
Applications of Mathematics

Tie Zhu Zhang; Shu Hua Zhang
Finite element derivative interpolation recovery technique and superconvergence

Applications of Mathematics, Vol. 56 (2011), No. 6, 513–531

Persistent URL: http://dml.cz/dmlcz/141763

Terms of use:
© Institute of Mathematics AS CR, 2011

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/141763
http://dml.cz


56 (2011) APPLICATIONS OF MATHEMATICS No. 6, 513–531

FINITE ELEMENT DERIVATIVE INTERPOLATION RECOVERY

TECHNIQUE AND SUPERCONVERGENCE*

Tie Zhang, Shenyang, Shuhua Zhang, Tianjin

(Received May 11, 2009)

Abstract. A new finite element derivative recovery technique is proposed by using the
polynomial interpolation method. We show that the recovered derivatives possess supercon-
vergence on the recovery domain and ultraconvergence at the interior mesh points for finite
element approximations to elliptic boundary problems. Compared with the well-known
Z-Z patch recovery technique, the advantage of our method is that it gives an explicit re-
covery formula and possesses the ultraconvergence for the odd-order finite elements. Finally,
some numerical examples are presented to illustrate the theoretical analysis.
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1. Introduction

It is well known that the superconvergence property of finite element methods

has attracted considerable attention because of its practical importance in enhanc-

ing the accuracy of finite element approximations and in constructing the adaptive

algorithm of finite element methods via a posteriori error estimators [1], [4], [5], [8],

[12]. In this field, many derivative recovery techniques have been established in or-

der to obtain superconvergence for finite element approximations in derivative. For

example, the averaging techniques [3], [6], the L2-projection techniques [7], [9], the

well-known Zienkiewicz-Zhu superconvergence patch recovery technique (SPR) [11],

[12], the polynomial preserving recovery technique (PPR) [12], are popular. The

basic idea of SPR and PPR is to use the least squares polynomial fitting method

*This work was supported in part by theNational Basic Research Program (2012CB955804)
and the National Natural Science Foundation of China (11071033 and 11171251.
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to fit the derivative of the finite element solution at the Gauss points (SPR) or the

solution itself at the Lobatto points (PPR). Both SPR and PPR techniques possess

the superconvergence on the patch recovery domain and the ultraconvergence (two

orders higher than the optimal global convergence order) at the interior mesh points

for the derivative approximations of finite element solutions for the elliptic boundary

value problems [12], [13]. However, these two techniques are only valid for even-order

finite elements when the ultraconvergence is concerned. Recently, in [17] Zhu et al.

have proposed a recovery technique for the odd-order finite elements of order k > 1.

Once again, this technique employs the least squares method to fit the derivative of

the finite element solution at some special points.

In this paper, we consider the kth-order rectangular finite element approximation

to the following elliptic boundary value problem on a rectangular domain:

Au = f in Ω,(1.1)

u = 0 on ∂Ω,

where

(1.2) A = −

2
∑

i,j=1

∂

∂xj
aij

∂

∂xi
+

2
∑

i=1

ai
∂

∂xi
+ a0I.

A new derivative recovery technique is provided by using the polynomial interpo-

lation method on the local recovery domain. By means of this recovery method,

we establish the superconvergence for the recovery derivatives of the finite element

solutions, and the ultraconvergence if the orders of finite elements are odd and

A = −∆ + a0I. Compared with the SPR and the PPR techniques or Zhu’s method,

the advantage of our method is as follows: First, it gives an explicit derivative re-

covery formula while all the above three methods are implicit such that they cost

some additional computations; secondly, it has the ultraconvergence for the odd-

order finite element approximations. Moreover, Zhu’s method is only valid for the

odd-order finite elements of order k > 1. However, our method is applicable for the

finite elements of order k > 1. As a by-product of the superconvergence estimates,

we also obtain an asymptotically exact a posteriori error estimator for the finite

element approximation to the elliptic boundary value problem.

Throughout this paper, we use the notations H1
0 (Ω) and Wm

p (Ω) to represent

the usual Sobolev spaces on a domain Ω, and ‖ · ‖m,p and | · |m,p the norm and

the seminorm of the space Wm
p (Ω), respectively, and the letter C a generic positive

constant independent of the mesh size h.

This paper is organized in the following way. In Section 2, we introduce the

interpolation operator of projection type and give its approximation properties. In
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Section 3, the derivative interpolation recovery operator is defined, and its super-

approximation and ultra-approximation properties are analyzed. In Section 4, we

first prove the superconvergence and the ultraconvergence properties of the recovered

derivatives of the finite element solutions, and then give an asymptotically exact a

posteriori error estimator. Section 5 is devoted to some numerical experiments to

illustrate the theoretical results.

2. Interpolation operator of projection type and its

approximation properties

Let e = e1×e2 = (xe−he, xe +he)×(ye− h̄e, ye+ h̄e) be an arbitrary element, and

{lj(x)}∞j=0 and {l̃j(y)}∞j=0 the normalized orthogonal Legendre polynomial systems

in L2(e1) and L2(e2), respectively. Set

ω0(x) = ω̃0(y) = 1, ωj+1(x) =

∫ x

xe−he

lj(t) dt,

ω̃j+1(y) =

∫ y

ye−h̄e

l̃j(t) dt, j > 0.

It is well known that the polynomials lk(x) and ωk+1(x) (k > 1) have k and k + 1

zero points in e1 and in the closure e1, respectively, and these zero points are sym-

metrically distributed with respect to the middle point xe. Moreover, we know that

these polynomials also possess the following symmetry and antisymmetry:

ω2j(xe + x) = ω2j(xe − x), ω2j−1(xe + x) = −ω2j−1(xe − x),(2.1)

l2j(xe + x) = l2j(xe − x), l2j−1(xe + x) = −l2j−1(xe − x).(2.2)

The completely parallel conclusions hold for the polynomials ω̃k+1(y) and l̃k(y) in

the element e2 = (ye − h̄e, ye + h̄e).

Now, let u ∈ H2(e). Then, we have the Fourier expansion [5]:

u(x, y) =
∞
∑

i=0

∞
∑

j=0

βijωi(x)ω̃j(y), (x, y) ∈ e,(2.3)

β00 = u(xe − he, ye − h̄e),(2.4)

βij =

∫

e

uxyli−1(x)l̃j−1(y) dxdy,

βi0 =

∫

e1

ux(x, ye − h̄e)li−1(x) dx,(2.5)

β0j =

∫

e2

uy(xe − he, y)l̃j−1(y) dy, i, j > 1.
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Introduce the kth-order and the bi-complete kth-order polynomial spaces Pk and

Qk, respectively, by

p(x, y) =

k
∑

i=0

k−i
∑

j=0

aijx
iyj ∀ p ∈ Pk; q(x, y) =

k
∑

i=0

k
∑

j=0

aijx
iyj ∀ q ∈ Qk.

Define the kth-order interpolation operator of projection type

πk : H2(e) → Qk(e)

by

(2.6) πku(x, y) =

k
∑

i=0

k
∑

j=0

βijωi(x)ω̃j(y), (x, y) ∈ e.

Then, πk is uniquely solvable with respect to Qk(e) and possesses the following

properties taken from [5]. For all k > 1,

πku(xe ± he, ye ± h̄e) = u(xe ± he, ye ± h̄e),(2.7)

|u − πku|m,p,e 6 Chk+1−m|u|k+1,p,e, 1 6 p 6 ∞, 0 6 m 6 k + 1,(2.8)

where h =
√

h2
e + h̄2

e. From (2.3) and (2.6) we derive that

(2.9) u − πku =

( k
∑

i=0

∞
∑

j=k+1

+
∞
∑

i=k+1

k
∑

j=0

+
∞
∑

i=k+1

∞
∑

j=k+1

)

βijωi(x)ω̃j(y).

Lemma 2.1. Let u ∈ Qk(e) ∪ {xk+1, yk+1}, and D1 = (∂/∂x), D2 = (∂/∂y).

Then, we have

u − πku = βk+1,0ωk+1(x) + β0,k+1ω̃k+1(y), D1D2(u − πku) = 0,

D1(u − πku) = βk+1,0 lk(x), D2(u − πku) = β0,k+1 l̃k(y).

P r o o f. Let u ∈ Qk(e) ∪ {xk+1, yk+1} be such that D1D2u ∈ Qk−1(e), D1u ∈

Pk(e1), and D2u ∈ Pk(e2). Then, it follows from (2.4)–(2.5) and the orthogonality

of the system of Legendre polynomials that

βij = 0, i > k + 1, j > 1 or i > 1, j > k + 1,

βi0 = β0j = 0, i > k + 2, j > k + 2,

which, together with (2.9), leads to the expression for u − πku in Lemma 2.1.

The other expressions follow by taking partial derivatives of the formula for u−πku,

and the proof is complete. �
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From Lemma 2.1 and the orthogonality of the system of Legendre polynomials,

we derive that for u ∈ Qk(e) ∪ {xk+1, yk+1},

∫

e

∇(u − πku)∇v dxdy = 0 ∀ v ∈ Qk(e).

This shows that the interpolation approximation πku can be regarded as the finite

element solution of the Laplace equation when the exact solution u belongs to Qk ∪

{xk+1, yk+1}.

Moreover, when u = u(x), from (2.4)–(2.5) we have βij = β0j = 0, i, j > 1. Then,

the expressions (2.3) and (2.6) become, respectively,

(2.10) u(x) =

∞
∑

i=0

βi0ωi(x), πku(x) =

k
∑

i=0

βi0ωi(x), x ∈ e1.

Thus, we see that when restricted to e1, πk is identical to the interpolation operator

of projection type in one dimensional space (see [5]).

3. Derivative interpolation recovery technique

In this section, we introduce the derivative interpolation recovery operator, and

discuss its super-approximation and ultra-approximation properties. Let e(s) (s =

1, 2, 3, 4) be four elements which share a common interior nodal point (x0, y0). Cor-

responding to the point (x0, y0), we introduce a patch domain D0 (see Fig. 1) as

follows:

D0 =

4
⋃

s=1

e(s) = (x0 − hi, x0 + hi+1) × (y0 − h̄j , y0 + h̄j+1).

Denote the patch recovery intervals by

E1 = (x0 − hi, x0 + hi+1) and E2 = (y0 − h̄j , y0 + h̄j+1).

On E1 and E2, we will define the derivative recovery operator in x-direction and

y-direction, respectively. The main idea of the interpolation recovery technique is

to choose some special interpolation nodes in El (in what follows, such interpola-

tion nodes are called the sample points), and then use the polynomial interpolation

method to recover the derivatives of finite element solutions. Let {gi} (or {g̃j})

(i = ±1, . . .± k) be the 2k sample points in E1 (or E2), that is

x0 − hi < g−k < . . . < g−1 < x0 < g1 < . . . < gk < x0 + hi+1,

y0 − h̄j < g̃−k < . . . < g̃−1 < y0 < g̃1 < . . . < g̃k < y0 + h̄j+1.
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e(2)

e(3)

e(1)

e(4)

h̄j

h̄j+1

hi+1hi

(x0, y0)

Figure 1. Patch domain.

Corresponding to the sample sets {gi} and {g̃j}, we introduce the (2k − 1)th-order

Lagrange interpolation basis functions ϕi(x) ∈ P2k−1(E1) and ϕ̃j(y) ∈ P2k−1(E2)

defined by

ϕi(x) =

±k
∏

l=±1,l 6=i

(x − gl)

(gi − gl)
,

ϕ̃j(y) =

±k
∏

l=±1,l 6=j

(y − g̃l)

(g̃j − g̃l)
, i, j = ±1, . . . ,±k.

Then, {ϕi(x)} and {ϕ̃j(y)} form bases of the spaces P2k−1(E1) and P2k−1(E2),

respectively.

Now, for any given piecewise smooth function w ∈ W 1
∞(D0), we define the deriva-

tive interpolation recovery operator

R : W 1
∞(El) → P2k−1(El)

according to the following conditions:

RD1w(x, y0) =

±k
∑

i=±1

D1w(gi, y0)ϕi(x), x ∈ E1,(3.1)

RD2w(x0, y) =

±k
∑

j=±1

D2w(x0, g̃j)ϕ̃j(y), y ∈ E2.(3.2)

Note thatDluh may be discontinuous across the node (x0, y0) when uh is a continuous

piecewise polynomial on D0, and the recovered derivative RDluh is a (2k−1)th-order

polynomial on El.
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Lemma 3.1. The derivative recovery operator R possesses the following proper-

ties:

RDluk+s = Dluk+s ∀uk+s ∈ Pk+s(El), 1 6 s 6 k, l = 1, 2,(3.3)

‖RDlu‖0,∞,El
6 C‖Dlu‖0,∞,El

∀u ∈ W 1
∞(El), l = 1, 2.(3.4)

Furthermore, if the sample points {gi} (or {g̃j}) are chosen as the 2k Gauss points

in the elements (x0 −hi, x0) and (x0, x0 +hi+1) (or (y0− h̄j , y0) and (y0, y0 + h̄j+1)),

then

(3.5) Dluk+1 = RDlπkuk+1 ∀uk+1 ∈ Pk+1(El), l = 1, 2.

P r o o f. Let uk+s ∈ Pk+s(El). Then, we have that Dluk+s ∈ Pk+s−1(El).

Because k+s−1 6 2k−1 when s 6 k, the equality (3.3) follows from the uniqueness

of the interpolation polynomial (see (3.1)–(3.2)). The estimate (3.4) can be verified

directly by mapping El onto the standard element Ê = (−1, 1). When {gi} are the

Gauss points, from Lemma 2.1 we see that

D1uk+1(gi) = D1πkuk+1(gi), i = ±1, . . . ,±k.

Then, from (3.1) we obtain

RD1uk+1(x, y0) = RD1πkuk+1(x, y0).

Thus, (3.5) follows from (3.3). �

Theorem 3.1. Assume that u ∈ W k+2
∞ (D0), and the recovery operator R is

defined by (3.1)–(3.2) with the Gauss points as the sample points. Then, R possesses

the following super-approximation property:

(3.6) ‖Dlu − RDlπku‖0,∞,El
6 Chk+1|u|k+2,∞,D0

, k > 1, l = 1, 2.

P r o o f. The estimate (3.6) can be obtained by using Lemma 3.1 and the

Bramble-Hilbert Lemma (see [2], Theorem 4.1.3). �

In [14], we have chosen the Gauss points as the interpolation sample points and

obtained the ultraconvergence at (x0, y0) for the even-order finite elements. However,

the method and the result there are not valid for the odd-order finite elements. We

need to choose again the new sample points in order to obtain the ultraconvergence

for the odd-order finite elements.
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Lemma 3.2. Let {lk(x)} be a system of the Legendre orthogonal polynomials on

an interval E = (a, b), and βk and βk+1 any two constants with βkβk+1 6= 0. Then,

the polynomial equation,

(3.7) F (x) ≡ βklk(x) + βk+1lk+1(x) = 0, x ∈ E, k > 1,

has k separated roots in E. Moreover, when setting

β±
k = (k + 2)

∫

E±

(x − x0)
k+1lk(x) dx,(3.8)

β±
k+1 = (k + 2)

∫

E±

(x − x0)
k+1lk+1(x) dx,

where E− = (x0−h, x0) and E+ = (x0, x0 +h) are two adjacent intervals, we further

have that β+
k = −β−

k , β
+
k+1 = β−

k+1, and the 2k roots of F (x) = 0 in E− ∪ E+ are

symmetrically distributed with respect to the point x0.

P r o o f. It is well known that the kth-order Legendre polynomial lk(x) has

k single zeros in E for k > 1, and the k zeros {ξj} of lk(x) and the k + 1 zeros {ηj}

of lk+1(x) are alternately distributed in E (see, for example, [10]), that is,

a < η1 < ξ1 < η2 < ξ2 < . . . < ηj < ξj < ηj+1 < . . . < ηk < ξk < ηk+1 < b.

Since lk(x) only has the k single zeros ξ1, . . . , ξk, the symbol of lk(x) changes alter-

nately on the intervals:

(a, ξ1), (ξ1, ξ2), . . . , (ξk−1, ξk), (ξk, b).

Thus, we have

F (ηj)F (ηj+1) = β2
klk(ηj) lk(ηj+1) < 0, j = 1, . . . , k.

In addition, from Intermediate Value Theorem we know that F (x) has k separated

zeros in E.

In the following, we shall prove the symmetry. Let

F (x) =

{

β+
k lk(x) + β+

k+1lk+1(x), x ∈ E+,

β−
k lk(x) + β−

k+1lk+1(x), x ∈ E−.

Here and afterwards, when we use lk(x) restricted to the interval E+ (or to the

interval E−), we imply that lk(x) is the Legendre polynomial on the interval E+
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(or the interval E−), noting that lk(x)|E+ and lk(x)|E− are two distinct Legendre

polynomials. Since (see (3.8))

β+
i = (k + 2)

∫ x0+h

x0

(x − x0)
k+1li(x) dx, i = k, k + 1,

β−
i = (k + 2)

∫ x0

x0−h

(x − x0)
k+1li(x) dx, i = k, k + 1,

it follows from the variable transformation

x =
h

2
t + x0 +

h

2
(or x =

h

2
t + x0 −

h

2
)

that

β+
i = (k + 2)

(h

2

)k+2
∫ 1

−1

(t + 1)k+1 l̂i(t) dt, i = k, k + 1,

β−
i = (k + 2)

(h

2

)k+2
∫ 1

−1

(t − 1)k+1 l̂i(t) dt, i = k, k + 1,

where l̂i(t) is the standard Legendre polynomial on [−1, 1]. Then, by means of

the variable transformation t = −τ , and the symmetry and antisymmetry proper-

ties (2.2), it is easy to see that β+
k = −β−

k , and β+
k+1 = β−

k+1. Hence, by using (2.2)

we obtain that for 0 < τ < h,

F (x0 + τ) = β+
k lk(x0 + τ) + β+

k+1lk+1(x0 + τ)

= − β−
k lk(x0 + τ) + β−

k+1lk+1(x0 + τ)

=

{

−β−
k lk(x0 − τ) − β−

k+1lk+1(x0 − τ) = −F (x0 − τ), k even,

β−
k lk(x0 − τ) + β−

k+1lk+1(x0 − τ) = F (x0 − τ), k odd,

which implies

F (x0 + τ) = 0 ⇐⇒ F (x0 − τ) = 0, 0 < τ < h.

This shows that the 2k roots of F (x) = 0 in the intervals (x0−h, x0) and (x0, x0 +h)

are symmetrically distributed with respect to the point x0.

Similar conclusions hold for F̃ (y) ≡ β̃k l̃k(y) + β̃k+1 l̃k+1(y) = 0. �

Now let us investigate the super-approximation and the ultra-approximation prop-

erties of the derivative recovery operator at an interior nodal point (x0, y0). Let

D0 consist of four rectangular elements, which are local uniformly in x- and y-

directions, respectively, that is, D0 = (x0−hi, x0 +hi)× (y0− h̄j , y0 + h̄j). When the
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sample points {gi, g̃j} are symmetrically distributed with respect to the point (x0, y0),

we have that

x0 − g−i = gi − x0, gi − gl = g−l − g−i, i, l = 1, 2, . . . , k,(3.9)

y0 − g̃−j = g̃j − y0, g̃j − g̃l = g̃−l − g̃−j , j, l = 1, 2, . . . , k.

This yields that

ϕi(x0) = ϕ−i(x0), ϕ̃j(y0) = ϕ̃−j(y0), i, j = 1, 2, . . . , k.

In this case, at the point (x0, y0), the recovery operator R can be simplified as

(see (3.1)–(3.2))

RD1w(x0, y0) =

k
∑

i=1

[D1w(gi, y0) + D1w(g−i, y0)]ϕi(x0),(3.10)

RD2w(x0, y0) =

k
∑

j=1

[D2w(x0, g̃j) + D2w(x0, g̃−j)]ϕ̃j(y0).(3.11)

Theorem 3.2. Let u ∈ W k+s
∞ (D0) with k > 1 being an odd number, s = 1, 2,

(x0, y0) an interior nodal point, and D0 = (x0 − h, x0 + h) × (y0 − h̄, y0 + h̄). Sup-

pose further that the sample points are the 2k roots of (3.7)–(3.8) in El. Then,

the derivative recovery operator R possesses the following super-approximation and

ultra-approximation properties at the point (x0, y0):

(3.12) |Dlu(x0, y0) − RDlπku(x0, y0)| 6 Chk+s|u|k+1+s,∞,D0
,

where s = 1, 2, k > 1, l = 1, 2.

P r o o f. If, under the conditions of Theorem 3.2, we can prove that

(3.13) Dlu(x0, y0) − RDlπku(x0, y0) = 0 ∀u ∈ Pk+s(El), l = 1, 2, s = 1, 2,

then the conclusion of Theorem 3.2 follows from the Bramble-Hilbert Lemma directly.

Below we only prove (3.13) for l = 1, since for l = 2 the argument is completely

similar.

First, let u ∈ Pk+1(E1). Without loss of generality, we assume that u = pk(x) +

a(x−x0)
k+1. Then, it follows from (2.10) and the orthogonality of the Legendre poly-

nomial system that βi0 = 0 for i > k+2, which implies that u−πku = βk+1,0ωk+1(x).

Thus, we obtain from (3.10) that

(3.14) RD1(u − πku)(x0, y0) =

k
∑

i=1

[β+
k+1,0lk(gi) + β−

k+1,0lk(g−i)]ϕi(x0),
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where we have by utilizing the orthogonality of the Legendre polynomial system

again that

β+
k+1,0 = a(k + 1)

∫ x0+h

x0

(x − x0)
klk(x) dx,

β−
k+1,0 = a(k + 1)

∫ x0

x0−h

(x − x0)
klk(x) dx.

Using a similar argument to that in Lemma 3.2, we find that β+
k+1,0 = β−

k+1,0.

Therefore, (3.14) becomes

(3.15) RD1(u − πku)(x0, y0) = β+
k+1,0

k
∑

i=1

[lk(gi) + lk(g−i)]ϕi(x0).

Noticing that k is odd, we have by means of (2.2) and (3.9) that

lk(g−i) = lk(x0 − (x0 − g−i)) = −lk(x0 + (x0 − g−i))

= − lk(x0 + (gi − x0)) = −lk(gi),

which, together with (3.15) and Lemma 3.1, yields

(3.16) RD1(u−πku)(x0, y0) = D1u(x0, y0)−RD1πku(x0, y0) = 0 ∀u ∈ Pk+1(E1).

Thus, we obtain (3.13) for s = 1.

For s = 2, according to (3.16) we only need to verify (3.13) for u = (x−x0)
k+2. In

fact, it follows from (2.10) and the orthogonality of the Legendre polynomial system

that

u − πku = βk+1,0ωk+1(x) + βk+2,0ωk+2(x) ∀u ∈ Pk+2(E1).

Then, when u = (x − x0)
k+2, we have that

D1(u − πku) = βklk(x) + βk+1lk+1(x) = F (x), x ∈ E1,

where βk = βk+1,0 and βk+1 = βk+2,0 are given in (3.8). Thus, from our special

choice of the sample points (see Lemma 3.2), we derive that

D1(u − πku)(gi, y0) = 0, or D1u(gi, y0) = D1πku(gi, y0), i = ±1, . . . ,±k,

which implies (see (3.1)) that RD1u(x, y0) = RD1πku(x, y0). Using Lemma 3.1

again, we gain that D1u(x, y0) = RD1πku(x, y0), which completes the proof of The-

orem 3.2. �
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R em a r k 3.1. In fact, the recovery formula (3.1)–(3.2) is a simplified form of our

original patch interpolation recovery formula with the Gauss sample points (see [14]):

(3.17) RDlw(x, y) =
±k
∑

i=±1

±k
∑

j=±1

Dlw(gi, g̃j)ϕi(x)ϕ̃(y), l = 1, 2, (x, y) ∈ D0.

The recovery formula (3.17) also possesses the super-approximation and the ultra-

approximation (for even-order case) properties, but it requires more computational

cost. The advantage of the formula (3.17) is in that it can recover the derivative on

the whole patch domain D0 and can be extended to quadrilateral meshes, see [15].

4. Superconvergence and ultraconvergence

Let Ω ⊂ R2 be a rectangular domain with sides parallel to the coordinate axes,

and Jh =
⋃

{e = [xe − he, xe + he] × [ye − h̄e, ye + h̄e]} a regular family of finite

element partitions of Ω parameterized by the mesh size h = max
e∈Jh

{h(e)} with h(e) =

2
√

h2
e + h̄2

e, such that Ω =
⋃

e∈Jh

e. Here we say that a partition Jh is regular, if

{h̄e/he : e ∈ Jh} has uniformly positive lower and upper bounds. Introduce the

kth-order finite element space Sh ⊂ H1
0 (Ω) by

Sh = {v ∈ C(Ω): v|e ∈ Qk(e), v|∂Ω = 0 ∀ e ∈ Jh}.

On each element e ∈ Jh, we define the kth-order interpolation operator πk of pro-

jection type in the same way as in Section 2.

Lemma 4.1. For an arbitrary element e = (xe − he, xe + he)× (ye − h̄e, ye + h̄e),

the interpolation operator πk possesses the following properties:
∫

e

(u − πku)q dxdy = 0 ∀ q ∈ Qk−2(e), e ∈ Jh, k > 2,(4.1)

∫

l

(u − πku)p ds = 0 ∀ p ∈ Pk−2(l), edge l ⊂ ∂e, k > 2.(4.2)

P r o o f. First, it follows from integration by parts, the orthogonality of the

Legendre polynomials, and ωk+1(xe ± he) = 0 that
∫ xe+he

xe−he

ωk+1(x)qs(x) dx

= −

∫ xe+he

xe−he

lk(x)qs+1(x) dx = 0 ∀ qs ∈ Ps(e1), s 6 k − 2, k > 2,

where qs = D1qs+1. A similar equality holds for ω̃k+1(y). Thus, from (2.9)–(2.10)

we immediately obtain the conclusions of Lemma 4.1. �
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Relations (2.7) and (4.2) can ensure that πku ∈ C(Ω) or πk : H1
0 (Ω) ∩ H2(Ω) →

Sh, k > 1. Let A be the second-order partial differential operator given by (1.2).

Introduce the corresponding bilinear form:

(4.3) A(u, v) =

2
∑

i,j=1

(aij Diu, Djv) +

2
∑

i=1

(ai Diu, v) + (a0 u, v),

where (·, ·) stands for the inner product in the L2(Ω) space, aij(x, y), ai(x, y), and

a0(x, y) are properly smooth functions. It is well known that the interpolation ele-

mentary estimates (also called interpolation weak estimates) play an important role

in the study of superconvergence. Some elementary estimates have been given for

the interpolation of Lagrange type [18]. For the interpolation of projection type,

by using the properties of πk and the Bilinear Lemma [2], we can also prove the

following results (a detailed proof can be found in [16, Theorems 7.5–7.6]).

Theorem 4.1. Assume that the bilinear form A(u, v) is defined by (4.3), u ∈

H1
0 (Ω)∩W k+2

p (Ω). Then, the interpolation operator πk satisfies the following super-

approximation elementary estimate:

(4.4) |A(u − πku, vh)| 6 Chk+1‖u‖k+2,p‖vh‖1,q, k > 1.

Furthermore, when A(u, v) = (∇u,∇v) + (a0u, v), we have the following ultra-

approximation elementary estimate:

(4.5) |A(u − πku, vh)| 6 Chk+2‖u‖k+3,p‖vh‖1,q, k > 2,

where vh ∈ Sh, 2 6 p 6 ∞, 1/p + 1/q = 1.

Now, we consider the weak form of the problem (1.1): For given f ∈ L2(Ω), find

u ∈ H1
0 (Ω) satisfying

(4.6) A(u, v) = (f, v) ∀ v ∈ H1
0 (Ω).

As usual, we assume that A(u, v) is a uniformly elliptic and bounded bilinear form

on H1
0 (Ω)×H1

0 (Ω) such that the solution of the problem (4.6) uniquely exists. Define

the finite element approximation of the problem (4.6) by finding uh ∈ Sh such that

(4.7) A(u − uh, vh) = 0 ∀ vh ∈ Sh.

Next we further assume that the regular family of partitions Jh is quasi-uniform,

that is, it is regular and max
e∈Jh

h/h(e) 6 σ with a positive constant σ. Below we
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shall employ the Green function method for our superconvergence analysis. For

the detailed discussion on this kind of Green function, the reader is referred to the

monograph [18].

For any given point z ∈ Ω, there exists a unique δz
h(x) ∈ Sh, the discrete δ-function

at point x = z, which satisfies

(δz
h, vh) = vh(z) ∀ vh ∈ Sh.

Let A∗ be the adjoint operator of A, and define the smooth Green function by setting

Gz(x) ∈ H1
0 (Ω) ∩ H2(Ω) such that

(4.8) A∗Gz(x) = δz
h(x) ∀x ∈ Ω.

Denote by L any indicated direction, and define the directional derivative operator ∂z

by

∂zG
z = lim

∆z→0,∆z//L
(Gz+∆z − Gz)/|∆z|.

From (4.8) it is easy to see that ∂zG
z(x) belongs to H1

0 (Ω) ∩ H2(Ω) and satisfies

(4.9) A∗(∂zG
z, v) = ∂zPhv(z) ∀ v ∈ H1

0 (Ω),

where A∗(u, v) is the bilinear form associated with A∗ such that

A∗(u, v) = A(v, u) ∀ (u, v) ∈ H1
0 (Ω) × H1

0 (Ω),

and Ph : L2(Ω) → Sh is the L2 projection operator defined by

(v − Phv, vh) = 0 ∀ vh ∈ Sh, v ∈ L2(Ω).

Define the finite element approximation ∂zG
z
h ∈ Sh of ∂zG

z according to the following

condition:

(4.10) A∗(∂zG
z − ∂zG

z
h, vh) = 0 ∀ vh ∈ Sh.

For ∂zG
z and its finite element approximation, we have the following estimate

(see [18, Theorem 3.14]):

(4.11) ‖∂zG
z‖1,1 + ‖∂zG

z
h‖1,1 6 C|lnh|,

where the constant C is independent of z and h.
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Theorem 4.2. Assume that A(u, v) is a uniformly elliptic and bounded bilinear

form. Let the family of partitions Jh be quasi-uniform, u and uh satisfy (4.7), and

u ∈ H1
0 (Ω) ∩ W k+2

∞ (Ω). Then, we have the following super-approximation estimate:

(4.12) ‖πku − uh‖1,∞ 6 Chk+1|lnh|‖u‖k+2,∞, k > 1.

Moreover, for the special case that A(u, v) = (∇u,∇v)+ (a0u, v), when u ∈ H1
0 (Ω)∩

W k+3
∞ (Ω), we have the following ultra-approximation estimate:

(4.13) ‖πku − uh‖1,∞ 6 Chk+2|lnh|‖u‖k+3,∞, k > 2.

P r o o f. Set eh = πku − uh. Then, it follows from the equations (4.7), (4.9)–

(4.10), the estimate (4.11), and the elementary estimate (4.4) that

∂zeh(z) = A∗(∂zG
z
h, eh) = A(eh, ∂zG

z
h) = A(πku − u, ∂zG

z
h)

6 Chk+1|lnh|‖u‖k+2,∞,

from which (4.12) is derived. Similarly, (4.13) can be also obtained by virtue of (4.5).

�

Now, we are in the position to prove the superconvergence and the ultraconver-

gence of the finite element approximation.

Theorem 4.3. Assume that A(u, v) is a uniformly elliptic and bounded bilinear

form. Let the family of partitions Jh be quasi-uniform, u and uh satisfy (4.7),

u ∈ H1
0 (Ω)∩W k+2

∞ (Ω), k > 1, D0 = E1×E2 = (x0−hi, x0+hi+1)×(y0−h̄j , y0+h̄j+1),

and R the derivative recovery operator with the Gauss sample points. Then, in the

recovery intervals El, we have the following superconvergence result:

(4.14) ‖Dlu − RDluh‖0,∞,El
6 Chk+1|lnh|‖u‖k+2,∞, k > 1, l = 1, 2.

Furthermore, when u ∈ H1
0 (Ω) ∩ W k+1+s

∞ (Ω), s = 1, 2, k > s is odd, D0 = (x0 − hi,

x0 + hi) × (y0 − h̄j , y0 + h̄j), and the sample points are the roots of equation (3.7)

with βk and βk+1 being given by (3.8), we have the following superconvergence and

ultraconvergence results at point (x0, y0):

(4.15) |∇u(x0, y0) − R∇uh(x0, y0)| 6 Chk+s|lnh|‖u‖k+1+s,∞, s = 1, 2,

where when s = 2 (ultraconvergence), A(u, v) = (∇u,∇v) + (a0u, v).
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P r o o f. From Lemma 3.1 we know that R is a linear bounded operator. Then,

in terms of Theorem 3.1 and (4.12), we obtain

‖Dlu − RDluh‖0,∞,El

6 ‖Dlu − RDlπku‖0,∞,El
+ ‖R‖‖Dlπku − Dluh‖0,∞,El

6 Chk+1(|u|k+2,∞,D0
+ |lnh|‖u‖k+2,∞).

Thus, the superconvergence estimate (4.14) is derived.

Similarly, the estimate (4.15) can be obtained by using Theorem 3.2 and (4.12)–

(4.13). �

It is very important for a finite element method to have a computable a posteriori

error estimator, such that we can assess the accuracy of the finite element solution

and enhance the efficiency by the adaptive algorithm in practical applications. The

results in Theorem 4.3 can be used to produce a reliable a posteriori error estimator

for the finite element approximation in derivative. In fact, we have by (4.14) or

(4.15) that

∇(u − uh)(x0, y0) = (∇u − R∇uh)(x0, y0) + (R∇uh −∇uh)(x0, y0)(4.16)

= O(hk+s) + (R∇uh −∇uh)(x0, y0), s = 1 or 2.

We know that, generally speaking, the interior nodal point (x0, y0) is not the su-

perconvergence point of the derivative of the finite element approximation, that is,

∇(u − uh)(x0, y0) = O(hk). Then, from (4.16) we see that

(4.17) |(R∇uh −∇uh)(x0, y0)|/|∇(u − uh)(x0, y0)| → 1, h → 0.

Hence, the quantity |(R∇uh −∇uh)(x0, y0)| provides an asymptotically exact a pos-

teriori error estimator of |∇(u − uh)(x0, y0)| for the finite element approximation to

the elliptic boundary value problem.

5. Numerical Experiments

In this section, we will illustrate the superconvergence property of our derivative

recovery method by numerical examples.

Consider the model problem:

(5.1)

{

−∆u = f in Ω = [0, 1] × [0, 1],

u = 0 on ∂Ω,

where the exact solution is taken as u = (x, y) = 10x sinπx sin πy, and f is the

corresponding source term. Ω is partitioned into uniform rectangles with mesh size h

in both x- and y-direction, and the third-order finite element space Q3 is employed.
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First, by means of Lemma 3.2, we determine the sample points. For this purpose,

we consider the following equation:

βklk(x) + βk+1lk+1(x) = 0, x ∈ (−1, 1),(5.2)

lk(x) =

√

2k + 1

2

1

k!

1

2k

dk

dxk
(x2 − 1)k,

βi = (k + 2)

∫ 1

−1

(x + 1)k+1li(x) dx, i = k, k + 1.

For k = 3, the equation (5.2) can be rearranged as follows:

(5.3) 105x4 + 560x3 − 90x2 − 336x + 9 = 0, x ∈ (−1, 1).

The three roots of equation (5.3) in (−1, 1) are, successively,

ξ1 = −0.76267982, ξ2 = 0.02662742, ξ3 = 0.78428386.

Then, for the patch recovery interval E1 = (x0 − h, x0 + h), the sample set is

G =
{

g±i = x0 ±
h

2
(ξi + 1), i = 1, 2, 3

}

.

Now, according to the formulae (3.10) and (3.11), we can calculate the recovered

derivative values of D1uh(x0, y0) and D2uh(x0, y0), where uh is the third order finite

element solution of the problem (5.1). We shall examine the computational accuracy

at the interior mesh points of the partition with h = 1/4. Tab. 1 gives the recovered

derivative values in x-direction with mesh size h successively being halved. Tab. 2

gives the L∞-error of D1u − RD1uh for different mesh sizes h. We see that the

recovered derivatives possess remarkably high accuracy, and the L∞-error goes to

zero rapidly as h gets smaller and smaller. The computational results confirm our

theoretical analysis numerically.

(x0, y0) h = 1/4 h = 1/8 h = 1/16 h = 1/32 exact values
(0.25, 0.25) 8.92755830 8.92702908 8.92699015 8.92699082 8.92699081
(0.25, 0.50) 12.62547403 12.62472560 12.62467178 12.62467145 12.62467148
(0.25, 0.75) 8.92755830 8.92702908 8.92699015 8.92699082 8.92699081
(0.50, 0.25) 7.07174660 7.07111447 7.07106771 7.07106782 7.07106781
(0.50, 0.50) 10.00095996 10.00006598 10.00000049 10.00000002 10.00000000
(0.50, 0.75) 7.07174660 7.07111447 7.07106771 7.07106782 7.07106781
(0.75, 0.25) −6.78072434 −6.78095503 −6.78097225 −6.78097248 −6.78097245
(0.75, 0.50) −9.58939233 −9.58971856 −9.58974350 −9.58974321 −9.58974320
(0.75, 0.75) −6.78072434 −6.78095503 −6.78097225 −6.78097248 −6.78097245

Table 1. Recovered derivative values in x-direction.
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h 1/4 1/8 1/16 1/32
errors 8.03E−04 6.59E−05 6.60E−07 3.00E−08

Table 2. Errors in L∞-norm.
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