every
bounded and continuous function that is B-measurable. B denotes the Brownian
bridge on [0, 1] that is a centered continuous Gaussian process with covariance func-
tion

E(B(s)B(t)) = s ∧ t− st.

Classical goodness of fit tests for the simple null hypothesis H0 : F = F0 versus the
alternative HA : F 6= F0 are based on functionals of Gn. Introduce the Kolmogorov–
Smirnov and the Cramér–von Mises statistic, respectively, by

Kn = supt |Gn(t)| and Cn =
∫

G2
n(t) dF̂n(t).
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If F is continuous then the relation (2) implies

L(Kn) ⇒ L
(

sup
−∞≤t≤∞

|B(F (t))|) = L( sup
0≤s≤1

|B(s)|
)

= K, (3)

L(Cn) ⇒ L
(∫

B2(F (t)) dF (t)
)

= L
(∫ 1

0

B2(s) ds

)
= C. (4)

The distributions K and C are well known and have the distribution functions

K([0, x]) = 1− 2
∑∞

k=1
(−1)k+1 exp{−2k2x2},

C([0, x]) = P

(∑∞

k=1

1
(kπ)2

Z2
k ≤ x

)
,

where the Z1, Z2, . . . are i.i.d. standard normal. We denote by k1−α and c1−α

the 1 − α quantile of the Kolmogorov distribution K and the Cramér–von Mises
distribution C, respectively. Based on the statistics Kn and Cn the Kolmogorov–
Smirnov test and the Cramér–von Mises test are defined by

ϕKn = I[k1−α,∞)(Kn) and ϕCn = I[c1−α,∞)(Cn).

These tests are asymptotic level α tests by construction. Unfortunately, in statistical
applications the case of a simple null hypothesis is unusual. Instead, one is often
faced with the problem to test whether the common distribution of the i.i.d. sample
X1, . . . , Xn originates from the model (Pθ)θ∈Θ,Θ ⊆ Rd, or not. To this end one
sets Fθ(t) = Pθ((−∞, t]) and compares the empirical distribution function F̂n with
the estimation obtained by plugging in an estimator θ̂n into Fθ. This leads to the
estimated empirical process Ĝn =

√
n(F̂n − Fbθn

). The asymptotic distribution of

Ĝn has been established by many authors starting with [5] and [6]. The results
of different authors differ in the type of regularity conditions that are necessary to
make a suitable Taylor expansion, see [15], Section 5.5. Our approach follows [7]
and [20]. We assume that θ̂n admits a first order Taylor expansion in the sense that
there exists a measurable function hθ : R → Rd such that

√
n(θ̂n(X1, . . . , Xn)− θ) =

1√
n

∑n

i=1
hθ(Xi) + oP (1), (5)

Eθ ‖hθ(X1)‖2 < ∞, Eθhθ(X1) = 0, (6)

J(θ) := Eθhθ(X1)hT
θ (X1).

Here ‖x‖ denotes the Euclidean norm of the column vector x and the superscript
T is the symbol for transposition. We suppose that for every θ0 ∈ Θ there is a
neighborhood U(θ0) ⊆ Θ such that for every t ∈ [−∞,∞] the function θ 7−→ Fθ(t),
θ ∈ U(θ0) is differentiable and set

Ḟθ(t) =
(

∂

∂θ1
Fθ(t), . . . ,

∂

∂θd
Fθ(t)

)T

.
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Furthermore, we suppose that

Ḟθ(t) is a continuous function on U(θ0)× [−∞,∞], (7)

sup
t∈[−∞,∞],θ∈U(θ0)

|Fθ+h(t)− Fθ(t)− ḞT
θ (t)h| = o(‖h‖) as h → 0,

The next version of Durbin’s Theorem was proved in [7] and [20].

Theorem 2.1. Under the assumptions (5), (6) and (7) it holds

sup
t

∣∣∣Ĝn(t)− n−1/2
∑n

i=1
(I(−∞,t](Xi)− Fθ(t)− ḞT

θ (t)hθ(Xi))
∣∣∣ = oP⊗n(1) (8)

and L(Ĝn) ⇒ L(Zθ), where Zθ is a centered and continuous Gaussian process with
covariance function

cov(Zθ(s), Zθ(t)) = Fθ(s ∧ t)− Fθ(s)Fθ(t) + ḞT
θ (s)J(θ)Ḟθ(t) (9)

−ḞT
θ (s)Ehθ(X1)I(−∞,t](X1)− ḞT

θ (t)Ehθ(X1)I(−∞,s](X1)

for every s, t ∈ [−∞,∞].

We analyze the covariance function in the case if θ̂n is the maximum likelihood
estimator (MLE). To this end it is supposed that the family (Pθ)θ∈Θ is dominated
by a σ-finite measure µ that is atomless. Denote by fθ = dPθ/dµ, θ ∈ Θ, the
corresponding densities. As µ is atomless the distribution functions

Fθ(t) =
∫

I(−∞,t](s)fθ(s)µ(ds), θ ∈ Θ, (10)

are continuous in t. We impose the following conditions on the densities

fθ(x) =
dPθ

dµ
(x) > 0 µ-a.s. and θ ∈ Θ,

θ 7→ fθ (x) is continuously differentiable for every x,∫ ∥∥∥ḟθ(x)
∥∥∥2 1

fθ(x)
µ(dx) < ∞,

θ 7→ I(θ) =
∫

ḟθ(x)ḟT
θ (x)

1
fθ(x)

µ(dx) is continuous,

det(I(θ)) 6= 0 for every θ ∈ Θ,∫
I(−∞,t](x)ḟθ(x)µ(dx) = Ḟθ(t), −∞ < t < ∞,

(11)

where ḟθ := ( ∂
∂θ1

fθ, . . . ,
∂

∂θd
fθ)T . The last condition in (11) means that one may

interchange the derivative with respect to θ and the integral with respect to s in
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(10). Moreover, I(θ) is the Fisher information matrix. If (11) is fulfilled then under
weak additional conditions the MLE θ̂n satisfies (5) with

hθ = I−1(θ)l̇θ where l̇θ = (l̇1,θ, . . . , l̇d,θ)T :=
1
fθ

ḟθ. (12)

Moreover, the function hθ = I−1(θ)l̇θ satisfies (6) so that especially∫
l̇θ dPθ = 0, (13)

see e. g. Theorem 1.117 and Proposition 1.110 in [11].
We calculate the covariance function in Theorem 2.1 if θ̂n is the MLE. It holds

ḞT
θ (t)Ehθ(X1)I(−∞,t](X1)

= ḞT
θ (t)

∫
I(−∞,t](x)I−1(θ)

ḟθ(x)
fθ(x)

fθ(x)µ(dx)

= ḞT
θ (t)I−1(θ)

∫
I(−∞,t](x)ḟθ(x)µ(dx)

= ḞT
θ (t)I−1(θ)Ḟθ(t), (14)

where the last equality follows from the last condition in (11). This means that the
covariance function in (9) turns into

cov(Zθ(s), Zθ(t)) = Fθ(s ∧ t)− Fθ(s)Fθ(t)− ḞT
θ (t)I−1(θ)Ḟθ(s). (15)

Corollary 2.2. Suppose that the conditions in (11) are satisfied and the MLE θ̂n

satisfies (5) with hθ = I−1(θ)l̇θ. If (7) holds and the MLE θ̂n is used to construct
the estimated empirical process Ĝn then L(Ĝn) ⇒ L(Zθ), where Zθ is a centered
and continuous Gaussian process whose covariance function is given in (15).

Example 2.3. Let N(µ, σ2) be the normal distribution with unknown expectation µ
and variance σ2. Let Φ and ϕ be the distributions function and the density of N(0, 1),
respectively. Then Pθ = N(µ, σ2), θ = (µ, σ2), µ ∈ R, σ2 > 0, Fθ (t) = Φ

(
t−µ
σ

)
and

Ḟθ (t) =
(

∂

∂µ
Φ
(

t− µ

σ

)
,

∂

∂σ2
Φ
(

t− µ

σ

))T

=
(
− 1

σ
ϕ

(
t− µ

σ

)
,− t− µ

2σ3
ϕ

(
t− µ

σ

))T

.

All assumptions in Corollary 2.2 are fulfilled. The MLE and the empirical process
with estimated parameters are

θ̂n = (Xn, S2
n)T , and S2

n =
1
n

∑n

i=1
(Xi −Xn)2

Ĝn (t) =
√

n

(
F̂n(t)− Φ

(
t−Xn

Sn

))
.
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Finally, ∑
=
(

σ2 0
0 2σ4

)
= I−1(θ).

is the inverse of the Fisher information matrix and the covariance function in (15)
is given by

cov(Zµ,σ2(s), Zµ,σ2(t)) = Φ
(

s ∧ t− µ

σ

)
− Φ

(
s− µ

σ

)
Φ
(

t− µ

σ

)
− ϕ

(
s− µ

σ

)
ϕ

(
t− µ

σ

)
− (s− µ)(t− µ)

2σ2
ϕ

(
s− µ

σ

)
ϕ

(
t− µ

σ

)
.

Example 2.4. Let Gλ, λ > 0, be the family of exponential distributions with pa-
rameter λ > 0

Gλ (t) = I[0,∞)(t)(1− exp {−λt}).

The empirical process with estimated parameters is

Ĝn (t) =
√

n(F̂n(t)−G1/Xn
(t)),

and the covariance function in (15) is given by

cov(Zλ(s), Zλ(t)) = Gλ (s ∧ t)−Gλ (s) Gλ (t)− λ2Ġλ (s) Ġλ (t)
= 1− exp {−λ (s ∧ t)} − (1− exp {−λs}) (1− exp {−λt})

−λ2st exp {−λt} exp {−λs} .

3. RANDOMIZED EMPIRICAL PROCESS

In this section we introduce a new transformation to make goodness of fit tests with
estimated parameters asymptotically distributional free. Our starting point is the
structure of the asymptotic covariance function cov(Zθ(s), Zθ(t)) in (15) which is the
difference of the positive semidefinite function Fθ(s ∧ t) − Fθ(s)Fθ(t) being the co-
variance function of B(Fθ) and the positive semidefinite function ḞT

θ (t)I−1(θ)Ḟθ(s).
Let I−1/2(θ) be the symmetric and positive definite matrix with I−1/2(θ)I−1/2(θ) =
I−1(θ) and suppose that V is a d dimensional random vector with i.i.d. standard
normal components. The stochastic process

Rθ(t) = ḞT
θ (t)I−1/2(θ)V (16)

has the covariance function

cov(Rθ(s), Rθ(t)) = ḞT
θ (t)I−1(θ)Ḟθ(s).

If V is independent of Zθ then

cov(Zθ(s) + Rθ(s), Zθ(t) + Rθ(t)) = cov(Zθ(s), Zθ(t)) + cov(Rθ(s), Rθ(t))
= Fθ(s ∧ t)− Fθ(s)Fθ(t)
= cov(B(Fθ(s),B(Fθ(t)). (17)
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This simple relation is the basic idea for our randomization technique. Suppose that
Vn is standard normal and independent of X1, . . . , Xn. By adding

Rn,θ(t) = ḞT
θ (t)I−1/2(θ)Vn (18)

to the estimated empirical process Ĝn we transform this process asymptotically
to a time transformed Brownian bridge. The processes Rn,θ still depend on the
unknown parameter θ. As this dependence appears as a ’factor’ we may replace θ
by an consistent estimator. We call Ĝn + Rn,bθn

the randomized estimated empirical

process. Note that Ĝn + Rn,bθn
is a function of the random vector X1, . . . , Xn, Vn

that has the distribution P⊗n
θ ⊗ N(0, I).

Theorem 3.1. Suppose the conditions in Corollary 2.2 are fulfilled and Vn are
standard normal random vectors that are independent of X1, . . . , Xn. Then

L(Ĝn + Rn,θ|P⊗n
θ ⊗ N(0, I)) ⇒ L(B(Fθ))

and
L(Ĝn + Rn,bθn

|P⊗n
θ ⊗ N(0, I)) ⇒ L(B(Fθ)).

P r o o f . The convergence

L(Ĝn(θ) + Rn,θ|P⊗n
θ ⊗ N(0, I)) ⇒ L(Zθ + Rθ)

follows from the independence of Ĝn and Rn,θ, the continuous mapping theorem, and
Corollary 2.2. Therefore the first statement follows from (17). The second statement
follows from Slutsky’s lemma, the first condition in (7) and the continuity of I(θ)
which implies

sup
t
|Rn,bθn

(t)−Rθ(t)| P
⊗n
θ ⊗N(0,I) → 0. (19)

�

We introduce the randomized Kolmogorov–Smirnov statistic by

RKn = sup
t
|Ĝn(t) + Rn,bθn

(t)|. (20)

To introduce a Cramér–von Mises type statistic we denote by Xn:1 ≤ · · · ≤ Xn:n

the order statistic and define the randomized Cramér–von Mises statistic by

RCn :=
∑n

i=1

(
i

n
− Fbθn

(Xn:i) +
1√
n

Rn,bθn
(Xn:i)

)2

. (21)

The continuity of Fθ yields F̂n(Xn:i) = i/n a.s. and

RCn =
∑n

i=1

(
i

n
− Fbθn

(Xn:i) +
1√
n

Rn,bθn
(Xn:i)

)2

=
∫ (√

n(F̂n(t)− Fbθn
(t)) + ḞTbθn

(t)I−1/2(θ̂n)Vn

)2

. (22)
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Based on the test statistics RKn and RCn we introduce the randomized Kolmogorov–
Smirnov test and the randomized Cramér–von Mises test by

ϕRKn = I[k1−α,∞)(RKn) and ϕRCn = I[c1−α,∞)(RCn). (23)

Proposition 3.2. Under the assumptions of Theorem 3.1 it holds

L(RKn) ⇒ L
(

sup
0≤s≤1

|B(s)|
)

= K and

L(RCn) ⇒ L
(∫ 1

0

B2(s) ds

)
= C.

The tests ϕRKn and ϕRCn are asymptotic level α-tests for testing

H0 : L(X1) ∈ {Pθ, θ ∈ Θ} versus HA : L(X1) /∈ {Pθ, θ ∈ Θ}.

P r o o f . As the sup-norm is continuous on D[−∞,∞] and measurable with respect
to the σ-algebra generated by the projections we get the first statement from The-
orem 3.1 and the equality in (3). The second statement follows from Theorem 3.1,
Lemma 6.6 in the Appendix and the equality in (4). The fact that ϕRKn

and ϕRCn
are

asymptotic level α-tests follows from the weak convergence of L(RKn) and L(RCn)
combined with the continuity of K and C. �

4. POWER OF THE RANDOMIZED CRAMER-VON MISES TEST UNDER
LOCAL ALTERNATIVES

In order to investigate the asymptotic power of the goodness of fit tests constructed
in the previous section we use concepts from LeCam’s asymptotic decision theory.
In the first part of this section we collect some of these results for any parametric
model and apply these facts to the goodness of fit problem in the second part.

Given a measurable space (X ,A) and a distribution P on (X ,A) we denote by
L2(P ) be the space of all P -square integrable functions a : X → R. For the null
hypothesis H0 : P we study the power of tests for alternatives HA : Pn for which the
sequence {P⊗n

n } is contiguous with respect to the sequence {P⊗n} (P⊗n
n C P⊗n),

i. e.

lim
n→∞

P⊗n(An) = 0 ⇒ lim
n→∞

P⊗n
n (An) = 0, (24)

which is equivalent with the uniform integrability of likelihood ratios dP⊗n
n /dP⊗n

with respect to P⊗n, see e. g. Theorem 6.26 in [11].
To construct a sequence {Pn} that satisfies (24) we suppose Pn � P , set

gn =
dPn

dP
and an = 2

√
n(
√

gn − 1) (25)

and assume that the sequence an ∈ L2(P ) converges to a ∈ L2(P ), i. e.

lim
n→∞

∫
(an(x)− a(x))2P (dx) = 0. (26)
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Then (24) is satisfied in view Lemma 6.2 in the Appendix.
For rn = an − a the definition of an yields

√
gn − 1 =

1
2
√

n
a +

1
2
√

n
rn,

where
∫

r2
n dP → 0, if (26) is satisfied. Therefore we call a the tangent of the

sequence {Pn}. According to Lemma 6.1 in the Appendix the set of all possible
tangents is just the space

L0
2(P ) =

{
a : a ∈ L2(P ),

∫
adP = 0

}
.

For a bounded a ∈ L0
2(P ) the construction of a sequence {Pn} with tangent a is

easy. Indeed, gn = 1 + 1√
n
a is a probability density for all sufficiently large n, so

that

Pn(A) =
∫

A

(
1 +

1√
n

a

)
dP (27)

becomes a probability measure. Using a first order Taylor expansion for
√

1 + x one
can easily verify that an in (25) with gn = (1 + 1√

n
a) satisfies (26).

Now we consider a parametric model P = (Pθ)θ∈Θ,Θ ⊆ Rd, that satisfies the
condition (11). Suppose that θ is an interior point of Θ. For u ∈ Rd with θ + u ∈ Θ
we set

Lθ(u) =
dPθ+u

dPθ
=

fθ+u

fθ

l̇θ =
(

1
fθ

∂fθ

∂θ1
, . . . ,

1
fθ

∂fθ

∂θd

)T

.

It is well-known, see e. g. Theorem 1.117 in [11], that the condition (11) implies∫ (√
Lθ(u)− 1− 1

2
uT l̇θ

)2

dPθ = o(‖u‖2). (28)

Fix h ∈ Rd and put u = h/
√

n. For

P = Pθ, Pn = Pθ+h/
√

n,

we get gn = Lθ(h/
√

n). The relation (28) shows that (26) is satisfied with

an = 2
√

n(
√

gn − 1), a = hT l̇θ.

Consequently, the sequence {Pn} has the tangent hT l̇θ which belongs to L0
2(Pθ) in

view of (13). We introduce the tangent space T (θ) of the model P at θ by

T (θ) = {hT l̇θ, h ∈ Rd}

and see that T (θ) ⊆ L0
2(Pθ) is the set of all tangents of sequences Pn = Pθ+h/

√
n, h ∈

Rd, that originates from the model. Note that according to Lemma 6.1 in the
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Appendix the larger space L0
2(Pθ) is the space of tangents of all sequences that do

not necessarily originate from the model P.
Let Πθa denote the projection of a ∈ L0

2(Pθ) on T (θ). It will turn out that the
asymptotic power of the goodness of fit tests under local alternatives Pn depend
on the projection Π⊥θ a of the tangent a of the sequence {Pn} on the orthogonal
complement T ⊥(θ) of the tangent space. Therefore we need explicit expressions for
Πθa and Π⊥θ a.

Lemma 4.1. Suppose that the condition (11) is fulfilled. Then

Πθa = cT (θ)I−1(θ)l̇θ and Π⊥θ a = a− cT (θ)I−1(θ)l̇θ, (29)

where c(θ) =
∫

(l̇θa) dPθ.

P r o o f . Πθa is characterized by the conditions Πθa ∈ T (θ) and a − Πθa ⊥ T (θ)
or a − Πθa ⊥ hT l̇θ for every h. The first condition is cT (θ)I−1(θ)l̇θ ∈ T (θ) and is
clear from the definition of T (θ). To establish the second condition we note that
I(θ) =

∫
l̇θ l̇

T
θ dPθ implies for every h ∈ Rd∫
hT l̇θ(a− l̇Tθ I−1(θ)c(θ)) dPθ = hT c(θ)− hT I(θ)I−1(θ)c(θ) = 0.

�
Subsequently we need the asymptotic behavior of the linear statistics

Tn =
1√
n

∑n

i=1
bn(Xi) + oP⊗n(1). (30)

Proposition 4.2. Suppose that X1, . . . , Xn are i.i.d. with common distribution
Pn � P and assume that the condition (26) is fulfilled with gn = dPn/dP and an

from (25). If bn ∈ L0
2(P ) satisfies

lim
n→∞

∫
(bn − b)2 dP = 0. (31)

for some b ∈ L2(P ) then

L(Tn|P⊗n
n ) ⇒ N

(∫
abdP,

∫
b2 dP

)
. (32)

P r o o f . The condition (31) and the lemma of Slutzky implies that we may replace
bn with b in (30) which together with the representations (51) in Lemma 6.2 in the
Appendix yields(

Tn

lnLn

)
=

1√
n

∑n

i=1

(
b(Xi)
a(Xi)

)
+
(

0
− 1

2

∫ 1

0
a2(x)P (dx)

)
+ oP⊗n(1).
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The central limit theorem provides

L((Tn, lnLn)T |P⊗n) ⇒ N

((
0
− 1

2

∫ 1

0
a2(x)P (dx)

)
,

( ∫ 1

0
b2 dP

∫
abdP∫

abdP
∫ 1

0
a2 dP

))
.

From here and LeCam’s third lemma, see Theorem 4 in [15], p. 154, we get (32). �

Now we apply (32) to study Ĝn+Rn,bθn
under P⊗n

n ⊗L(Vn) where L(Vn) = N(0, I)
is the d-dimensional standard normal distribution which is the common distribution
of the Vn that have been used in (18) to construct Rn,θ.

Theorem 4.3. Suppose the assumptions in Theorem 3.1 are fulfilled. If Pn � Pθ

and the conditions (25) and (26) are satisfied with P = Pθ then

L(Ĝn + Rn,bθn
|P⊗n

n ⊗ N(0, I)) ⇒ L(B(Fθ) + Λθa),

where Rn,bθn
= ḞTbθn

I−1/2(θ̂n)Vn and the shift term Λθa is defined by

(Λθa)(t) =
∫

Λθ(t, s)a(s)Pθ(ds) (33)

Λθ(t, s) = I(−∞,t](s)− Fθ(t)− ḞT
θ (t)I−1(θ)l̇θ(s). (34)

Corollary 4.4. Under the assumptions in Theorem 3.1 it holds

L(Ĝn + Rn,bθn
|P⊗n

n ⊗ N(0, I)) ⇒ L
(

B(Fθ) +
∫

I(−∞,·](s)(Π⊥θ a)(s)Pθ(ds)
)

,

where Π⊥θ a is the projection of the tangent a of the sequence {Pn} on the orthogonal
complement of the tangent space T (θ) of the model (Pθ)θ∈Θ at θ.

P r o o f . First of all we note that the Lemmas 6.2 and 6.3 in the Appendix provide

P⊗n
n ⊗ N(0, I) C P⊗n

θ ⊗ N(0, I),

which implies in conjunction with (19) that we may replace Rn,bθn
with Rn,θ in the

statement to be established. It holds

L((Ĝn, Rn,θ)|P⊗n
n ⊗ N(0, I)) = L(Ĝn|P⊗n

n )⊗ L(Rn,θ|N(0, I)) (35)

= L(Ĝn|P⊗n
n )⊗ L(Rθ|N(0, I))

as L(Vn) = N(0, I) = L(V ) and by the definition of Rθ in (16). Hence it remains to
study the marginal distributions L(Ĝn|P⊗n

n ) as n →∞. To prove the convergence of
the finite dimensional distributions we apply the Cramér–Wold device and consider∑n

j=1 ajĜn(tj) for fixed real numbers ai. Then by (8), with hθ = I−1(θ)l̇θ,∑n

j=1
ajĜn(tj) =

1√
n

∑n

i=1
b(Xi) + oP⊗n(1),
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where b(s) =
∑n

j=1 ajΛθ(tj , s). The application of Proposition 4.2 with bn = b yields

L(
∑n

j=1
ajĜn(tj)|P⊗n

n ) ⇒ N

(∫
abdPθ,

∫
b2 dPθ

)
. (36)

It holds ∫
abdPθ =

∑n

j=1
aj

∫
a(s)Λθ(tj , s)Pθ( ds). (37)

To calculate
∫

b2 dPθ we note that the conditions in (11) and consequently (13)
imply for every u and v∫

ḞT
θ (v)I−1(θ)l̇θ(s)Pθ(ds) = 0,∫

I(−∞,u](s)ḞT
θ (v)I−1(θ)l̇θ(s)Pθ(ds) = ḞT

θ (v)I−1(θ)Ḟθ(u),∫
ḞT

θ (u)I−1(θ)l̇θ(s)ḞT
θ (v)I−1(θ)l̇θ(s)Pθ(ds)

=
∫

ḞT
θ (u)I−1(θ)l̇θ(s)l̇Tθ (s)I−1(θ)Ḟθ(v)Pθ(ds) = ḞT

θ (u)I−1(θ)Ḟθ(v).

Furthermore,∫
[I(−∞,u](s)− Fθ(u)][I(−∞,v](s)− Fθ(v)]Pθ(ds) = Fθ(u ∧ v)− Fθ(u) ∧ Fθ(v).

Combining these results we get∫
Λθ(u, s)Λθ(v, s)Pθ(ds) = cov(Zθ(u), Zθ(v)),

where Zθ is the centered Gaussian process with covariance function (15). As Zθ and
Zθ + Λθa have the same covariance function we get∫

b2 dPθ =
∑n

i,j=1
aiajcov(Zθ(ti) + (Λθa)(ti), Zθ(tj) + (Λθa)(tj)). (38)

From (36), (37) and (38) we get the convergence of the finite dimensional distri-
butions of Ĝn under P⊗n

n to the process Zθ +Λθa. As P⊗n
n C P⊗n

θ in view of Lemma
6.2 in the Appendix we may apply apply Lemma 6.5 in the Appendix to get

L(Ĝn|P⊗n
n ) ⇒ L(Zθ + Λθa).

Combining this result with (35) we get

L((Ĝn + Rn,θ)|P⊗n
n ⊗ N(0, I)) ⇒ L(Zθ + Λθa + Rθ),

where Zθ and Rθ are independent. To complete the proof of the theorem we use
(17) to see that Zθ + Λθa + Rθ has the covariance function cov(B(Fθ(s)),B(Fθ(t))).
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To prove the Corollary we note that
∫

adPθ = 0 by Lemma 6.1 in the Appendix.
This implies with c(θ) from Lemma 4.1∫

Λθ(t, s)a(s)Pθ(ds) =
∫

[I(−∞,t](s)− ḞT
θ (t)I−1(θ)l̇θ(s)]a(s)Pθ(ds)

=
∫

I(−∞,t](s)a(s)Pθ(ds)− ḞT
θ (t)I−1(θ)c(θ).

From the last condition in (11) we get that the right hand term is∫
I(−∞,t](s)[a(s)− cT (θ)I−1(θ)l̇θ(s)]Pθ(ds)

=
∫

I(−∞,t](s)(Π⊥θ a)(s)Pθ(ds)

where the equality follows from Lemma 4.1. The proof is complete. �

Subsequently we need the Kac–Siegert decomposition of the Brownian bridge
B(t), 0 ≤ t ≤ 1, which has the covariance function K(s, t) = s∧t−st. The eigenvalues
and the normalized eigenfunctions of K are

λk =
1

(kπ)2
and ϕk(t) =

√
2 sin kπt, k = 1, 2, . . . .

The Kac–Siegert decomposition of the Brownian bridge reads

B(t) =
√

2
∑∞

k=1
Zk

sin kπt

kπ
,

where

Zk = kπ

∫ 1

0

B(t)ϕk(t) dt

are i.i.d. standard normal. The system of eigenfunctions {ϕk} is complete in L2[0, 1].
If Fθ is continuous then the mapping ϕ 7→ ϕ(Fθ) is an isometry between L2[0, 1] and
L2(Pθ) which implies that {ϕk(Fθ)} is a complete orthonormal system in L2(Pθ).
This yields for every function C ∈ L2(Pθ)

L
(∫

(B(Fθ) + C)2 dPθ

)
= L

(∑∞

k=1

1
(kπ)2

(Zk + kπCk)2
)

,

Zk = kπ

∫
B(Fθ)ϕk(Fθ) dPθ and Ck =

√
2
∫

C sin(kπFθ) dPθ. (39)

Theorem 4.5. Suppose that the assumptions in Theorem 4.3 are fulfilled where
a ∈ L0

2(Pθ) is the tangent of the sequence {Pn}. Then the asymptotic power of
the randomized Cramér–von Mises test ϕRCn in (23) under the local alternative
P⊗n

n ⊗ N(0, I) is given by

lim
n→∞

∫
ϕRCn d(P⊗n

n ⊗ N(0, I)) = P

(∑∞

k=1

1
(kπ)2

(Zk + dk)2 > c1−α

)
,
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where
dk =

√
2
∫

(Π⊥θ a) cos(kπFθ) dPθ. (40)

P r o o f . The relation (22) gives

RCn =
∫

(Ĝn + Rn,bθn
)2 dF̂n.

Hence by Corollary 4.4 and Lemma 6.6 in the Appendix

L(RCn) ⇒ L(
∫

(B(Fθ) + C)2 dPθ), where

C(t) =
∫

I(−∞,t](s)(Π⊥θ a)(s)Pθ(ds).

It remains to calculate Ck in (39). Changing the integration with respect to s and
t we obtain

Ck =
√

2
∫ (∫

I(−∞,t](s) sin(kπFθ(t))Pθ(dt)
)

(Π⊥θ a)(s)Pθ(ds).

As Fθ is continuous we get∫
I(−∞,t](s) sin(kπFθ(t))Pθ(dt) =

∫
I(−∞,Fθ(t)](Fθ(s)) sin(kπFθ(t))Pθ(dt)

=
∫ 1

Fθ(s)

sin(kπu) du =
1
kπ

(cos(kπFθ(s))− cos(kπ)).

From (13), (29), and a ∈ L0
2(Pθ) we conclude Π⊥θ a ∈ L0

2(Pθ) which yields

Ck =
√

2
∫

1
kπ

(cos(kπFθ(s))− cos(kπ))(Π⊥θ a)(s)Pθ(ds)

=
1
kπ

√
2
∫

cos(kπFθ(s))(Π⊥θ a)(s)Pθ(ds) =
1
kπ

dk.

�

Theorem 4.5 can be used to give a local approximation of the power of the Cramér–
von Mises test if the data have the distribution Pn and the sequence {Pn} has the
tangent a. We consider the Gaussian location model. Then Fµ (t) = Φ (t− µ) ,
Pµ = N(µ, 1) and

l̇µ(t) = t− µ and I(µ) =
∫

l̇2µ dPµ = 1.

Without loss of generality we assume µ = 0 and set ϕ = Φ′. Then in view of (29) the
projection of any a ∈ L0

2(Pµ) on the tangent space of the model and its orthogonal
complement at µ = 0 are given by

(Π0a)(t) =
(∫

a(s)sϕ(s) ds

)
· t and Π⊥0 a = a−Π0a. (41)
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We will calculate the asymptotic power of the randomized Cramér–von Mises test
along a sequence of distributions which have the pregiven tangents

al,h = hϕl(Φ) where ϕl(s) =
√

2 cos(lπs). (42)

The additional parameter h controls the distance from the null hypothesis. As ϕl

is bounded we may use the construction in (27). For a(t) = al,h = hϕl(Φ) the
alternatives in (27) are given by

Pl,n,h(A) =
∫

A

(1 +
h√
n

ϕl(Φ))ϕ(t) dt, −1/
√

2 <
h√
n

< 1/
√

2 (43)

and have the Lebesgue densities for l = 1, 2, ..

pl,η(t) = (1 + ηϕl(Φ))ϕ(t), −1/
√

2 < η =
h√
n

< 1/
√

2.

If l = 2m is even then Φ(−t) = 1 − Φ(t) yields p2m,η(−t) = p2m,η(t). For odd
l = 2m + 1 we get

p2m+1,η(−t) = (1 + η
√

2 cos((2m + 1)π(1− Φ(t))))ϕ(t)

= (1− η
√

2 cos((2m + 1)πΦ(t)))ϕ(t) = p2m+1,−η(t).

The course of the densities pl,η is plotted for special l and η in the following pictures.

Null Hypothesis Alternative Hypothesis

p1,0.5; p1,−0.5 dashed

pl,0 solid p2,0.5; p2,−0.5 dotted

l = 1, 2, 3, 4 p3,0.5; p3,−0.5 dotdash

p4,0.5; p4,−0.5 longdash

Now we study the power of the Cramér–von Mises test under the sequence of
alternatives Pl,n,h in (43) that have the tangents al,h in (42). It follows from (40)
and (41) with l̇0 (t) = t and a = al,h that for fixed l = 1, 2, . . . and θ = µ = 0

(Π⊥0 al,h)(t) = hϕl(Φ(t))− ht(
∫

ϕl(Φ(s))sdΦ(s)).

Set

γl =
∫

sϕl(Φ(s)) dΦ(s) =
∫ 1

0

Φ−1(t)ϕl(t) dt. (44)

Then dk in (40) turns into

dk,l = h

∫
(ϕl(Φ(t))− γlt)ϕk(Φ(t)) dΦ(t).

As the ϕl(Φ) form an orthonormal system in L2(N(0, 1)) we get

dk,l = h(δk,l − γkγl), (45)
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where δk,l is the Kronecker symbol. The symmetry of the standard normal distri-
bution implies Φ−1(0.5 + t) = −Φ−1(0.5− t) for 0 ≤ t ≤ 0.5 and∫ 1

0

Φ−1(t)g(t) dt = 0

for every function g which is symmetric with respect to 0.5. Hence by (42) and (44)

γ2m =
∫ 1

0

Φ−1(t)ϕ2m(Φ(t)) dt = 0. (46)

Using (45) and (46) we get the statistics Sl =
∑∞

k=1(kπ)−2(Zk +hdk,l)2 that appear
in Theorem 4.5 if for l = 1, . . . , 4 the local alternatives with the tangents in (42) are
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considered

S1 =
1
π2

(Z1 + h(1− γ2
1))2 +

∑∞

m=1

1
(2mπ)2

Z2
2m

+
∑∞

m=1

1
((2m + 1)π)2

(Z2m+1 − hγ1γ2m+1)2,

S2 =
1
π2

Z2
1 +

1
4π2

(Z2 + h)2 +
∑∞

k=3

1
(kπ)2

Z2
k ,

S3 =
1
π2

(Z1 − hγ1γ3))2 +
1

4π2
Z2

2 +
1

9π2
(Z3 + h(1− γ2

3))2

+
∑∞

m=2

1
(2mπ)2

Z2
2m +

∑∞

m=2

1
((2m + 1)π)2

(Z2m+1 − hγ3γ2m+1)2,

S4 =
1
π2

Z2
1 +

1
4π2

Z2
2 +

1
9π2

Z2
3 +

1
16π2

(Z4 + h)2 +
∑∞

k=5

1
(kπ)2

Z2
k .

The asymptotic power πl(h) of ϕRCn for observations with distribution Pl,n,h from
(43) is given by

πl(h) = P (Sl > c1−α) , (47)

where c1−α is the 1− α quantil of the Cramér–von Mises distribution in (4).
The subsequent pictures show the power functions π1(h), . . . , π4(h).
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To discuss the power functions that have been generated by simulation we remark
at first that the γl in (44) are just the scalar product of the tangent l̇0 of the model
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and the tangent ϕl(Φ(t)) of the sequence Pl,n,h in (43). As the power function
depends on the projection of ϕl(Φ(t)) on the orthogonal complement of the tangent
space of the model, we can expect a good power only if |γl| is small. We have
already seen that γ2m = 0. The γl for odd l have been numerically evaluated. The
first values are

γ1 = −0.9484 γ3 = −0.2407 γ5 = −0.1306 γ7 = −0.0880
γ9 = −0.0657 γ11 = −0.0522 γ13 = −0.0431 γ15 = −0.0366

To explain the poor slope of the power functions π1(h) we inspect the first leading
terms in the statistic S1

1
π2

(Z1 + h(1− γ2
1))2 +

1
(3π)2

(Z3 − hγ1γ3)2

+
1

(5π)2
(Z5 − hγ1γ5)2 +

1
(7π)2

(Z7 − hγ1γ7)2 + . . .

≈ 0.1013(Z1 + 0.01h)2 + 0.0113(Z3 + 0.2283h)2

+0.0041(Z5 − 0.1239h)2 + 0.0021(Z7 − 0.083h)2 + . . .

We see that the right hand term only weakly depends on h and produces, therefore, a
poor power only. The largest power function is π2(h). The big slope can be explained
by inspecting the first terms in S2 that are given by

0.1013Z2
1 + 0.0253(Z2 + h)2 + 0.0113Z2

3 + . . .

We recognize a stronger dependence of S2 on h compared with S1.
Summarizing we can say that in the Gaussian location model the Cramér–von

Mises tests has poor power for alternatives plotted in the pictures in Figure 2 for
l = 1 and high power for alternatives plotted in the pictures in Figure 1 for l = 2.

5. COMPUTER SIMULATIONS

5.1. Actual sizes of the randomized goodness of fit tests

Monte Carlo sampling experiments to check the accuracy of the approximation by the
limit distribution of the Cramér–von Mises statistic and the Kolmogorov–Smirnov
statistic, respectively, have been carried out by several authors, see e. g. [16] and
[17]. We have checked the actual significance level of tests that are based on the
randomized statistic in (21) by computer simulations.

1. Normal distribution with unknown µ and σ2

We use the notations in Example 2.3 and assume µ = 0 and σ2 = 1 without loss of
generality. The randomized Cramér–von Mises statistic in (21) is given by

RCn =
∑n

i=1

(
i

n
− Φ

(
(Xn:i −Xn

)
/Sn)− 1√

n
ϕ
((

Xn:i −Xn

)
/Sn

)
V1,n (48)

− (Xn:i −Xn)√
2nSn

ϕ
((

Xn:i −Xn

)
/Sn

)
V2,n

)2
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2. Exponential distribution with unknown parameter λ

We use the notations in Examples 2.4 and assume λ = 1 without loss of generality.
Then the randomized Cramér–von Mises statistic in (21) is given by

RCn =
∑n

i=1

(
i

n
− (1− exp{−Xn:i/Xn}) (49)

− Vn√
n

Xn:i

Xn

exp{−Xn:i/Xn}
)2

The simulation experiment is performed according to the following steps. Let Fθ be a
normal or an exponential distribution and let Tn stand for one of the statistics in (48)
or (49). To carry out the simulations we used the programm R. The implemented
pseudo random generator is the Mersenne-Twister generator, see [12].

1. For n = 20; 50; 100; 1000 we generate X1, . . . , Xn from Fθ.

2. Calculate the MLE θ̂n.

3. Calculate the values of the statistics Tn.

4. Carry out the test ϕn =
{

1, Tn > cn,1−α

0, else ,

where the cn,1−α are the 1 − α quantiles of the classical Cramér–von Mises
statistic for sample size n. We have taken cn,1−α from [3].

5. Repeat the steps 1.–4. N times and estimate the actual confidence level by

α̂Tn =
number of rejections of H0

N
.

We used N = 10000 in our simulations. Subsequently α(CMR) denotes the actual
level of the randomized Cramér–von Mises test.

α(CMR): Normal distribut., µ,σ2 unknown
α n = 20 n = 50 n = 100 n = 1000
0.01 0.013 0.010 0.010 0.010
0.05 0.060 0.052 0.053 0.047
0.1 0.114 0.104 0.107 0.099
α(CMR): Exponential distribut., λ unknown
0.01 0.012 0.012 0.012 0.009
0.05 0.055 0.051 0.053 0.049
0.1 0.108 0.104 0.105 0.099

From the above table we may conclude that under the null hypothesis the randomized
goodness of fit test statistics even for small sample sizes behave very similar as the
corresponding goodness of fit test statistics for a simple null hypothesis. This is
demonstrated by the fact that the actual levels of the tests for n = 20; 50; 100; 1000
are very close to the predetermined α.
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5.2. Asymptotic power under special alternatives

Let X1, . . . , Xn be i.i.d. with a common normal distribution with unknown µ and
σ2 and Xn:1 ≤ . . . ≤ Xn:n be the order statistic. V denotes the covariance matrix
of (Xn:1, . . . , Xn:n) and m is the vector of the expectations of the order statistic of
independent standard normal random variables. Set

aT = (a1, . . . , an) =
mT V −1

(mT V −1V −1m)1/2
.

The Shapiro–Wilk statistic is defined by

Wn =
∑n

i=1 aiXn:i∑n
i=1(Xi −Xn)2

.

According to [14], for n > 50 the statistic Wn can be approximated by

W∗
n =

∑n
i=1 biXn:i∑n

i=1(Xi −Xn)2
,

b = (b1, . . . , bn) =
1√

mT m
m.

Let now X be a random variable with EX8 < ∞ and introduce the skewness and
curtosis by

β1 =
1
σ3

E(X − µ)3 and β2 =
1
σ4

E(X − µ)4 − 3,

where µ = EX, σ2 = V (X). If X has a normal distribution then β1 = β2 = 0, so
that the Bowman–Shenton statistic

BSn =
n

6
(β̂1,n)2 +

n

24
(β̂2,n)2, (50)

β̂1,n =
1
S3

n

1
n

∑n

i=1
(Xi −Xn)3 β̂2,n =

1
S4

n

1
n

∑n

i=1
(Xi −Xn)4 − 3,

indicates deviations in the skewness and curtosis and can be used for testing nor-
mality. Bowman and Shenton [2] proved under the null hypothesis (normality) that
L(BSn) ⇒ χ2-distribution with two degrees of freedom. The Bowman–Shenton test
rejects the null hypothesis for large values of BSn. D’Agostino and Stephens [4] and
other authors noticed that the asymptotic is poor and proposed transformations of
β̂1,n, β̂2,n. We do not use this approach. Instead we determine the quantiles of BSn

by simulations.
To compare the new randomized tests with the Shapiro–Wilk and the Bowman–

Shenton test we consider two types of parameterized alternatives.

1. Deviation from normality in the direction of skewness

Let X has a standard normal distribution and suppose that Y has an exponential
distribution with expectation 1. Put Pλ = L(X + λY ), λ > 0. For λ = 0 the
distribution P0 is a standard normal one and λ controls the deviation from normality.
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2. Deviation from normality in the direction of heavy tails

Let X has a standard normal distribution and suppose that C has a Cauchy dis-
tribution. Put Qλ = L(X + λC), λ > 0. Again, for λ = 0 the distribution Q0 is a
standard normal one and λ controls the deviation from normality.
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The results of the computer simulations are in a complete agreement with the
power functions πl in (47) and the course of the density functions in the pictures
Figure 1 and Figure 2. Indeed the power function π1 has a small slope. The density
p1,η in Figure 2 is skew. Therefore it is not surprising that the randomized Cramér–
von Mises test has poor power for skew alternatives. Similarly, as the power function
π2 has a big slope and the densities p2,η are broader than the normal density we may
expect a good power for the randomized Cramér–von Mises test. This conjecture
has been confirmed by the results of the computer simulations for alternatives with
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6. APPENDIX

In this appendix we collect known and prove some new technical results.

Lemma 6.1. If the conditions (25) and (26) are satisfied then a ∈ L0
2(P ). Con-

versely, for every a ∈ L0
2(P ) there is a sequence {Pn} of distributions with Pn � P

and tangent a.

P r o o f . As gn is a probability density we get

1 =
∫

gn dP =
∫ (

1 +
1√
n

an +
1
4n

a2
n

)
dP∣∣∣∣∫ adP

∣∣∣∣ ≤ 1
4
√

n

∫
a2

n dP +
(∫

(an − a)2 dP

)1/2

.

The assumption (26) yields that
∫

a2
n dP is bounded. Hence

∫
adP = 0 by taking

n →∞. To prove the second statement we assume a ∈ L0
2(P ) and set for normalizing

constants Cn

Pn(A) = Cn

∫
A

(
1 +

1
2
√

n
a

)2

dP.

It is not hard to see that an = 2
√

n
(√

dPn

dP − 1
)

satisfies (26). For details we refer
to [9]. �
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Lemma 6.2. Suppose X1, . . . , Xn are the projection of Xn on X and assume Pn � P.
If gn = dPn/dP and an = 2

√
n(
√

gn − 1) satisfies (26) for some a ∈ L0
2(P ) then

lnLn =
1√
n

∑n

i=1
a(Xi)−

1
2

∫ 1

0

a2(x)P (dx) + oP⊗n(1). (51)

Ln =
dP⊗n

n

dP⊗n
(X1, . . . , Xn)

P⊗n
n C P⊗n. (52)

P r o o f . The statement (51) is a special case of Theorem 3 in [15], p. 154. The fact
that (51) implies (52) is the content of the first lemma of LeCam, see Exercise 2,
p. 157 in [15]. �

Lemma 6.3. The condition (52) implies

P⊗n
n ⊗ N(0, I) C P⊗n ⊗ N(0, I).

P r o o f . As P⊗n
n ⊗N(0, I) � P⊗n⊗N(0, I) it follows from part B) in Theorem 6.26

in [11] that the statement is equivalent with the uniform integrability of

d(P⊗n
n ⊗ N(0, I))

d(P⊗n ⊗ N(0, I))
(x, y) =

dP⊗n
n

dP⊗n
(x)

with respect to P⊗n⊗N(0, I). But this is equivalent with uniform integrability of the
right hand term with respect to P⊗n which follows from (52) by applying Theorem
6.26 in [11] again. �

The next Lemma follows from Theorem 3 in [13], p. 92.

Lemma 6.4. Suppose Z,Z1, Z2, . . . are random elements of D[−∞,∞] (under its
uniform metric and projection σ-algebra) defined on (Ω,F, Q) and assume that Z is
continuous. Then L(Zn) ⇒ L(Z) if and only if the fidis of Zn converge to the fidis of
Z and for each ε > 0 and each δ > 0 there exists a grid −∞ = t0 < t1 < ··· < tN = ∞
such that

lim sup
n→∞

Q

(
max

0≤i<N−1
sup

ti≤t<ti+1

|Zn(t)− Zn(ti)| > δ

)
< ε. (53)

Lemma 6.5. Suppose Y, Y1, Y2, . . . are random elements of D[−∞,∞] and the fidis
of Yn converge to the fidis of Y where Y is continuous. If L(Yn) C L(Zn) and Zn

satisfies (53) then L(Yn) ⇒ L(Y ).

P r o o f . By the Jurečková characterization of contiguity, see e. g. [15], Lemma 1,
p. 157, for every η > 0 there is some ε > 0 such that (53) implies

lim sup
n→∞

Q

(
max

0≤i<N−1
sup

ti≤t<ti+1

|Yn(t)− Yn(ti)| > δ

)
< η

and the statement follows from the preceding Lemma. �
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Lemma 6.6. Suppose Z,Z1, Z2, . . . are random elements of D[−∞,∞] defined on
(Ω,F, Q) and assume that Z is continuous. Assume X1, X2, . . . are i.i.d. with c.d.f.
F and empirical c.d.f. F̂n. Then L(Zn) ⇒ L(Z) implies

L
(∫

Z2
n(t) dF̂n(t)

)
⇒ L

(∫
Z2(t) dF (t)

)
.

P r o o f . The Glivenko–Cantelli Theorem yields

lim
n→∞

sup
t
|F̂n(t)− F (t)| = 0 a.s. (54)

Set Wn = Z2
n,W = Z2. For every partition P = {t0, . . . , tN}, −∞ = t0 < t1 < · · · <

tN = ∞ we denote by Wn,P and WP the piecewise constant processes that have the
values Wn(ti) and W (ti), respectively, in [ti, ti+1). The convergence of the fidis and
(54) yield

L
(∫

Wn,P dF̂n

)
⇒ L

(∫
WP dF

)
. (55)

The continuous mapping theorem and L(Zn) ⇒ L(Z) imply L(Wn) ⇒ L(W ). Con-
sequently by Lemma 6.4, for every m there is a partitions Pm such that for every n∣∣∣∣∫ Wn dF̂n −

∫
Wn,Pm dF̂n

∣∣∣∣ < 1
m

and
∣∣∣∣∫ W dF −

∫
WPm dF

∣∣∣∣ < 1
m

.

The statement (55) implies for every Lipschitz continuous function ϕ with Lipschitz
constant L

lim sup
n→∞

∣∣∣∣Eϕ

(∫
Wn dF̂n

)
− Eϕ

(∫
W dF

)∣∣∣∣ ≤ 2L

m
.

Taking m →∞ we get the statement. �
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