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OPERADS FOR n-ARY ALGEBRAS – CALCULATIONS

AND CONJECTURES

Martin Markl and Elisabeth Remm

Abstract. In [8] we studied Koszulity of a family tAssnd of operads depending
on a natural number n ∈ N and on the degree d ∈ Z of the generating operation.
While we proved that, for n ≤ 7, the operad tAssnd is Koszul if and only if
d is even, and while it follows from [4] that tAssnd is Koszul for d even and
arbitrary n, the (non)Koszulity of tAssnd for d odd and n ≥ 8 remains an open
problem. In this note we describe some related numerical experiments, and
formulate a conjecture suggested by the results of these computations.

1. Introduction

All algebraic objects will be considered over a ground field k of characteristic
zero. In particular, the symbol ⊗ will denote the tensor product over k. We assume
some familiarity with operad theory, namely with Koszul duality for quadratic
operads and their Koszulity, see for instance [9, Chapter II.3] or the original sources
[1, 2]. In Section 3 we also refer to minimal models for operads. The necessary
notions can again be found in [9, Chapter II.3] or in the original source [6]. We
however recall the most basic notions at the beginning of Section 2.

The operad tAssnd mentioned in the abstract describes algebras introduced in
the following:

1.1. Definition. Let V be a graded vector space, n ≥ 2, and µ : V ⊗n → V a degree
d linear map. The couple A = (V, µ) is a degree d totally associative n-ary algebra
if, for each 1 ≤ i, j ≤ n,

(1) µ
(
11⊗i−1 ⊗ µ⊗ 11⊗n−i

)
= µ

(
11⊗j−1 ⊗ µ⊗ 11⊗n−j

)
,

where 11: V → V denotes the identity map.

If we symbolize µ by an oriented corolla with one output and n inputs, then the
axiom (1) can be depicted as
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with the compositions of the indicated operations taken from the bottom up.
Therefore, in totally associative algebras, all associations of the iterated n-ary

multiplication are the same. Degree 0 totally associative 2-algebras are ordinary
associative algebras. Degree 0 totally associative n-algebras are usually called
simply n-ary totally associative algebras.

Let tAssnd be the operad for degree d totally associative n-algebras. It is not
difficult to prove that the Koszulity of tAssnd depends only on the parity of d. In
this brief note we focus on

Conjecture A. The operad tAssnd is Koszul if and only if d is even.

It follows from the work of Hoffbeck [4] on the Poincaré -Birkhoff-Witt criterion
for operads that tAssnd is Koszul for d even. In [8] we proved that tAssnd is not
Koszul if d is odd and n ≤ 7. The non-Koszulity for d odd and n ≥ 8 is therefore
still conjectural.

2. Ginzburg-Kapranov’s criterion for n-ary operads

For convenience of the reader we recall, following [8], some features of the Koszul
duality of non-binary operads. Assume E = {E(a)}a≥2 is a Σ-module of finite type
concentrated in arity n. Operads P = Γ(E)/(R), where Γ(E) is the free operad on
E and (R) the ideal generated by a subspace R ⊂ Γ(E)(2n− 1) are called n-ary
quadratic. Let E∨ = {E∨(a)}a≥2 be the Σ-module with

E∨(a) :=
{

sgna⊗ ↑a−2 E(a)#, if a = n and
0, otherwise

where ↑a−2 is the iterated suspension, sgna the signum representation, and # the
linear dual of a graded vector space with the induced representation. There is a
non-degenerate pairing

〈−|−〉 : Γ(E∨)(2n− 1)⊗ Γ(E)(2n− 1)→ k .

Its concrete form is not relevant for this note, the details can be found in [9,
page 142].

2.1. Definition. The Koszul dual of the n-ary operad P = Γ(E)/(R) is the quotient

P ! := Γ(E∨)/(R⊥) ,

where R⊥ ⊂ Γ(E∨)(2n− 1) is the annihilator of R ⊂ Γ(E)(2n− 1) in the above
pairing, and (R⊥) the ideal generated by R⊥.
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If P is n-ary, generated by an operation of degree d, then the generator of P !

has the same arity but degree −d + n − 2, i.e. for n 6= 2 (the non-binary case)
the Koszul duality may not preserve the degree of the generating operation. In
the following standard definition, D(−) denotes the dual operad construction [2,
(3.2.12)]. Recall that it is essentially the bar construction (which takes operads to
cooperads) followed by the componentwise vector space dual (which takes cooperads
to operads). In Section II.3.3 of the monograph [9], D(−) was called the dual bar
construction.
2.2. Definition. A quadratic operad P is Koszul if the natural map D(P !)→ P is
a homology equivalence.

The definition below describes algebras over the Koszul dual of tAssnd .
2.3. Definition. Let V be a graded vector space and µ : V ⊗n → V a degree d
linear map. The couple A = (V, µ) is a degree d partially associative n-ary algebra
if the following single axiom is satisfied:

n∑
i=1

(−1)(i+1)(n−1)µ
(
11⊗i−1 ⊗ µ⊗ 11⊗n−i

)
= 0 .

In partially associative n-ary algebras, all associations of the multiplication (with
alternating signs if n is even) sum to zero. So, for n = 2 one has

((ab)c)− (a(bc)) = 0 ,
thus degree d partially associative 2-ary algebras are associative algebras with
multiplication of degree d. For n = 3 one has

((abc)de) + (a(bcd)e) + (ab(cde)) = 0 .
Degree (n − 2) partially associative n-ary algebras are precisely A∞-algebras

A = (V, µ1, µ2, . . .) [5, §1.4] which are meager in that they satisfy µk = 0 for k 6= n.
Their symmetrizations are Lie n-algebras [3].

Let pAssnd denote the operad for degree d partially associative n-ary algebras.
The following statement follows from a simple calculation.
2.4. Proposition. One has isomorphisms of operads

(tAssnd )! ∼= pAssn−d+n−2 ,

(pAssnd )! ∼= tAssn−d+n−2 .

Observe the shift of the degree of the generating operation. Since P is Koszul if
and only if P ! is, one may reformulate the conjecture as
Conjecture A’. The operad pAssnd is Koszul if and only if n ≡ d mod 2.

Recall that the generating or Poincaré series of an operad P = {P(a)}a≥1 in
the category of graded vector spaces of finite type is defined by

gP(t) :=
∑
a≥1

1
a!χ(P(a))ta ,

where χ(−) denotes the Euler characteristic.
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2.5. Example. It is not difficult to verify that the generating series for the operad
tAssnd is

gtAssnd (t) :=
{
t+ tn + t2n−1 + t3n−2 + t4n−3 + · · · , if d is even,
t− tn + t2n−1, if d is odd.

We see that, for d odd, tAssnd is nontrivial only in arities 1, n and 2n − 1. This
is best explained by taking the simplest case n = 2 and analyzing the operadic
desuspension Ãss := s−1tAss2

1.
Recall that the operadic desuspension s−1P of an operad P = {P(a)}a≥1 is the

operad s−1P = {s−1P(a)}a≥1, where s−1P(a) := sgna⊗↓a−1 P(a), the signum
representation tensored with the (ordinary) desuspension of the graded vector space
P(a) iterated (a− 1) times. The structure operations of s−1P are induced by those
of P in the obvious way. The Poincaré series of the operad P and its suspension
s−1P are clearly related by
(2) gs−1P(t) = −gP(−t) .

Algebras for the operad Ãss turn out to be anti-associative algebras with a
degree 0 multiplication satisfying

a(bc) = −(ab)c , for a, b, c ∈ V .

While Ãss(1) = k, Ãss(2) = k[Σ2] and Ãss(3) = k[Σ3], the vanishing Ãss(4) = 0
follows from the ‘fake pentagon’

−((a(bc))d) (a((bc)d))

−(a(b(cd)))
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−(ab)(cd)

(((ab)c)d)

J
J
J
J

J
J
J
J

















Q
QQ

Q
QQ

�
�
�
�

�
�
�
�

by which all 4-fold products are trivial, as well as all a-fold products for a ≥ 4.
In other words, Ãss(a) = 0 for a ≥ 4, so the generating series for Ãss is therefore
t+ t2 + t3. By (2), the generating series of tAss2

1 equals
t− t2 + t3

as claimed.

We finally formulate the (generalized) Ginzburg-Kapranov test [2]:

2.6. Theorem. If a quadratic, not necessary binary, operad P is Koszul, then its
Poincaré series and the Poincaré series of its dual P ! are tied by the functional
equation

gP(−gP!(−t)) = t .



n-ARY ALGEBRAS – CALCULATIONS AND CONJECTURES 381

In other words, −gP!(−t) is a formal inverse of gP(t).

The following particular form of the GK-test is a simple consequence of the
above facts.

2.7. Proposition. If the operad tAssnd is Koszul, then all coefficients in the formal
inverse of t− tn + t2n−1 are non-negative.

The following theorem proved in [8] follows from the theory of analytic functions.

2.8. Theorem. Suppose g(z) is an analytic function in C such that g(0) = 0 and
g′(0) = 1. If the equation

g′(z) = 0
has no real solutions, then the formal inverse g−1(z) has at least one negative
coefficient.

For the generating function g(z) := z − zn + z2n−1 of tAssnd , the equation
g′(z) = 0 reads

g′(z) = 1− nzn−1 + (2n− 1)z2n−2 = 0
which, after the substitution w := zn−1, leads to
(3) 1− nw + (2n− 1)w2 = 0 .

Fact. The discriminant n2 − 8n+ 4 of (3) is negative for n ≤ 7 and positive for
n ≥ 8.

The Fact explains the distinguished rôle of n = 7 resp. 8. By Theorem 2.8, the
inverse of t− tn + t2n−1 has, for n ≤ 7, a negative coefficient so tAssnd is for d odd
and n ≤ 7 not Koszul.

Equation (3) has, for n = 8, two real solutions, z1 = 7√1/3 and z2 = 7√1/5.
Therefore, for n = 8 as well as for all higher n’s, Theorem 2.8 does not apply
and we are unable to prove the existence of negative coefficients in the inverse of
z − zn + z2n−1. On the contrary, the calculations given in Section 3 indicate that
all coefficients of the inverse are positive, so the Ginzburg-Kapranov criterion is
not determinative.

3. Calculations, gaps and another conjecture

We computed, using Mathematica, the initial parts of the formal inverse of
t− tn + t2n−1 for n ≤ 8. We found:

t+ t2 + t3 − 4t5 − 14t6 − 30t7 − 33t8 + 55t9 + · · ·
for n = 2,

t+ t3 + 2t5 + 4t7 + 5t9 − 13t11 − 147t13 + · · ·
for n = 3, and

t+ t4 + 3t7 + 11t10 + 42t13 + 153t16 + 469t19 + 690t22 − 5967t25 + · · ·
for n = 4.
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The first negative coefficient in the inverse of t− tn + t2n−1 was at t57 for n = 5,
at t161 for n = 6, and at t1171 for n = 7. For n = 8 we did not find any negative
term of degree less than 10 000.

To appreciate the growth of the first negative coefficient, we introduce 〈p〉 :=
p(n− 1) + 1, p ≥ 0, the arity of an operation composed of p instances of an n-ary
multiplication. The following table shows n and the corresponding p such that the
first negative coefficient occurs at t〈p〉:

n = 2 3 4 5 6 7 8

p = 4 5 8 14 32 195 ∞?
The dependence of p on n is plotted in the following table that clearly indicates

that p =∞ for n ≥ 8, i.e. that there are no negative coefficients in the inverse of
t− tn + t2n−1:

–
–
–
–
–
–
–
–
–

-

6

•
•
•
•

•
•

n = 1
2
3
4
5
6
7
8

p = 50 100 150
Although the GK-test does not apply for n ≥ 8, there are some other indications

that the operad tAssnd , d even, may not be Koszul.

3.1. Example. In [8] we explicitly established the initial part of the minimal model
of pAss2

1 = (tAss2
−1)!,

(4) (pAss2
1, 0)← (Γ(E2, E3, , E5, . . .), ∂) .

Here E2 is an one-dimensional space placed in arity 2, E3 is one-dimensional placed
in arity 3, and E5 is 4-dimensional in arity 5.

It was the first non-trivial calculation of part of the minimal model of a
non-Koszul operad. As shown in [8], the restriction ∂|E5 is not quadratic but
ternary. It then follows from the construction of [7] that the L∞-deformation
complex for pAss2

1-algebras has a non-trivial l3-term.

The gap in arity 4 generators is caused by the ‘wrong’ signs in the pentagon,
see Example 2.5. The fact that it is followed by a nontrivial space E5 shows that
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pAss2
1 is not Koszul, as follows from a proposition below which we formulate for

the n-ary case, for arbitrary n ≥ 2.

Recall 〈p〉 := p(n− 1) + 1, p ≥ 0. If P is n-ary, then P(n) 6= 0 only for n = 〈p〉
for some p ≥ 0, and for the generators E of the minimal model (P, 0)← (Γ(E), ∂)
clearly the same holds:

E(n) 6= 0 only for n of the form n = 〈p〉 for some p ≥ 0.

3.2. Definition. The minimal model of an n-ary operad has a gap of length d ≥ 1
if there is q ≥ 2 such that

E(〈p〉) = 0 for q ≤ p ≤ q + d− 1
while

E(〈q − 1〉) 6= 0 6= E(〈q + d〉) .

The model of pAss2
1 is of the form (Γ(E〈1〉, E〈2〉, , E〈4〉, . . .), ∂) with non-trivial

E〈2〉 and E〈4〉. So it has a gap of length 1 – with d = 1, q = 3 in the above definition.

3.3. Proposition. Suppose that the minimal model of a quadratic n-ary operad P
has a gap of finite length. Then P is not Koszul.

Proof. Suppose that P is Koszul and let (P, 0)← (Γ(E), ∂) be its minimal model.
It follows from Definition 2.2 and the uniqueness of the minimal model for operads
[9, Theorem II.3.126] that the collection E is the (suitably suspended) Koszul dual
P !. The operad P ! is n-ary, too, so P !(〈q〉) = 0 for some q ≥ 2 implies P !(〈p〉) = 0
for all p ≥ q. Thus P ! and therefore also E cannot have a gap of a finite length. �

The strategy we suggest is to study the gaps in the minimal model of pAssnd with
n 6≡ d mod 2. Their existence would imply non-Koszulity of pAssnd , as well as the
non-Koszulity of their Koszul duals tAssnd , d odd, thus establishing Conjecture A.
It is not difficult to prove the following:

3.4. Proposition. Let P be an arbitrary, not necessarily Koszul, operad with
P(1) = k, and (P, 0)← (Γ(E), ∂) its minimal model. The Poincaré series gP(t) of
P is related with the generating function

gE(t) := −t+
∑
a≥2

1
a!χ(E(a))ta

of the Σ-module {E(a)}a≥2 by the functional equation
gP(−gE(t)) = t .

The above theorem enables one to calculate the Poincaré series of the collection
of generators of the minimal model of P from the generating series of P . It clearly
implies the GK-criterion.

3.5. Example. It happens that pAss2
1 = tAss2

1, so the generating series of pAss2
1 is

g
pAss2

1
(t) = t− t2 + t3 .
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One can compute the formal inverse of this function as

t+ t2 + t3 − 4t5 − 14t6 − 30t7 − 33t8 + 55t9 + · · · .

The absence of the t4-term together with the presence of the t5-term “shows” the
gap of length 1 in the minimal model of pAss2

1.

We do not know any closed formula for the generating series of pAssnd with
n 6≡ d mod 2, n > 2. We however wrote a script for Mathematica that calculates it,
but its applicability is drastically limited by computers available. We established
the generating series for pAss3

0 as

t+ t3 + 2t5 + 4t7 + 5t9 + 6t11 + 7t13 + 8t15 + · · · ,

the generating series of pAss4
1 as

t− t4 + 3t7 − 11t10 + 42t13 − 153t16 + 565t19 + · · · ,

the generating series of pAss5
0 as

t+ t5 + 4t9 + 21t13 + 123t17 + 759t21 + · · · ,

the generating series of pAss7
0 as

t+ t7 + 6t13 + 50t19 + 481t25 + · · ·

and the generating series of pAss9
0 as

t+ t9 + 8t17 + 91t25 + 1207t33 + · · · .

By calculating the formal inverses of the above series, we get the following Poincaré
series of the generators for the minimal models:

t+ t2 + t3 + 0 t4 − 4t5 − 14t6 − 30t7 − 33t8 + 55t9 + · · ·

for pAss2
1 (we already know this),

t− t3 + t5 + 0 t7 + 0 t9 − 19 t11 + 112 t13 − 336 t15 + · · ·

for pAss3
0,

t+ t4 + t7 + 0 t10 + 0 t13 + 0 t16 − 96 t19 + · · ·

for pAss4
1,

t− t5 + t9 + 0 t13 + 0 t17 + 0 t21+ ? + O[t25]

for pAss5
0. The vanishing of the boxed terms imply, by Proposition 3.4, that the

Euler characteristics of the corresponding pieces of the generating collection is zero.
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It indicates that the minimal models are of the form

(pAss2
1, 0) ← (Γ(E〈1〉, E〈2〉, , E〈4〉, . . .), ∂),

(pAss3
0, 0) ← (Γ(E〈1〉, E〈2〉, , , E〈5〉, . . .), ∂),

(pAss4
1, 0) ← (Γ(E〈1〉, E〈2〉, , , , E〈6〉, . . .), ∂),

(pAss5
0, 0) ← (Γ(E〈1〉, E〈2〉, , , , ? , ? , . . .), ∂).

Our computation did not go beyond n ≥ 6, due to limitations of computer memory.
The results for small n’s however suggest that the gap grows linearly with n,
leading to

Conjecture B. The minimal model of pAssnd , n 6≡ d mod 2, has a gap of length
n− 1.

The conjecture would obviously imply the non-Koszulity of tAssnd , for d odd.
If it is so, then tAss8

1 will be the first example of a non-Koszul operad whose
non-Koszulity was not established by the Ginzburg-Kapranov criterion.

3.6. Remark. We followed a suggestion of the referee and compared the sequences
arising in this section with The Online Encyclopedia of Integer Sequences. It
recognized the generating series for pAss2

1. This was not surprising as we know
a closed formula. It also identified the initial part of the generating series for pAss3

0
to a subsequence of the sequence {us}s≥1, where us is the number of times 1 is
used in writing out all the numbers 1 through s. We do not have any explanation
for this fact. The remaining sequences were not recognized.

3.7. Remark. Degree 0 totally associative n-algebras, i.e. algebras over the operad
tAssn0 , generalize, for n ≥ 3, associative algebras in a straightforward manner. The
referee formulated an intriguing question whether there exists an analog of the
associahedra for these algebras. In this remark we argue that this might indeed be
possible.

Recall that Stasheff’s operad of associahedra K = {Ka}a≥1 is an operad in the
category of polyhedra. Its most important property is that its operad of cellular
chains is isomorphic to the minimal model of the associative operad [6, Example 4.8].

Let us try to start constructing the ‘ternary’ associahedron K3 = {K3
a}a≥1 for

totally associative 3-algebras, mimicking the construction of the classical Stasheff
operad. It is clear that the first nontrivial piece of K3 is the point K3

3 in arity 3
that represents the ternary multiplication.

The next piece K3
5 of the 3-associahedron must have three vertices corresponding

to the three possible bracketing of five variables, namely

v1 := ((•, •, •), •, •), v2 := (•, (•, •, •), •), and v3 := (•, •, (•, •, •)).
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For the edges of K3
5 we need to choose two of the three relations killing the

differences v1 − v2, v2 − v3 and v1 − v3, because the resulting K3
5 must be acyclic.

If we chose e.g. the first two ones, we get the following picture of K3
5 :

(•, •, (•, •, •))(•, (•, •, •), •)((•, •, •), •, •)
•••

So K3
5 is the interval divided into two subintervals. Having K3

3 and K3
5 as above,
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7 is the graph:
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Now we have to choose five cycles, out of six, of this 1-skeleton and fill them
by 2-dimensional faces. Since the figure above has an obvious left-right mirror
symmetry, there are precisely three essentially independent choices. Depending on
the choice, we get the following three combinatorially distinct K3

7 ’s:
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They are convex polyhedra with twelve vertices, sixteen edges and five 2-dimensional
faces.

Each choice of K3
3 , K3

5 and K3
7 determines the 2-skeleton of K3

9 . To perform
the next step, we need to kill the generators of the second homotopy group of this
2-skeleton by choosing fourteen 3-dimensional faces, etc.

The fundamental difference from the construction of the classical associahedron
is that at each step we need to make a choice, and that the combinatorial type of
the resulting polyhedra depends on these choices. We formulate the last conjecture
of this note:

Conjecture C. For each n ≥ 3, there exists an operad Kn in the category of
contractible polyhedra such that the minimal model of the operad for degree 0
n-ary totally associative algebras is isomorphic to the cellular chain operad of Kn.
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