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Abstract

Professor Lubomír Kubáček has provided exceptional contributions
to mathematical statistics and its applications. Because of his excellent
knowledge in mathematical statistics as well as in the different fields of
natural and especially technical sciences, he contributed to solution of
a large number of real world problems. The continuation of Professor
Kubáček’s scientific work and his scientific school is demonstrated by the
results of his numerous students. Here we present just one illustration of
Professor Kubáček’s original research and its extension by his followers,
namely, the calibration problem.
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1 Introduction

Calibration undoubtedly plays a crucial role in many applications of natural,
technical, economical, as well as biomedical sciences. The most important con-
tributions to proper mathematical-statistical formulation and solution of the
calibration problem include the seminal works by Eisenhart [3], Krutchkoff [5],
Scheffé [12], and Brown [1]. In this paper we deal with the parametric aproach.
In Section 2 we describe the calibration problem as considered by Kubáček and
Kubáčková in [8], [9]. In Sections 2.1–2.3 we present some of our results, see
e.g. [13], [14], originally motivated by the research work of Professor Kubáček
and extending his research.

2 The calibration problem

Calibration curve, roughly speaking, expresses the relationship between the ideal
(true, error-free) results of measuring the same object (substance, quantity) by
two measuring devices (instruments) or measurement techniques, say A and
B, respectively. Under the term calibration problem we understand here (1)
the task of fitting the calibration curve based on well-designed calibration ex-
periment, in particular, finding the proper estimators of the calibration curve
coefficients, and (2) constructing the interval estimators for further determina-
tions of the unknown true value of the measured object in units of the more
precise measuring instrument, given measurement(s) in units of the less precise
instrument, made by the help of the obtained calibration curve.
Let us have n different objects (substances, quantities) v1, v2, . . . , vn and we

measure them with two measuring devices A and B, respectively. The mea-
surements with the device A constitute the normally distributed n-dimensional
random vector X (i.e. X ∼ N(μ;σ2

xIn,n)) and measurements with the (ref-
erence) device B constitute the normally distributed n-dimensional random
vector Y (i.e. Y ∼ N(ν;σ2

yIn,n)). These measurements are mutually inde-
pendent. The vector of error-free measurement results made by the instrument
A is μ = (μ1, . . . , μn)

′ and the vector of error-free measurement results made
by the instrument B is ν = (ν1, . . . , νn)

′.
It is assumed that over the typical range of values of μ and ν (the range of

interest) the true, however unknown, calibration curve is a linear function, i.e.
νi = a + bμi, i = 1, 2, . . . , n with (unknown) parameters a, b. So we have the
following calibration model(

X
Y

)
∼ N

[(
μ
ν

)
,

(
σ2
xI 0
0 σ2

yI

)]
(1)

with nonlinear constraints on parameters

ν = a1+ bμ, (2)

where 1 = 1n,1 = (1, . . . , 1)′ is an n-dimensional vector of ones, I is an n × n
identity matrix, and a and b are unknown coefficients which specify the intercept
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and the slope of the calibration line. The instrument B is here considered to be
more precise than the instrument A (σ2

y ≤ σ2
x). The instrument A is said to be

the calibrated device.
The above mentioned model (1)–(2) is a nonlinear regression model, that

could be also interpreted as an error-in-variables model, (EIV), see e.g. Casella
and Berger [2].
Kubáček and Kubáčková suggested another solution via EIV model:

Linearize the model (1)–(2) by Taylor series expansion locally about μ0 =
(μ01, . . . , μ0n)

′ and b0 (some values chosen near to the true parameters μ and
b) and neglect the terms of second and higher order. So, μ = μ0 + δμ,
b = b0 + δb and the new parameters of the approximate linear model are
δμ = (δμ1, . . . , δμn)

′, ν, a, δb, σ2
x, σ

2
y:(

X − μ0

Y

)
∼ N

[(
δμ
ν

)
,

(
σ2
xI 0
0 σ2

yI

)]
(3)

with linear constraints

b0μ0 + (b0I
...− I)

(
δμ
ν

)
+ (1,μ0)

(
a
δb

)
= 0. (4)

If the dispersions σ2
x and σ2

y are not known, Kubáček and Kubáčková sug-
gested in [8] to estimate them using the (iterated) (σ2

x0, σ
2
y0)-MINQUE, i.e. the

(σ2
x0, σ

2
y0)-locally minimum norm quadratic unbiased estimator. For more de-

tails on quadratic estimation of variance components see e.g. [10] and also [6, 8].
However, it is necessary to change the measuring model, as the MINQUEs of
the parameters σ2

x and σ2
y in model (3)–(4) do not exist. The common and

relatively easy way is to repeat the whole experiment m-times independently.
The replicated measurements are Xj = (Xj1, . . . , Xjn)

′, Y j = (Yj1, . . . , Yjn)
′,

j = 1, . . . ,m.
If we denoteM [1,μ0] = I − [1,μ0] ([1,μ0]

′[1,μ0])
−1

[1,μ0]
′ then the BLUEs

(best linear unbiased estimators) of μ, ν, a and δb (see also in [14]) in replicated
model are

μ̂ = X̄ +
b0σ

2
x

b20σ
2
x + σ2

y

M [1,μ0](Ȳ − b0X̄), (5)

ν̂ = Ȳ − σ2
y

b20σ
2
x + σ2

y

M [1,μ0](Ȳ − b0X̄), (6)

(
â

δ̂b

)
=

(
n 1′μ0

μ′
01 μ′

0μ0

)−1 (
1′(Ȳ − b0X̄)
μ′

0(Ȳ − b0X̄)

)
, (7)

with the covariance matrix

cov

(
â

b̂

)
=

b20σ
2
x + σ2

y

m

(
n 1′μ0

μ′
01 μ′

0μ0

)−1

(X̄ = 1
m

∑m
j=1 Xj , Ȳ = 1

m

∑m
j=1 Y j).
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Kubáček and Kubáčková in [8] derived also the (σ2
x0, σ

2
y0)-MINQUEs of σ

2
x

and σ2
y in the replicated model. The estimators are as follows(

σ̂2
x

σ̂2
y

)
=

1

n(m− 1)

[
I2,2 − c0

(
b40σ

4
x0 b20σ

4
x0

b20σ
4
y0 σ4

y0

)](
κ̂1

κ̂2

)
, (8)

where

c0 =
n− 2

(b40σ
4
x0 + σ4

y0)(mn− 2) + 2b20σ
2
x0σ

2
y0(m− 1)n

,

κ̂1 =

m∑
j=1

(Xj − X̄)′(Xj − X̄) +m(X̄ − μ̂)′(X̄ − μ̂),

κ̂2 =
m∑
j=1

(Y j − Ȳ )′(Y j − Ȳ ) +m(Ȳ − ν̂)′(Ȳ − ν̂).

The covariance matrix (correct locally at (σ2
x0, σ

2
y0)) of the estimator (8) is

W =

(
w11 w12

w21 w22

)
=

2

n(m− 1)

[
I2,2 − c0

(
b40σ

4
x0 b20σ

4
x0

b20σ
4
y0 σ4

y0

)](
σ4
x0 0
0 σ4

y0

)
. (9)

Kubáček and Kubáčková in [8] suggested to use the (σ2
x0, σ

2
y0)-MINQUE esti-

mates instead of the true (unknown) values σ2
x and σ2

y in (5)–(7).
They made also some basic investigations for determination, whether such

plug-in estimators are proper for practical purposes, i.e. for measuring with
calibrated (less precise) device A. If the future measurement realized with this
instrument, say x, is a realization of a random variable X, distributed as X ∼
N(μx, σ

2
x), (μx represents the unobservable true value of measurand) then the

suggested estimator of νx = a+ bμx is

ν̂x = â+ b̂X (10)

which is a nonlinear estimator. In [7], Kubáček has suggested a method to
determine the bias and dispersion of the estimator (10) and a simple rule to
decide whether it is suitable for practical purposes or not.
In the next sections we present some extensions of the Kubáček’s results, as

originally suggested in [13] and [14]: derivation of the approximate distribution
of the test statistics about the regression parameters of the calibration line,
derivation of the Scheffé-type confidence region for the calibration line, as well
as derivation of new approximate multiple-use calibration intervals for a series of
future determinations based on the approximate (linearized) calibration model
suggested by Kubáček.

2.1 Estimation of the calibration line parameters

If there is no specific prior information on the true values of the calibration line
parameters μ, b, and the variance components σ2

x0 and σ2
y0 the following set is
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a natural choice of the initial values, estimated from the measured data:

μ̂0 = X̄,

b̂0 =
nX̄

′
Ȳ − (1′X̄)(1′Ȳ )

nX̄
′
X̄ − (1′X̄)2

,

σ̂2
x0 =

1

n(m− 1)

n∑
i=1

m∑
j=1

(Xji − X̄i)
2,

σ̂2
y0 =

1

n(m− 1)

n∑
i=1

m∑
j=1

(Yji − Ȳi)
2.

(11)

Further we compute â, b̂ from (7), μ̂ from (5), ν̂ from (6), σ̂2
x and σ̂2

y from (8).
The estimation procedure can be iterated until convergence is reached. After
reaching the convergence we calculate the covariance matrixW according to (9).
For testing the null hypothesis H0 : (a, b)′ = (a∗, b∗)′ and for construction of

the confidence region for the parameters (a, b)′ we suggest to use the F -statistic

F =
1

2

m

b20σ̂
2
x + σ̂2

y

(
â− a

b̂− b

)′ (
n 1′μ0

μ′
01 μ′

0μ0

)(
â− a

b̂− b

)
, (12)

with the values of the parameters given from the last iteration stipulated above.
By using the method suggested by Kenward and Roger in [4], under H0 the

distribution of the F -statistic could be approximated by the Fisher-Snedecor
F -distribution with 2 and u degrees of freedom, i.e. F ∼ F2,u, where u is given
by

u = (mn− 2) +
2n(m− 1)b20σ̂

2
xσ̂

2
y

b40σ̂
4
x + σ̂4

y

. (13)

For more details see [14] and [13].

2.2 Scheffé-type confidence region for the calibration line

Let (a, b)′ represents the true vector of the calibration line parameters ν = a+bμ,
μ ∈ 〈μl, μu〉, where the interval 〈μl, μu〉 represents the typical range of the
calibration experiment.
By applying the Scheffé’s Theorem, i.e. a method for adjusting significance

levels in a linear regression analysis to account for multiple comparisons, see
e.g. [11] and also [6, 8], we directly get from (12) the 100× (1−α)%-confidence
region for the calibration line a+ bμ, for all μ ∈ 〈μl, μu〉:

Pr

{∣∣∣(â+ b̂μ)− (a+ bμ)
∣∣∣ ≤

√
2F2,u(1− α)

b20σ̂
2
x + σ̂2

y

m

(
1

n
+

(μ− μ̄0)2

μ′
0μ0 − nμ̄2

0

)}

= 1− α, (14)

where μ̄0 = (1′μ0)/n and F2,u(1 − α) is the (1 − α)-quantile, α ∈ (0, 1) of the
Fisher-Snedecor F -distribution with 2 and u degrees of freedom.
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Figure 1: Calibration line and its Scheffé-type confidence region. The thick
dotted line represents the true calibration line, the solid line is the estimated
calibration line together with the limits of the 99% confidence region (dashed-
dotted lines). The dashed lines represents the Scheffé-type interval estimator for
νx = a + bμx, where μx = 7.5, based on x = 7.1097, the realization of random
variable X ∼ N(7.5, 0.15).

2.3 Multiple-use calibration—measuring with calibrated
device

In this section we will derive a new approximate multiple-use calibration inter-
vals for a series of future determinations based on the approximate (linearized)
calibration model (3) with linear constraints (4).
We will assume as in (10) that the future measurement realized by the cali-

brated (less precise) measurement device A, say x, is a realization of a random
variable X, distributed as X ∼ N(μx, σ

2
x), where μx represents unobservable

true value of measurand given in units of the less precise instrument and further
μx ∈ 〈μl, μu〉.
Based on the observed value x we suggest the estimate and a simple deriva-

tion of the confidence interval for νx = a+ bμx (the unobservable true value of
measurand in units given by the more precise (reference) measuring device B).
First, we suggest to construct the approximate (1− γ)-confidence region for

the calibration line, for small significance level γ ∈ (0, 1), chosen by the user,
according to (14).
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Second, for small significance level α ∈ (0, 1), we suggest to construct the
approximate (1−α)-confidence interval for μx, given x and the estimated value
(realization of) σ̂2

x. For that we suggest to costruct t-statistic t = (X − μx)/σ̂x

with approximate Student’s t distribution with v degrees of freedom, where v is
approximated by v = 2σ̂4

x/w11, with w11 being the first element of the matrix
W given by (9). This leads to the approximate (1− α)-confidence interval for
unobservable value μx:

μx ∈ {x± σ̂xtv(1− α/2)}, (15)

where tv(1− α/2) is the (1− α/2)-quantile of the Student’s t distribution with
v degrees of freedom. Let μxl and μxu denote the lower and upper limit of the
approximate (1− α)-confidence interval for μx.
The suggested interval estimator for νx = 〈νxl, νxu〉 is then given as the in-

tersection of the bounds of the (1−γ)-confidence region for the whole calibration
line a+ bμ and the limits of the (1−α)-confidence interval 〈μxl, μxu〉 for μx. In
fact,

νxl = â+ b̂μxl −
√
2F2,u(1− γ)

b20σ̂
2
x + σ̂2

y

m

(
1

n
+

(μxl − μ̄0)2

μ′
0μ0 − nμ̄2

0

)

νxu = â+ b̂μxu +

√
2F2,u(1− γ)

b20σ̂
2
x + σ̂2

y

m

(
1

n
+

(μxu − μ̄0)2

μ′
0μ0 − nμ̄2

0

)
.

(16)

Using Bonferroni’s inequality, 〈νxl, νxu〉 is at least 1− (α+ γ)-confidence inter-
val for the (unobservable) value νx. Simulations indicate that the confidence
interval 〈νxl, νxu〉 is conservative, “safe” and appropriate for metrology.

3 Conclusion

In this paper we have illustrated small part of broad scientific interests of pro-
fessor Kubáček’s research work. The continuation of his scientific school is well
demonstrated by the results of his students and co-workers. Here we have tried
to emphasize Kubáček’s contribution in the field of statistics in measurement
science and metrology, namely his contribution to solving the calibration prob-
lem, and to illustrate extensions of Kubáček’s research by his students.
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