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KYB ERNET IK A — VO LUME 4 7 ( 2 0 1 1 ) , NUMBER 6 , PAGES 9 5 5 – 9 6 8

ON THE ARGMIN–SETS OF STOCHASTIC PROCESSES
AND THEIR DISTRIBUTIONAL CONVERGENCE
IN FELL–TYPE–TOPOLOGIES

Dietmar Ferger

Let ε − Argmin(Z) be the collection of all ε-optimal solutions for a stochastic process
Z with locally bounded trajectories defined on a topological space. For sequences (Zn)
of such stochastic processes and (εn) of nonnegative random variables we give sufficient
conditions for the (closed) random sets εn − Argmin(Zn) to converge in distribution with
respect to the Fell-topology and to the coarser Missing-topology.

Keywords: ε−argmin of stochastic process, random closed sets, weak convergence of
Hoffmann–Jørgensen, Fell-topology, Missing-topology

Classification: 49J53, 60B10, 60F05, 90C15

1. INTRODUCTION AND MAIN RESULTS

Let T be a locally compact and second countable Hausdorff-space (lcscH). We con-
sider the set l∞(T ) of all functions z : T → R that are bounded on every compact
K ⊆ T but not necessarily on T . There will be no notational distinction between
z : T → R and its (bounded) restriction z : K → R on K. Along with z ∈ l∞(T )
there is the pertaining collection of all minimizing points

Argmin(z) :=
{

t ∈ T : z(t) = inf
s∈T

z(s)
}

and the collection of all ε-optimal solutions

ε−Argmin(z) :=
{

t ∈ T : z(t) ≤ inf
s∈T

z(s) + ε

}
, ε ≥ 0.

Obviously, ε − Argmin(z) ⊇ Argmin(z) with equality, if ε = 0. For the stochastic
framework we need a probability space (Ω,A, P). Finally, we consider arbitrary
(possibly non-measurable) maps

Zn : Ω → l∞(T ), n ∈ N,

and
Z : Ω → l∞(T ).
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Assume that for every n ∈ N there exists a nonnegative random variable εn defined on
(Ω,A, P) such that we find a nonempty and closed subset ϕn of εn−Argmin(Zn) 6= ∅.
Take the singleton ϕn = {τn} for τn ∈ εn−Argmin(Zn) as the most simple example.
Or assume that Zn has lower semicontinuous (lsc) trajectories. Then the whole set
εn − Argmin(Zn) is closed. In any case we obtain maps ϕn : Ω → F , where F
denotes the family of all closed subsets in T . The main problem in this paper is as
follows:

Let the stochastic processes Zn converge in some distributional sense to a limit
Z, then what can be said about distributional convergence of the ϕn to some ϕ and
how is ϕ related to Argmin(Z)?

This kind of question typically arises in stochastic optimization, when the stabil-
ity of approximative stochastic programs is to be investigated. Many other variations
of the main problem stem from asymptotic statistics. Here, procedures are defined
by minimizing or maximizing a certain criterion function, for example Maximum-
Likelihood-estimators, minimum distance estimators, least squares estimators or
Bayes estimators.

Now, to make our problem more precise we first define

Zn  Z in l∞(T )

as weak convergence in the sense of Hoffmann–Jørgensen, confer, e. g., van der Vaart
and Wellner [14]. According to their Theorem 1.6.1 it is equivalent with

Zn  Z in l∞(K) for all compact K ⊆ T.

Next, the space F is endowed with the Fell-topology τFell and the corresponding
Borel-σ-algebra BFell. For the definition of τFell we introduce the classes G and K of
all open and compact subsets in T , respectively. Then the Fell-topology is generated
from a subbase which contains all missing sets M(K) := {F ∈ F : F ∩K = ∅},K ∈
K and all hitting sets H(G) := {F ∈ F : F ∩ G 6= ∅}, G ∈ G. It is well-known that
F is compact, second countable and Hausdorff, confer Theorem A2.5 in Kallenberg
[5]. Furthermore, the Kuratowski-metric induces τFell, whence F is a (nice) metric
space. There are several simple families, which generate BFell, confer Salinetti and
Wets [13], p. 386 (Note the arguments there are also true for us, since T admits a
separable metrization.) As a consequence many criteria for measurability of a map
ϕ : (Ω,A) → (F ,BFell) are available, e. g.,

{ϕ ∩G 6= ∅} ∈ A for all G ∈ G

or
{ϕ ∩K = ∅} ∈ A for all K ∈ K.

For a lot of other equivalent characterizations of measurability confer Theorem 14.3
in Rockafellar and Wets [11]. The usual notation for a random element in (F ,BFell)
is random closed set or closed valued measurable multifunction. So, once we have
that ϕ and ϕn, n ∈ N, are random closed sets, then distributional convergence is
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well-defined and denoted by ϕn
D−→ ϕ in F . However, it is worthwhile to equip

F with another (coarser) topology τMiss that is generated by the smaller family
consisting only of all missing sets M(K),K ∈ K. Especially, weak convergence in
the space (F ,BMiss) is still well-defined, confer Gänssler and Stute [3], chapter 8.4
for the definition of weak convergence in general topological spaces. It is denoted by
ϕn

i−D−→ ϕ in F . The investigation of this alternative concept of weak convergence
in F goes back to Vogel [15,16], who calls it inner approximation in distribution
or semi-convergence in distribution. She gives equivalent characterizations, which
go beyond the Portmanteau-Theorem and from which one can infer that the no-
tion of asymptotic dominance of Pflug [9] coincides with inner approximation in
distribution. Of course, since τMiss is contained in τFell the Portmanteau-Theorem
yields that D-convergence entails semi-convergence in distribution. Vogel [15,16] also
gives an equivalent characterization of τMiss-convergence in terms of the Kuratowsi-
limessuperior. Moreover, the topology τMiss is shown to be quasi-pseudo-metrizable.
However, a metrization is impossible, confer Gersch [4], which is a good reference
for further properties of the topological space (F , τMiss).

Now, having fixed the underlying topologies we now can give several solutions of
our main problem. Our primary result is

Theorem 1.1. For every n ∈ N let εn be a nonnegative random variable and
ϕn ⊆ εn − Argmin(Zn) be a random closed set. Moreover, assume Z is lower
semicontinuous with random closed set Argmin(Z) 6= ∅.

Then, if
Zn  Z in l∞(T ), (1.1)

and
εn = oP(1), (1.2)

it follows that
ϕn

i−D−→ Argmin(Z) in F . (1.3)

Notice that the special case in which the sets εn − Argmin(Zn), n ∈ N, of εn-
optimal solutions are replaced by the sets Argmin(Zn), n ∈ N, of all minimizing
points corresponds to εn = 0 for all n ∈ N, whence assumption (1.2) is trivially
fulfilled. We obtain

Corollary 1.2. Let Z be lower semicontinuous and assume the argmin-sets
Argmin(Zn), n ∈ N, and Argmin(Z) 6= ∅ are random closed sets. Then from

Zn  Z in l∞(T ) (1.4)

it follows that
Argmin(Zn) i−D−→ Argmin(Z) in F .
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The assertion of Theorem 1.1 can significantly be sharpened if the sequence (ϕn)n

is stochastically bounded in the following sense:

lim
i→∞

lim sup
n→∞

P(ϕn * Ti) = 0, (1.5)

for a sequence
Ti, i ∈ N, of compact sets with T ◦i ↑ T, (1.6)

where C◦ denotes the interior of any set C ⊆ T .

Remark 1.3. [i] Since T is locally compact and Hausdorff a sequence with property
(1.6) exists as a consequence of Theorem 21 on p. 203 in Royden [12].

[ii] Notice that for every fixed n ∈ N the sequence P(ϕn * Ti) is decreasing as
i →∞. Therefore (1.5) is equivalent with:

For every ε > 0 there exist natural numbers i0 = i0(ε) and n0 = n0(ε) such that

P(ϕn * Ti0) ≤ ε ∀ n ≥ n0. (1.7)

[iii] Let Ki, i ∈ N, be any other sequence of compact sets with property (1.6).
Then for Ti0 in (1.7) by compactness we find a natural number m(i0(ε)) =: m0(ε) =:
m0 such that Ti0 ⊆ Km0 , whence P(ϕn * Km0) ≤ ε ∀ n ≥ n0.

[iv] By [i] the concept of stochastic boundedness is well-defined for sequences of
arbitrary random closed sets. Moreover, by [iii] we know that once (1.5) is fulfilled
for a single sequence it actually holds for every sequence (Ti) with (1.6).

Theorem 1.4. Under the assumptions of Theorem 1.1 assume in addition that
the sequence (ϕn)n is stochastically bounded. Then

lim sup
n→∞

P

 r⋂
j=1

{ϕn ∩ Fj 6= ∅}

 ≤ P

 r⋂
j=1

{ϕ ∩ Fj 6= ∅}

 (1.8)

for all r ∈ N and all closed F1, . . . , Fr ∈ F .

Moreover, if all ϕn are nonempty and if Argmin(Z) = {τ} for some mapping
τ : Ω → T then actually

ϕn
D−→ Argmin(Z) in F . (1.9)

Corollary 1.5. For every n ∈ N let ϕn ⊆ εn−Argmin(Zn) be a nonempty random
closed set. Then there exists a sequence (τn) of measurable selections of ϕn, that is
τn : Ω → T is Borel-measurable with τn ∈ ϕn.

Moreover assume that Argmin(Z) = {τ} is a random closed set and that

lim
i→∞

lim sup
n→∞

P(τn /∈ Ti) = 0 (1.10)



Distributional convergence of Argmin–sets 959

where Ti, i ∈ N, is a sequence with (1.6).
Then, if (1.1) and (1.2) are true, it follows that

τn
D−→ τ in T. (1.11)

Indeed, (1.11) holds for every sequence (τn) of measurable selections of ϕn with
property (1.10).

Remark 1.6. [i] Remark 1.3 carries over analogously. Especially, (1.10) is valid
for all sequences (Ti) with (1.6).

[ii] Note that in our results we require that Argmin(Z) is a random closed set.
This property is not guaranteed a priori by our assumption on Z to be a stochastic
process (i. e. Z(t) ≡ Z(·)(t) is a real random variable for every t ∈ T ) with lower
semicontinuous trajectories. Such processes are also called lsc integrands and in
general they are not normal integrands in the sense of Rockafellar and Wets [11].
For the latter the corresponding collection of all minimizing points actually is a
random closed set, confer Theorem 14.37 of Rockafellar and Wets [11]. However,
Theorem 14.40 in [11] says that if the above measurability condition is sharpened a
bit Z is even a normal integrand and we have that Argmin(Z) is a random closed
set.

[iii] We like to mention that sets of the type as occurring in (1.5), (1.7) or (1.8)
are measurable, because of the measurability characterizations given in Theorem
14.3 of Rockafellar and Wets [11]. Consequently, the corresponding P-probabilities
are well-defined.

[iv] From (1.8) we can easily deduce Theorem 2 of Ferger [2]. To see this let T = R
and choose Ti := [−i, i]. Consider a measurable selection τn ∈ εn − Argmin(Zn).
Observe that the smallest and largest minimizing point σ = minArgmin(Z) and λ =
max Argmin(Z) exist, since Z is lower semicontinuous, whence Argmin(Z) is closed.
These quantities are Borel-measurable. This can be derived with analogue arguments
as in the proof of Corollary 1 of Ferger [2]. Put ϕn := {τn} and observe that (1.5)
is equivalent with stochastic boundedness (uniform tightness) of the sequence (τn).
Therefore we may apply (1.8) with r = 1 and F1 = (−∞, x], x ∈ R (which is closed,
but not compact!), to conclude:

lim sup
n→∞

P(τn ≤ x) ≤ P(Argmin(Z) ∩ (−∞, x] 6= ∅) ≤ P(σ ≤ x) for all x ∈ R,

where the second inequality follows from {Argmin(Z) ∩ (−∞, x] 6= ∅} ⊆ {σ ≤ x}.
In the same way with F1 = [x,∞) and by taking complements we obtain:

lim inf
n→∞

P(τn < x) ≥ P(Argmin(Z) ∩ [x,∞) = ∅) ≥ P(λ < x) for all x ∈ R,

where we use {Argmin(Z) ∩ [x,∞) = ∅} ⊇ {λ < x}. Thus we have shown that
Theorem 1.4 includes Theorem 2 of Ferger [2].

[v] Vogel [16] shows that if (1.8) holds only for all compact F1, . . . , Fr then (1.3)
follows and vice versa. Therefore the first assertion of Theorem 1.4 is strictly stronger
than inner approximation in distribution.
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Corollary 1.5 is in accordance with the Argmin-Theorem of van der Vaart and
Wellner [14]. Here and there the assumption (1.10) is necessary for (1.11). Indeed,
every distributional convergent sequence (τn) is stochastically bounded in the sense
of (1.10). This is as a simple consequence of the Portmanteau-Theorem taking into
account that we can find compact Ti with (1.6) such that every Ti is a continuity-set
of τ . In contrast, distributional convergence of random closed sets (ϕn) does not
entail stochastic boundedness (1.5). To see this consider (non-random) ϕn equal
to the straight line through the origin in R2, which as n tends to infinity rotate to
the ordinate ϕ = {0} × R. Then (ϕn) converges to ϕ in the Fell-Topology, confer
Rockafellar and Wets [11], p. 118, and especially ϕn

D−→ ϕ, but clearly (ϕn) is not
stochastically bounded.

Note that we have not imposed any continuity requirements on the trajectories
of Zn, so far. Indeed, if we make concessions in this regard, then in case of T = Rd

it is possible to sharpen Corollary 1.2 by replacing (1.4) through a weaker type of
distributional convergenc . To this end recall that Argmin(Zn) is closed if Zn has
lower semicontinuous (lsc) realizations. So, let us assume that

Zn : Ω → SC(Rd), n ∈ N,

and
Z : Ω → SC(Rd),

are maps from Ω into the set SC(Rd) of all lsc functions z : Rd → R with R :=
R∪{∞}. This is the traditional function space used in stochastic optimization from
which we like to repeat very shortly some few basic definitions. To each z ∈ SC(Rd)
there belongs the epigraph of z defined by

epi(z) := {(x, y) ∈ Rd × R : z(x) ≤ y}.

A map Z : Ω → SC(Rd) is called random lower semicontinuous function or normal
integrand if epi(Z) is a random closed set. Thus epi(Z) induces a probability measure
on (F ,BFell) and one defines: A sequence (Zn) of random lsc functions epi-converges

in distribution to a limit Z if epi(Zn) D−→ epi(Z) in F . In symbol: Zn
epi−D−→ Z. The

following Theorem follows directly from Theorem 1.3 of Pflug [9] and Lemma 2.1 of
Vogel [16].

Theorem (Pflug–Vogel). Let T = Rd. If Zn
epi−D−→ Z then

Argmin(Zn) i−D−→ Argmin(Z) in F .

The above result in fact holds a further refinement of Corollary 1.2 under the
supplemental requirement of lower semicontinuity of the Zn, n ∈ N. The reason for
this is that weak convergence (1.4) entails epi-convergence in distribution, whereas
the converse does not hold, confer Proposition 1 of Pflug [10]. (The proof given
there carries over, since the Portmanteau-Theorem of van der Vaart and Wellner
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[14] can be applied in the same manner.) Thus the additional assumption of lower-
semicontinuity yields that the strictly weaker concept of epi-convergence in distribu-
tion actually is sufficient for distributional semi-convergence of the involved argmin-
sets. Indeed, as Pflug [10] points out, the space SC(Rd) of all lower semicontinuous
functions endowed with the epigraph-topology is in some sense the minimal setting
to allow for the implication in the last theorem. However note that by Theorem 2.25
of Gersch [4] epi-convergence in distribution is equivalent with convergence of the
finite dimensional distributions plus so-called stochastic equi-lower semicontinuity
of the sequence (Zn), where the latter is the counterpart of asymptotic tightness in
case of weak convergence (1.4). So, in a specific situation it is to decide which of
these two conditions is easier to verify.

Remark 1.7. In empirical process theory it is more convenient to work with the
space D(R) of all cad-lag functions (continuous from the right with limits from
the left) or the multivariate generalization D(Rd) endowed with a suitable so-called
Skorokhod-topology. One very nice feature of that topology is that every cad-lag
stochastic process is Borel-measurable when viewed as map into D(Rd). Moreover,
according to Lindvall [7] convergence in distribution in D(R) is equivalent with
convergence in distribution in D[−a, a] for (almost) every positive a, where D[−a, a]
is the traditional Skorokhod-space, confer, e. g., Billingsley [1]. (The extension to
D(Rd) is proved by Lagodowski and Rychlik [6].)

Now, Vogel’s [15] Lemma 8.6(ii) says that traditional weak convergence of Zn to Z
when viewed as maps into the function space D(R) entails distributional convergence
of epi(Zn) to epi(Z) in F , where z denotes the lsc regularization of a function z.
Therefore by the above theorem of Vogel and Pflug we obtain:

Zn
D−→ Z in D(R) implies Argmin(Zn) i−D−→ Argmin(Z) in F .

From this Vogel [15] deduces an improved version of Ferger’s [2] Theorem 3 and
in addition extends it to εn−optimal solutions, confer Corollary 8.9 in [15].

Remark 1.8. Let the space l∞(R) be endowed with the metric of uniform con-
vergence on compacta and the pertaining Borel-σ-algebra. Then similarly as in the
above remark Vogel’s [15] Lemma 8.6(iii) results in:

Zn
D−→ Z in l∞(R) implies Argmin(Zn) i−D−→ Argmin(Z) in F .

Observe that the conclusion essentially is the same as in our Corollary 1.2 for
T = R, but there is a main difference between these two results. Namely, the
assumption Zn

D−→ Z in l∞(R) is much more restrictive than Zn  Z in l∞(R)
because in case of traditional weak convergence D−→ Borel-measurability of Z and
Zn, n ∈ N, is required. In contrast to the situation of Remark 1.7 this assumption
can and does fail for locally bounded stochastic processes as pointed out by van der
Vaart and Wellner [14], p. 3. Indeed, e. g., the empirical distribution function or the
classical empirical process do not meet measurability. Actually, this failure was the
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main reason for establishing a theory of weak convergence  for arbitrary (possibly
non-measurable) maps.

We like to end this section with a short discussion on the relations between dis-
tributional convergence and semi-convergence in distribution in the framework of
general random closed sets. Our starting point is the following

Proposition 1.9. Let ϕ and ϕn, n ∈ N, be random closed sets such that

ϕn
i−D−→ ϕ in F . (1.12)

and (ϕn) is stochastically bounded. Then

lim sup
n→∞

P

 r⋂
j=1

{ϕn ∩ Fj 6= ∅}

 ≤ P

 r⋂
j=1

{ϕ ∩ Fj 6= ∅}

 (1.13)

for all r ∈ N and all F1, . . . , Fr ∈ F .

If in addition ϕn, n ∈ N, are nonempty and ϕ = {τ} for some mapping τ : Ω → T
then

ϕn
D−→ ϕ in F . (1.14)

So, semi-convergence in distribution to a singleton plus stochastic boundedness
ensures convergence in distribution, for which in turn however stochastic bounded-
ness in general is not necessary as we have pointed out above by a counter-example.
Therefore, one could expect that actually a sharper result holds which comes along
without the boundedness requirement. Thus we ask whether the following conclusion
is true:

ϕn
i−D−→ ϕ = {τ} in F ⇒ ϕn

D−→ ϕ = {τ} in F ? (1.15)

The answer is negative as we show by the following

Counter-example. Let us assume that the implication (1.15) is true. For the sake
of convenience we only consider T = Rd, but our arguments can easily be extended
to general T lcscH. To this end introduce the non-random sets ϕn := {tn}, where
tn := 0, if n is even, and |tn| > n, if n is odd, where | · | denotes the Eulidean norm.
Then the Kuratowski-limessuperior is equal to

K − lim sup
n→∞

ϕn = {0},

whence by Lemma 2.1 of Vogel [16] we have that ϕn → ϕ := {0} in τMiss. Now, for
every open O ∈ τMiss that contains ϕ it follows that

lim inf
n→∞

P(ϕn ∈ O) = lim inf
n→∞

1{ϕn∈O} = 1 = P(ϕ ∈ O),
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whereas for O ∈ τMiss not containing ϕ one has that

lim inf
n→∞

P(ϕn ∈ O) ≥ 0 = P(ϕ ∈ O).

Thus by the Portmanteau-Theorem of Gänssler and Stute [3], Proposition 8.4.9,
it follows that ϕn

i−D−→ ϕ, so that by our assumption ϕn
D−→ ϕ. Another application

of the Portmanteau-Theorem yields that g(ϕn) → g(ϕ) for all functions g : F → R
which are bounded and continuous with respect to τFell. As a consequence ϕn → ϕ
in τFell, because otherwise there is an open set O ∈ τFell that contains ϕ and a sub-
sequence (ϕnk

)k∈N such that ϕnk
/∈ O for all k ∈ N. According to Uryson’s Lemma

there exists a continuous function g such that g(ϕ) = 0 and g = 1 on the complement
O := F \ O as well as 0 ≤ g ≤ 1. Therefore, g(ϕnk

) = 1 → 1 6= 0 = g(ϕ), whence
g(ϕn) 9 g(ϕ), a contradiction. This shows that ϕn → ϕ in τFell, which in turn is
a contradiction to the fact that the Kuratowski-limesinferior K − lim infn→∞ ϕn is
empty. Hence the implication in (1.15) is not true.

To sum up, convergence in distribution ϕn
D−→ ϕ always entails semi-convergence

in distribution ϕn
i−D−→ ϕ, whereas the converse is not true, even if the limit is a

singleton. However in that special case the additional requirement of stochastic
boundedness makes the reverse conclusion to be valid.

2. PROOFS

P r o o f . (Theorem 1.1) According to Vogel [16] for the derivation of (1.3) we have
to show that

lim sup
n→∞

P

 r⋂
j=1

{ϕn ∩Kj 6= ∅}

 ≤ P

 r⋂
j=1

{ϕ ∩Kj 6= ∅}

 (2.1)

for all r ∈ N and all compact K1, . . . ,Kr ∈ K.

As before let C := T \ C denote the complement of a set C ⊆ T . We start with

En :=
r⋂

j=1

{ϕn ∩Kj 6= ∅}

⊆
r⋂

j=1

{
inf

t∈Kj

Zn(t) ≤ inf
t∈Kj

Zn(t) + εn

}
(2.2)

⊆
r⋂

j=1

{
inf

t∈Kj

Zn(t) ≤ inf
t∈Kj∩Ti

Zn(t) + εn

}
∀ i ∈ N. (2.3)

To see the inclusion (2.2) let us assume that the event En occurs, but that

inf
t∈Kj

Zn(t) > inf
t∈Kj

Zn(t) + εn for at least one 1 ≤ j ≤ r . (2.4)
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Since ϕn ∩Kj 6= ∅ we find a point τn ∈ ϕn ∩Kj . Conclude that

Zn(τn) ≥ inf
t∈Kj

Zn(t) because τn ∈ Kj

> inf
t∈Kj

Zn(t) + εn by (2.4)

≥ inf
t∈T

Zn(t) + εn because Kj ⊆ T

≥ Zn(τn) because τn ∈ ϕn ⊆ εn −Argmin(Zn).

Thus assumption (2.4) yields a contradiction and we have shown (2.2).
The second inclusion (2.3) simply follows from the fact that Kj∩Ti ⊆ Kj ∀ i ∈ N.
Next, introduce the compact set Ci :=

⋃r
j=1 Kj ∪Ti and note that for every fixed

M ⊆ Ci the mapping

z 7→ inf
t∈M

z(t) , z ∈ `∞(Ci) ,

is continuous on its domain `∞(Ci) endowed with the sup-norm. It follows that for
every i ∈ N

Hi : z 7→

(
inf

t∈Kj

z(t)− inf
t∈Kj∩Ti

z(t)

)
1≤j≤r

is a continuous map from l∞(Ci) to Rr. Therefore assumption (1.1) and Theorem
1.3.6 (Continuous Mapping Theorem CMT) of van der Vaart and Wellner [14] yield
that

Hi(Zn) Hi(Z) in Rr as n →∞ ∀ i ∈ N.

By assumption (1.2) the vector δn := (εn, . . . , εn) ∈ Rr converges to zero in P-
probability. Therefore by Theorem 1.10.2 of van der Vaart and Wellner [14] we
obtain

Hi(Zn)− δn  Hi(Z) in Rr as n →∞ ∀ i ∈ N.

Since the half-space (−∞, 0]r is closed in Rr the Portmanteau Theorem of van
der Vaart and Wellner [14], p. 18, ensures that for all i ∈ N:

lim sup
n→∞

P(En) ≤ lim sup
n→∞

P (Hi(Zn)− δn ∈ (−∞, 0]r) ≤ P(Hi(Z) ∈ (−∞, 0]r) = P(Ei)

(2.5)
where

Ei :=
r⋂

j=1

{
inf

t∈Kj

Z(t) ≤ inf
t∈Kj∩Ti

Z(t)

}
∀ i ∈ N. (2.6)
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Since the sequence (Ei) is monotone decreasing we can conclude that

lim
i→∞

P(Ei)

= P

( ∞⋂
i=1

Ei

)

= P

 r⋂
j=1

∞⋂
i=1

{
inf

t∈Kj

Z(t) ≤ inf
t∈Kj∩Ti

Z(t)

}
= P

 r⋂
j=1

{
inf

t∈Kj

Z(t) ≤ inf
t∈Kj

Z(t)

} (2.7)

≤ P

 r⋂
j=1

{Argmin(Z) ∩Kj 6= ∅}

 . (2.8)

To see (2.7) note that for each fixed 1 ≤ j ≤ r we have that

inf
t∈Kj

Z(t) ≤ inf
t∈Kj∩Ti

Z(t) ∀ i ∈ N ⇐⇒ inf
t∈Kj

Z(t) ≤ inf
i∈N

inf
t∈Kj∩Ti

Z(t).

Since

inf
i∈N

inf
t∈Kj∩Ti

Z(t) = inf{Z(t) : t ∈ ∪∞i=1Kj ∩ Ti} = inf
t∈Kj

Z(t),

we arrive at the desired equality (2.7). As to the inequality (2.8) observe that on
the event E :=

⋂r
j=1{ inf

t∈Kj

Z(t) ≤ inf
t∈Kj

Z(t)} one has that for every 1 ≤ j ≤ r

inf
t∈T

Z(t) = inf
t∈Kj

Z(t) = Z(τj)

for some τj ∈ Kj , since Kj is compact and Z is lower semicontinuous. Conclude
that τj ∈ Argmin(Z) ∩Kj for all 1 ≤ j ≤ r which shows

E ⊆
r⋂

j=1

{Argmin(Z) ∩Kj 6= ∅},

whence (2.8) follows. Taking the limit i →∞ we obtain (2.1) from (2.5) and (2.8).
This finishes our proof. �

P r o o f . (Corollary 1.2) Recall that Argmin(Zn) = εn −Argmin(Zn) with εn = 0,
whence (1.2) is satisfied. An application of Theorem 1.1 yields the result. �

P r o o f . (Theorem 1.4) From Theorem 1.1 we know that ϕn
i−D−→ ϕ in F with

ϕ := Argmin(Z). Thus the assertion follows from Proposition 1.9. �
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P r o o f . (Corollary 1.5) The existence of measurable selections is guaranteed by
Corollary 14.6 in Rockafellar and Wets [11]. Here, note that ϕn is nonempty by
assumption, whence the domain dom ϕn := {ω ∈ Ω : ϕn(ω) 6= ∅} is equal to Ω.

To prove the second part of the corollary let (τn) be any sequence of measurable
selections of ϕn with property (1.10). Put ϕ̃n := {τn}, n ∈ N. We check the
conditions of Theorem 1.4. First, note that {ϕ̃n∩G 6= ∅} = {τn ∈ G} ∈ A for all open
G, whence each ϕ̃n is a random closed set. Further, since {τn /∈ Ti} = {ϕ̃n * Ti}
assumption (1.10) guarantees the validity of (1.5) for the sequence (ϕ̃n). Thus for
every closed set F it follows from (1.8) with r = 1 that

lim sup
n→∞

P(τn ∈ F ) = lim sup
n→∞

P({τn} ∩ F 6= ∅) ≤ P({τ} ∩ F 6= ∅) = P(τ ∈ F ),

from which the assertion (1.11) follows by the Portmanteau-Theorem, confer Propo-
sition 8.4.9 of Gänssler and Stute [3]. �

The proof of Proposition 1.9 relies on an a sufficient (and necessary) condition for
convergence in distribution of random closed sets given in Theorem 2.1 of Norberg
[8], confer also Theorem 14.27 in Kallenberg [5].

To formulate it let C denote the Borel-σ-algebra on T and define the family of
sets Ĉ := {C ∈ C : C is relatively compact}. Moreover, for any random closed set ϕ
let

Ĉϕ := {C ∈ Ĉ : P(ϕ ∩ C◦ 6= ∅) = P(ϕ ∩ Cc 6= ∅)},

where C◦ and Cc denotes the interior and the closure, respectively, of (any) set C.
Here, the probabilities occuring in Ĉϕ are well-defined by definition of BFell, since
C◦ is open and Cc is compact.

Theorem (Norberg). Let ϕ, ϕ1, ϕ2, . . . be random closed in some lcscH space T .
Then ϕn

D→ ϕ if and only if

P(ϕn ∩ C 6= ∅) → P(ϕ ∩ C 6= ∅) ∀ C ∈ Ĉϕ. (2.9)

Note that the probabilities in (2.9) are well-defined, since {F ∈ F : F ∩ C 6= ∅ :
C ∈ Ĉ} generates the Borel-σ-algebra BFell as is shown by Norberg [8], p. 727.

P r o o f . (Proposition 1.9) For the proof of (1.13) observe that for all i ∈ N:

r⋂
j=1

{ϕn ∩ Fj 6= ∅} ⊆
r⋂

j=1

{ϕn ∩ (Fj ∩ Ti) 6= ∅} ∪ {ϕn * Ti}.

To see the inclusion assume that there exists some 1 ≤ j ≤ r such that ϕn∩(Fj∩Ti) =
∅ and that ϕn ⊆ Ti. Then ϕn∩Fj = (ϕn∩Fj ∩Ti)∪ (ϕn∩Fj ∩T i) = ϕn∩Fj ∩T i ⊆
ϕn∩T i = ∅ , because ϕn ⊆ Ti, whence ϕn∩Fj = ∅. Next, note that Fj∩Ti, 1 ≤ j ≤ r
are compact. Thus by (1.12) and Lemma 2.1 of Vogel [16] we obtain:

lim sup
n→∞

P

 r⋂
j=1

{ϕn ∩ Fj 6= ∅}

 ≤ P

 r⋂
j=1

{ϕ ∩ (Fj ∩ Ti) 6= ∅}

+lim sup
n→∞

P(ϕn * Ti).
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Taking the limit i →∞ yields the assertion (1.13) upon noticing (1.5) and that

r⋂
j=1

{ϕ ∩ (Fj ∩ Ti) 6= ∅} ↑
r⋂

j=1

{ϕ ∩ Fj 6= ∅} as i →∞.

For the proof of (1.14) we have to deduce (2.9) of Norberg’s Theorem. The key
step for this is to show that

lim inf
n→∞

P(ϕn ∩G 6= ∅) ≥ P(ϕ ∩G 6= ∅) ∀ G ∈ G. (2.10)

Indeed, then it follows

P(ϕ ∩ C◦ 6= ∅) ≤ lim infn→∞ P(ϕn ∩ C◦ 6= ∅) by (2.10))
≤ lim infn→∞ P(ϕn ∩ C 6= ∅)
≤ lim supn→∞ P(ϕn ∩ C 6= ∅)
≤ lim supn→∞ P(ϕn ∩ Cc 6= ∅)
≤ P(ϕ ∩ Cc 6= ∅) by (1.13)
= P(ϕ ∩ C◦ 6= ∅) because C ∈ Ĉϕ

= P(ϕ ∩ C 6= ∅) because C◦ ⊆ C ⊆ Cc.

Thus is remains to show (2.10). But to see this note that

P(ϕ ∩G 6= ∅) = P(τ ∈ G)

= 1− P(τ ∈ G)

= 1− P(ϕ ∩G 6= ∅)
≤ 1− lim supn→∞ P(ϕn ∩G 6= ∅) by (1.13), because G is closed

= lim infn→∞ P(ϕn ∩G = ∅)
≤ lim infn→∞ P(ϕn ∩G 6= ∅) because ϕn 6= ∅.

This completes the proof. �
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