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1. Introduction

It is well known that an operator T from a Banach space E into another F is

weakly compact if E or F is reflexive but the converse is false in general. On the

other hand, in [2], Banach lattices on which any Dunford-Pettis operator is weakly

compact were characterized ([2], Theorem 2.26). In fact, it is proved that if E and

F are two Banach lattices, then each positive Dunford-Pettis operator T from E

into F is weakly compact if and only if the norm of E′ is order continuous or F is

reflexive. Later, this result was generalized by taking F just a Banach space ([4],

Theorem 2.7). And recently, it was proved that each b-weakly compact operator T

from a Banach lattice E into a Banach space X is weakly compact if and only if the

norm of E′ is order continuous or X is reflexive ([3], Theorem 2.2).

Our objective in this paper is to generalize all these results by characterizing

Banach lattices for which each operator is weakly compact. More precisely, we will

show that if E and F are two Banach lattices such that either E has an order

continuous norm or F has the σ-Levi property, then each operator (resp. positive

operator) from E into F is weakly compact if and only if E is reflexive or F is

reflexive or E′ and F are KB-spaces. As consequences, we obtain a characterization

of reflexive Banach lattices and a characterization of KB-spaces. After that, if E
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and F are Banach lattices such that F is Dedekind σ-complete and E is an infinite-

dimensional AM-space with unit, we will prove that each positive operator from E

into F is weakly compact if and only if the norm of F is order continuous. Finally,

we will establish that if E and F are two Banach lattices such that F is a KB-space,

then each operator from E into F is weakly compact if and only if F is reflexive or

E′ has an order continuous norm.

To state our results, we need to fix some notation and recall some definitions.

A vector lattice E is an ordered vector space in which sup(x, y) exists for every

x, y ∈ E. A subspace F of a vector lattice E is said to be a sublattice if for every

pair of elements a, b of F the supremum of a and b taken in E belongs to F . A vector

lattice is said to be Dedekind σ-complete if every nonempty countable subset that is

bounded from above has a supremum. A Banach lattice is a Banach space (E, ‖.‖)

such that E is a vector lattice and its norm satisfies the following property: for

each x, y ∈ E such that |x| 6 |y|, we have ‖x‖ 6 ‖y‖. If E is a Banach lattice, its

topological dual E′, endowed with the dual norm and the dual order, is also a Banach

lattice. A norm ‖.‖ of a Banach lattice E is order continuous if for each generalized

sequence (xα) such that xα ↓ 0 in E, the generalized sequence (xα) converges to

0 for the norm ‖.‖ where the notation xα ↓ 0 means that (xα) is decreasing, its

infimum exists and inf(xα) = 0. By Theorem 5.16 of Schaefer [5], a Banach lattice

E is reflexive if and only if the norms of its topological dual E′ and of its topological

bidual E′′ are order continuous. A Banach lattice E is said to be an AM-space if

for each x, y ∈ E such that inf(x, y) = 0, we have ‖x + y‖ = max{‖x‖, ‖y‖}. The

Banach lattice E is an AL-space if its topological dual E′ is an AM-space.

We will use the term operator T : E → F between two Banach lattices to mean

a bounded linear mapping. It is positive if T (x) > 0 in F whenever x > 0 in E. It

is well known that each positive linear mapping on a Banach lattice is continuous.

For terminology concerning Banach lattice theory and positive operators, we refer

the reader to [1].

2. Main results

A Banach lattice E is said to be a KB-space whenever every increasing norm

bounded sequence in E+ is norm convergent. As an example, each reflexive Banach

lattice is a KB-space.

It is clear that each KB-space has an order continuous norm, but a Banach lattice

with an order continuous norm is not necessarily a KB-space. In fact, the Banach

lattice c0 has an order continuous norm but it is not a KB-space. However, if E is

a Banach lattice, the topological dual E′ is a KB-space if and only if its norm is

order continuous.
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Note that by Theorem 5.16 of Schaefer [5], a Banach lattice E is reflexive if and

only if E and E′ are KB-spaces.

The following result gives another characterization of reflexive Banach lattices.

Theorem 2.1. Let E be a Banach lattice. Then the following assertions are

equivalent:

(1) E has an order continuous norm and each positive operator T from E into c0

is weakly compact.

(2) E is reflexive.

P r o o f. (1) ⇒ (2) It is clear that E does not contain any closed order copy of

ℓ1 (i.e. E′ is a KB-space) because the operator T : ℓ1 → c0 given by the equality

T (λn) =
( ∞

∑

n=k

λn

)

∞

k=1

is positive but not weakly compact (see Exercise 3.5 E2 of [6],

p. 211). Moreover E is a KB-space: if not, as the norm of E is order continuous,

it follows from the proof of Theorem 2 of Wnuk [8], that E contains a closed order

copy of c0 and there exists a positive projection P : E → c0. Now, let i : c0 → E be

the canonical injection of c0 into E. Note that P : E → c0 is not weakly compact

(if not, the composed operator P ◦ i = Idc0
: c0 → c0 would be weakly compact and

this is false). This presents a contradiction with (1), and hence E is a KB-space.

(2) ⇒ (1) Obvious. �

Remark 1. The assumption about the order continuity of the norm is essential

in the assertion (1) of Theorem 2.1. In fact, each operator from l∞ into c0 is weakly

compact, but l∞ is not reflexive.

Let us recall that an operator T from a Banach lattice E into a Banach space X

is said to be order weakly compact if for each x ∈ E+, the set T ([0, x]) is relatively

weakly compact in X . A Banach lattice E is said to have the σ-Levi property (or

sequential weak Fatou property) whenever every increasing norm bounded sequence

in E+ has a suppremum in E.

As an example, each KB-space (Dedekind σ-complete AM-space with unit) has

the σ-Levi property.

It follows from Theorem 113.1 of [9] that every Banach lattice with the σ-Levi

property is Dedekind σ-complete. But a Dedekind σ-complete Banach lattice does

not have necessarily the σ-Levi property. In fact, the Banach lattice c0 is Dedekind

σ-complete but it does not have the σ-Levi property.

However, by Theorem 117.4 of [9], a Banach lattice E is a KB-space if and only

it has the σ-Levi property and its norm is order continuous.

Theorem 2.2. Let E and F be two Banach lattices. Then the following assertions

are equivalent:
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(1) Each operator from E into F is weakly compact and either E has an order

continuous norm or F has the σ-Levi property.

(2) Each positive operator from E into F is weakly compact and either E has an

order continuous norm or F has the σ-Levi property.

(3) One of the following assertions is valid:

(a) E is reflexive.

(b) F is reflexive

(c) E′ and F are KB-spaces.

P r o o f. (1) ⇒ (2) Obvious.

(2) ⇒ (3) It suffices to prove that

(α) if E′ is not a KB-space, then F is reflexive and

(β) if F is not a KB-space, then E is reflexive.

(α) Note that our proof is the same as the proof of Theorem 2.26 of [2]. Assume

that neither E′ is a KB-space nor F is reflexive. Then it follows from the proof of

Theorem 1 of Wickstead [7] that there exists of a sublattice H of E which is isomor-

phic to l1 and a positive projection P : E → l1. Also, since the closed unit ball BF

of F is not weakly compact, there exists a sequence (yn) in (BF )+ = F+ ∩BF which

does not have any weakly convergent subsequence (Eberlien-Smulian Theorem).

Consider the positive operator S defined by

S : l1 → F, (λn) 7→

∞
∑

n=1

λnyn.

The composed operator T = S ◦P is positive, but it is not weakly compact. In fact,

the sequence (T (en)) = (S ◦ P ((en))) = (yn) does not have any weakly convergent

subsequence, where (en) is the canonical basis of l1. Hence T is not weakly compact

and this contradicts our hypothesis.

(β) Assume that F is not a KB-space.

First, we prove that if the Banach lattice F has the σ-Levi property, then the

norm of E is order continuous. If not, it follows from the proof of Theorem 1

of Wickstead [7] that there is an order bounded disjoint positive sequence (xn) in

E such that ‖xn‖ > ε > 0 for all n. Hence by Theorem 116.3 (iii) of [9], there

exists a disjoint sequence (fn) of positive elements in the unit ball of E′ such that

fn(xn) > ε for all n and fn(xm) = 0 for m 6= n.

Now, we define P : E → l∞ by P (x) = (fn(x))∞n=1. Clearly P is well defined and

is positive.

On the other hand, since F is not a KB-space (i.e. the norm of F is not order

continuous, because F has the σ-Levi property), it results from Theorem 4.51 of [1]
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that l∞ is lattice embedding in F . Let i : l∞ → F be a lattice embedded. Then

there exist two positive constants K and M satisfying

K‖x‖∞ 6 ‖i(x)‖F 6 M‖x‖∞

for all x ∈ l∞.

The operator T defined by T = i ◦ P : E → l∞ → F is positive, but it is not

weakly compact. Assume by way of contradiction that T is weakly compact, then

T is order weakly compact. As (xn) is an order bounded disjoint sequence in E, it

follows from Theorem 5.57 (2) of [1] that lim
n

‖T (xn)‖ = 0. But from

‖T (xn)‖ = ‖i(P (xn))‖ > K‖P (xn)‖∞ = K fn(xn) > Kε > 0 for each n

we obtain a contradiction with lim
n

‖T (xn)‖ = 0. So, the norm of E is order contin-

uous.

Second, we establish that E is reflexive. Consider an arbitrary positive operator

T : E → c0. Since c0 is order embeddable in F (Theorem 4.60 of [1]), T is weakly

compact by the hypothesis. Finally, Theorem 2.1 finishes the proof.

(3), a. or (3), b. ⇒ (1) Obvious.

(3), c. ⇒ (1) Follows from Theorem 5.27 of [1] and from the assumption: each

KB-space has the σ-Levi property. �

As a consequence of Theorem 2.2, we obtain the following characterization of

KB-spaces.

Corollary 2.1. Let F be a Banach lattice. Then the following assertions are

equivalent:

(1) Each operator T from c0 into F is weakly compact.

(2) Each positive operator T from c0 into F is weakly compact.

(3) F is a KB-space.

P r o o f. (1) ⇒ (2) Obvious.

(2) ⇒ (3) Since c0 is not reflexive, the result follows from Theorem 2.2.

(3) ⇒ (1) Since (c0)
′ = l1 and F are KB-spaces, the result follows from the

implication (3), c. ⇒ (1) of Theorem 2.2. �

Also from Theorem 2.2, we derive the following characterization.

Corollary 2.2. Let E and F be two Banach lattices such that F is a KB-space.

Then the following assertions are equivalent:

(1) Each operator from E into F is weakly compact.
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(2) Each positive operator from E into F is weakly compact.

(3) One of the following assertions is valid:

(a) F is reflexive.

(b) E′ has an order continuous norm.

In particular, we obtain

Corollary 2.3. Let E be a Banach lattice. Then the following assertions are

equivalent:

(1) Each operator from E into l1 is weakly compact.

(2) Each positive operator from E into l1 is weakly compact.

(3) The norm of E′ is order continuous.

Remark 2. There exist Banach lattices E and F for which E′ is a KB-space and

each operator from E into F is weakly compact, but E is not reflexive and the norm

of F is not order continuous. In fact, if we take E = l∞ and F = c, it is clear that

each operator T : l∞ → c is weakly compact, but l∞ is not reflexive and the norm

of c is not order continuous.

Another consequence of Theorem 2.2 is given by

Corollary 2.4. Let E and F be two Banach lattices such that F is a Dedekind

σ-complete infinite-dimensional AM-space with unit. Then the following assertions

are equivalent:

(1) E is reflexive.

(2) Each operator from E into F is weakly compact.

(3) Each positive operator from E into F is weakly compact.

P r o o f. Note that F has the σ-Levi property, and hence the proof follows from

Theorem 2.2 (because the properties (b) and (c) of the assertion (3) of Theorem 2.2

are not true). �

In particular, we obtain

Corollary 2.5. Let E be a Banach lattice. Then the following assertions are

equivalent:

(1) Each operator from E into l∞ is weakly compact.

(2) Each positive operator from E into l∞ is weakly compact.

(3) E is reflexive.
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Now, if the norm of the Banach lattice E is not order continuous and F is Dedekind

σ-complete, we obtain the following result on the weak compactness of positive op-

erators.

Theorem 2.3. Let E and F be Banach lattices such that F is Dedekind σ-

complete and E is an infinite-dimensional AM-space with unit. Then the following

assertions are equivalent:

(1) Each positive operator from E into F is weakly compact.

(2) The norm of F is order continuous.

P r o o f. (1) ⇒ (2) Note that since E is an infinite-dimensional AM-space with

unit, its norm is not order continuous. We have to prove that the norm of F is

order continuous. If not, it follows from the proof of Theorem 2.2 that there exists

a positive operator from E into F which is not weakly compact. And this presents

a contradiction, hence F has an order continuous norm.

(2) ⇒ (1) Let T : E → F be a positive operator. Since E is an AM-space with

a unit e, then its closed unitinterval is given by BE = [−e, e] and hence T (BE) =

T ([−e, e]) ⊂ [−T (e), T (e)]. As the norm of F is order continuous, it follows from

Theorem 5.10 of [5], that [−T (e), T (e)] is weakly compact. Thus T (BE) is weakly

relatively compact and hence T is weakly compact. �

As a consequence of Theorem 2.8, we obtain the following characterization.

Corollary 2.6. Let E be a Dedekind σ-complete Banach lattice. Then the fol-

lowing assertions are equivalent:

(1) Each positive operator from l∞ into E is weakly compact.

(2) The norm of E is order continuous.

Remarks 3.

(1) If E and F are Banach lattices such that the norm of E is order continuous and

F is an infinite-dimensional AL-space, then a positive operator from E into F

is not necessary weakly compact. In fact, if we take E = F = l1 and T = Idl1

its identity operator, it is clear that T is not weakly compact even though the

norm of l1 is order continuous.

(2) If F is an infinite-dimensional AL-space and E is a Dedekind σ-complete Banach

lattice such that each positive operator from E into F is weakly compact, then

the norm of E is not necessary order continuous. In fact, take E = l∞ and

F = l1. Note that F = l1 is an infinite-dimensional AL-space, E = l∞ is

a Dedekind σ-complete Banach lattice and each operator from l∞ into l1 is

weakly compact (this follows from Theorem 5.27 of [1] because E′ = (l∞)′ and

F = l1 are KB-spaces), however the norm of E = l∞ is not order continuous.
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