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Abstract. We prove that if the Walsh bipartite map M = W (H ) of a regular oriented
hypermapH is also orientably regular then bothM and H have the same chirality group,
the covering core of M (the smallest regular map covering M ) is the Walsh bipartite map
of the covering core of H and the closure cover of M (the greatest regular map covered
by M ) is the Walsh bipartite map of the closure cover of H . We apply these results to
the family of toroidal chiral hypermaps (3, 3, 3)b,c = W

−1{6, 3}b,c induced by the family of
toroidal bipartite maps {6, 3}b,c.
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1. Introduction

The terminology “chiral” was introduced by Lord Kelvin (William Thompson) [15]

in 1893 to describe the non-existence of a plane of symmetry in molecular structures.

Nomenclatures like “right- and left-handed enantiomers” for a chiral pair of molecules

became common in modern-days chemistry. The term was brought to the theory

of maps probably in 1978 by Wilson [17] while analysing the smallest non-toroidal

chiral maps, although the notion behind “chirality” (“regular” but not “reflexible” or

“symmetric”) had been around since much earlier. Examples of this include Coxeter

and Moser’s infinite families of “chiral” toroidal maps ([7], 1957), Sherk’s infinite

family of non-toroidal “chiral” maps of type1 {6, 6} ([14], 1962) and Garbe’s “chiral”

1 The type of a map is a pair of positive integers {m, n} where m and n are the least
common multiples of the valencies of faces and vertices respectively.
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map of type {9, 6} of genus 7 ([8], 1969). Chiral polytopes (polytopes of rank 3 are

essentially maps) have been studied by Schulte, Weiss and Nostrand [13], [12]. In

[1] the authors computed the chirality group and the chirality index of the regular

oriented toroidal maps {4, 4}b,c and {3, 6}b,c. These maps are obtained by identifying

the opposite sides of the parallelogram generated by the vectors (b, c) and (c, b) on

a rectangular, or triangular, grid generated by a system of two vectors. The maps

{6, 3}b,c and {3, 6}b,c are duals, therefore they have isomorphic chirality groups and

the same chirality index. A map of type {n,m} is a hypermap of type (m, 2, n)

(see the next section for definitions). The list of regular oriented toroidal hypermaps

is completed by the infinite family of hypermaps (3, 3, 3)b,c = W −1{6, 3}b,c, the

hypermaps whose Walsh maps are {6, 3}b,c; as imbeddings of hypergraphs in surfaces,

(3, 3, 3)b,c are represented by the bipartite family of maps {6, 3}b,c whose vertices in

one bipartite-partition represent the hyperedges. In [6] it was shown that (3, 3, 3)b,c

is regular (as an oriented hypermap) if and only if {6, 3}b,c is regular. In [5] it

was observed that (3, 3, 3)b,c is reflexible if and only if {6, 3}b,c is also reflexible. In

this paper we prove that if the Walsh bipartite map [16] M = W (H ) of a regular

oriented hypermap H is also regular then both M and H have the same chirality

group. In this case the covering core of M (the smallest regular map covering

M ) is the Walsh bipartite map of the covering core of H and the closure cover

of M (the greatest regular map covered by M ) is the Walsh bipartite map of the

closure cover of H . We apply this to (3, 3, 3)b,c = W −1{6, 3}b,c to complete the

determination of the chirality group, covering cores and closure covers of the toroidal

regular hypermaps.

Oriented hypermaps. A hypermap is a generalisation of a map obtained by al-

lowing an edge to connect more than two vertices. Topologically it is a cellular

embedding of a hypergraph G to a compact surface (without boundary). Since hy-

pergraphs are described by bipartite graphs, a hypermap H can be visualised as

a bipartite map M . The faces of M represent the hyperfaces of H and one of

the two monochromatic bipartitionsets of vertices ofM represents the hypervertices

while the other represents the hyperedges of H . This bipartite map M is called

the Walsh bipartite map of H (introduced by Walsh [16]) and denoted by W (H ).

Conversely, any bipartite mapM when interpreted as above determines a hypermap

H = W −1(M ). If H is regular (see definition below) it is not necessarily true

that its Walsh bipartite map is also regular; most of the times it isn’t (for instance

when H has different vertex-valencies and hyperedge-valencies). Algebraically, an

orientable hypermap (when the underlying surface is orientable) can be described by

a triple H = (D;R,L) consisting of a finite set of “abstract” darts D and two per-

mutations R, L on D generating a group, the monodromy group Mon(H ) = 〈R,L〉
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of H , that acts transitively on D. Actually each such triple describes two hyper-

maps, one for each chosen fixed orientation, that are mirror images of each other.

Orientable compact surfaces arise as compactification quotients (orbifolds) of a uni-

versal (non-compact) orientable surface such as the hyperbolic plane. An orientation

can be fixed on this universal surface and then taken across to every compact sur-

face. When we take this fixed “universal“ orientation the triple (D;R,L) determines

a unique oriented hypermap.

Non-orientable hypermaps cannot be described by such a triple. A more general

context is needed to include non-orientability. We will not go into further details

since this is not crucial to the paper. For further insight we refer the reader to

[10], [11].

The triple H = (D;R,L) described above (assuming a fixed “universal” orien-

tation) is called an oriented (or rotary) hypermap. Maps are hypermaps satisfying

L2 = 1. Given two oriented hypermaps H1 = (D1;R1, L1) and H2 = (D2;R2, L2),

a covering H1 → H2 is a function φ : D1 → D2 such that R1φ = φR2 and

L1φ = φL2. The connectivity of the underlying graph implies that any covering is

necessarily onto, hence the name “covering”. A covering φ induces a surface covering

between their underlying surfaces. When this surface covering is branched we say

that φ is a branched covering; non-branch coverings, or smooth coverings, correspond

to local surface homeomorphisms and therefore they keep types. If φ is injective then

the covering is an isomorphism of hypermaps. An automorphism (or symmetry) of

an oriented hypermap H = (D;R,L) is a permutation on D that commutes with R

and L. The automorphism group of H acts semi-regularly2 (not necessarily transi-

tively) on D while its monodromy group acts transitively (not necessarily regularly3)

on D. Thus we have a double inequality |Aut(H )| 6 |D| 6 |Mon(H )|. If one of

these equalities holds, that is, if Aut(H ) acts transitively on D or Mon(H ) acts

regularly on D, then the other equality also holds [1], [2], and H is said to be reg-

ular (also called orientably regular in a more general context). If in addition H

has an orientation-reverting automorphism, i.e., a permutation ψ of D such that

Rψ = ψR−1 and Lψ = ψL−1, then H is said to be reflexible. When H is regular

but not reflexible, H is called chiral4.

By the type of a regular oriented hypermapH we mean a triple (l,m, n) consisting

of the positive integers l = |R|, m = |L| and n = |RL|, where |g| denotes the order

of g.

2A semi-regular action is an action without fixed points.
3A regular action is a transitive semi-regular action.
4We adopt the terminology “chiral” in order to be as close as possible to [1]. In [2] the
author uses the term “irregular”.
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Finite transitive permutation representations and chirality. Let ∆ denote the free

product

∆ = 〈R0, R1, R2 | R2
0 = R2

1 = R2
2 = 1〉

and let ∆+ = 〈R1R2, R2R0〉 be its even word subgroup. This group is isomorphic to

a free group of rank 2. The canonical generators of ∆+ will be denoted by R = R1R2

and L = R2R0. For any oriented hypermapH = (D;R′, L′) there is an epimorphism

Φ: ∆+ → Mon(H ) sending R to R′ and L to L′. Consequently,H can be identified

with the hypermap (∆+/rH ;H∆+R,H∆+L) , whose darts are the right cosets of the

subgroup H 6 ∆+, where H is the stabiliser in ∆+ of a fixed dart ω ∈ D under the

induced action of ∆+ on D (via Φ), and H∆+ (the core of H in ∆+) is the kernel

of the epimorphism Φ. The monodromy group of H is isomorphic to the quotient

group ∆+/H∆+ . The subgroup H is called a hypermap subgroup, or “fundamental

hypermap subgroup”, of H ; it is unique up to a conjugation in ∆+, that is, up to

a hypermap-isomorphism. If H1 and H2 are two oriented regular hypermaps with

hypermap subgroups H1 and H2, then H1 covers H2 if and only if H1 < H2.

Let H be a regular oriented hypermap with hypermap subgroup H ⊳ ∆+. Since

coverings of regular oriented hypermaps correspond to inclusions of hypermap sub-

groups, the smallest reflexible regular hypermap covering H is realised by the cov-

ering core H∆ (the reflexible hypermap with hypermap subgroup H∆) while the

largest reflexible regular hypermap covered by H is accomplished by the closure

cover H ∆ (the reflexible hypermap with hypermap subgroup H∆). The chirality

group of H is the kernel of the covering H∆ −→ H which is isomorphic to the

kernel of the covering H −→ H ∆:

X(H ) = H/H∆ = H∆/H.

The chirality index of H , written as κ(H ), is the size of X(H ). See [4] for further

and deeper reading on this subject. It is proved in [1] that if G = Mon(H ) has

presentation 〈x, y | R(x, y)〉 then the chirality group of H is the normal closure of

〈R(x−1, y−1)〉 in G.

2. H versus its ̺-dual D̺(H )

Let H = (F/rH ;HFR,HFL), where F = ∆+ = 〈R,L〉 is isomorphic to the

free group F (R,L). If ̺ : ∆ −→ ∆ is a ∆+-preserving (that is, if ∆+̺ = ∆+)

group automorphism, then ̺ gives rise to a ̺-dual oriented hypermap D̺(H ) =

(F/r(H̺); (H̺)FR, (H̺)FL), with hypermap subgroup H̺ < F. Note that

(1) (H̺)F = HF̺,
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(2) (H̺)∆ = H∆̺,

(3) if ̺ : x 7→ xd for some d ∈ ∆+ (that is, if ̺ is an inner automorphism of ∆+),

then D̺(H ) ∼= H , and

(4) although ̺, as an automorphism of ∆+, induces a bijection F/rH → F/r(H̺) =

(F/rH)̺, Hd 7→ H̺d̺, it does not give, in general, an isomorphism (covering)

from H to D̺(H ).

It is easy to see that both H and its ̺-dual D̺(H ) have the “same” monodromy

group. In fact, the assignment HFR 7→ (H̺)FR̺, HFL 7→ (H̺)FL̺ determines the

isomorphism

Mon(H ) = F/HF = 〈HFR,HFL〉 ∼= 〈(H̺)FR̺, (H̺)FL̺〉

= F/(H̺)F = Mon(D̺(H )).

Hence if Mon(H ) has a “canonical” presentation 〈R,L |W (R,L)〉, then replacing

R by R̺ and L by L̺ we get the “canonical” presentation 〈R̺,L̺ | W (R̺,L̺)〉 for

Mon(D̺(H )).

Note that the monodromy group of the oriented hypermap D̺(H ) is gener-

ated by (H̺)FR and by (H̺)FL. However, the assignment HFR 7→ (H̺)FR,

HFL 7→ (H̺)FL, in general, determines neither an isomorphism between groups

nor an isomorphism between regular hypermaps.

Lemma 2.1. Let ̺ be a ∆+-preserving automorphism of ∆. Then

(1) ifH is regular (as an oriented hypermap) then its ̺-dualD̺(H ) is also regular;

(2) the chirality groupX(D̺(H )) is isomorphic, by ̺, to the chirality groupX(H )

of H ;

(3) (D̺(H ))∆ = D̺(H∆) and (D̺(H ))∆ = D̺(H
∆).

P r o o f. It is obvious thatD̺(H ) is also regular. Moreover, as the normal closure

H∆ is a (normal) subgroup of ∆+, the normal closure (H̺)∆ = (H∆)̺ is also a

(normal) subgroup of∆+. Therefore the chirality groupX(D̺(H )) = (H̺)∆/H̺ ∼=

(H∆/H)̺ = X(H )̺. The rest is a consequence of the fact that (H̺)∆ = (H∆)̺

and (H̺)∆ = H∆̺. �
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3. H versus its Walsh map W (H )

Let∆2 denote the group with presentation 〈S0, S1, S2 | S2
0 = S2

1 = S2
2 = (S0S2)

2 =

1〉. By von Dyck’s theorem [9, pp 43], we have an epimorphism ̺ : ∆ −→ ∆2, given

by Ri 7→ Si, i = 0, 1, 2. The image ∆0̺̂ is the subgroup ∆2
0̂ := 〈S1, S2〉

∆2 =

〈S1, S2, S
S0

1 〉 of ∆2, consisting of the words in ∆2 with an even number of S0’s. By

the Reidemeister-Schreier Rewriting Process [9, pp 116] the assignment S1 7→ R1,

S2 7→ R2, S
S0

1 7→ R0 determines an isomorphism φ : ∆2
0̂ −→ ∆. Now let R and L

be S1S2 and S2S0 respectively and let ∆2
+ := 〈S1S2, S2S0〉 = 〈R,L〉 and ∆0̂+

2 :=

∆2
0̂ ∩ ∆2

+ = 〈S1S2, S2 S
S0

1 〉 = 〈R,LRL〉. Recall that ∆2
+ is the group of the even

words in ∆2 isomorphic to Γ := 〈R,L | L2 = 1〉 = C∞ ∗C2. The function φ restricted

to ∆0̂+
2 gives rise to an isomorphism ϕ : ∆0̂+

2 −→ ∆+ ∼= F (X,Y ) = C∞ ∗C∞. If H

is a regular oriented hypermap with hypermap subgroup H ⊳ ∆+ then ϕ−1 induces

the (not necessarily regular) oriented Walsh bipartite map M = W (H ) with map

subgroup M = Hϕ−1 < ∆2
+ (see [3]).

∆2

@@
@@

@@
@@

∆ ∆0̂
2

φ
oo

@@
@@

@@
@

}}}}}}}}

∆+
2
∼= Γ

H





















M 0̂







































M∆+ ∆0̂+
2

∼= Γ0̂
ϕ

oo

��������

Mϕ M
ϕ

oo

Note that the oriented hypermap H is regular if and only if the oriented bipartite

mapM is Γ0̂-regular (or bipartite-regular) in the sense that M ⊳ Γ0̂. Conversely, if

M is an oriented bipartite map with map subgroupM < Γ0̂ thenH = W −1(M ) :=

(∆+/Mϕ;MΓϕX,MΓϕY ) is an oriented hypermap. IfM is regular (M ⊳ Γ) of type

(m, 2, n) then H is also regular (Mϕ ⊳ ∆+) of type (m,m, 1
2n). Since M and H

share the same underlying surface they both have the same genus. Moreover, the

diagram above shows that M ⊳ ∆2
0̂ if and only if Mϕ ⊳ ∆. This means that H

is reflexible if and only if the Walsh map W (H ) is ∆2
0̂-regular. If M is reflexible

(M ⊳ ∆2) then so isH = W −1(M ). Conversely, ifH is reflexible andM is regular

(M ⊳ Γ), as ∆2 = ∆2
0̂Γ hence M is also reflexible (M ⊳ ∆2). This is Theorem 1

of [5].

When M = W (H ) is Γ0̂-regular we can easily deduce a presentation for the

monodromy group of H from a presentation of the monodromy group of M as
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follows. Let G = Mon(M ) = Γ/M . Then G has presentation 〈R,L | L2 = W = 1〉,

for some set W of relators on R and L. Since M is bipartite, each relator in W is

a word in R and LRL. The “Γ0̂-marked” hypermapM 0̂ := (Γ0̂/M ;MR,MLRL) is

isomorphic to the oriented hypermap H = W −1(M ). By von Dyck’s Theorem we

have an epimorphism ̺ : Γ −→ G, R 7→ R, L 7→ L, such that Ker(̺) = 〈W 〉Γ = M .

Now, Γ0̂ is a normal subgroup of Γ with index 2 and {1, L} is a transversal for Γ0̂ in Γ.

As M ⊂ Γ0̂ we haveM = 〈W,WL〉Γ
0̂

where WL is the set of conjugates wL, w ∈W .

By the isomorphism ϕ, Mon(H ) = Mon(M 0̂) = Γ0̂/M ∼= ∆+/Mϕ. As ∆+ ∼=

F (X,Y ) and Mϕ = 〈Wϕ,WLϕ〉∆
+

hence Mon(H ) has “canonical” presentation

〈X,Y |Wϕ,WLϕ〉.

The relator sets Wϕ and WLϕ consist in rewriting W and WL as a function of

X(= R) and Y (= LRL). If M has type {n,m}, hence hypermap-type (m, 2, n),

then Mon(M ) has presentation 〈R,L | L2, Rm, (RL)n,W (R,L)〉 for some extra set

W of relators in R and L. Notice that, sinceM is bipartite and regular, n is an even

integer. The monodromy group of the corresponding hypermap H = W −1(M ) has

presentation

〈X,Y | Xm, Y m, (XY )
1
2
n,Wϕ,WLϕ〉.

Hence H has type (m,m, 1
2n) as expected. This shows

Lemma 3.1. Let H be an oriented regular hypermap and M = W (H ). If

Mon(M ) has presentation 〈R,L | L2,W 〉 where W represents words in R and L,

then H has presentation 〈X,Y | Xm, Y m, (XY )
1
2

n,Wϕ,WLϕ〉 where the relator

sets Wϕ and WLϕ consist in rewriting the words in W and WL as functions of X

(= R) and Y (= LRL).

Theorem 3.1. IfM = W (H ) is regular thenH andM have the same chirality

group.

P r o o f. The chirality groups of H andM are related to each other as follows:

X(H ) = ϕ(M)/ϕ(M)∆ = ϕ(M)/ϕ(M)
ϕ(∆0̂+

2
)
= ϕ(M)/ϕ(M

∆0̂+

2

).

Thus X(H ) is isomorphic, via ϕ, to M/M
∆0̂+

2

. Now the equality

M∆2
= M

∆2
+∆0̂+

2

= M
∆0̂+

2

shows that the chirality groups of H and M are isomorphic. �
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Theorem 3.2. If M = W (H ) is regular then H∆ = W −1(M∆2
) and H ∆ =

W −1(M ∆2).

P r o o f. In fact,

M∆2
= Hϕ−1 ∩ (Hϕ−1)S0 = Hϕ−1 ∩ (Hϕ−1)S

S0
1

= Hφ−1 ∩ (Hφ−1)R0φ−1

= (H ∩HR0)φ−1 = H∆ϕ
−1,

which shows that H∆ = W −1(M∆2
). On the other hand,

M∆2 = (Hϕ−1)∆2 = (Hϕ−1)∆2
+∆2

0̂

= (Hϕ−1)∆2
0̂

= (Hϕ−1)∆φ−1

= H∆ϕ−1,

which shows that H ∆ = W −1(M ∆2). �

4. The toroidal hypermap (3, 3, 3)b,c

The hypermap (3, 3, 3)b,c hasN = b2+bc+c2 vertices,N hyperedges,N hyperfaces

and 3N darts. Its Walsh bipartite map is the toroidal map {6, 3}b,c. It is chiral if and

only if {6, 3}b,c is chiral, that is, if and only if bc(b − c) 6= 0 (see [5]). For the other

cases, i.e., for b = 0, c = 0 or b = c, (3, 3, 3)b,c is reflexible. The non-bipartite map

{3, 6}b,c has monodromy group 〈R,L|L
2 = R6 = (RL)3 = (RLR−1L)b(LR−1LR)c =

1〉. The map {6, 3}b,c is the dual map D̺({3, 6}b,c), where ̺ is the ∆+-automorphism

R 7→ RL and L 7→ L. Replacing R by RL in §2 we get the following “canonical”

presentation for the monodromy group of M = {6, 3}b,c:

Mon(M ) = 〈R,L|L2 = R3 = (RL)6 = (RLR−1L)b(R−1LRL)c = 1〉.

By Lemma 3.1 we compute the monodromy group K of (3, 3, 3)b,c = W −1({6, 3}b,c).

K = 〈R,LRL|R3, (LRL)3, (R(LRL))3, (RLR−1L)b(R−1LRL)c,

(LRLR−1)b((LRL)−1R)c〉

= 〈X,Y |X3, Y 3, (XY )3, (XY −1)b(X−1Y )c, (Y X−1)b(Y −1X)c〉.

Since (Y X−1)b(Y −1X)c = 1 is equivalent to (XY −1)b(X−1Y )c = 1 we have

K = 〈X,Y |X3, Y 3, (XY )3, (XY −1)b(X−1Y )c〉.

Theorem 4.1. The chirality group of (3, 3, 3)b,c is a cyclic group generated by

the “translation” (XYX)b−c, and the chirality index is

κ =
N

(N, (b − c)(b, c))
,

where N = b2 + bc+ c2 and ( , ) means the greatest common divisor.
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P r o o f. The assignment R0 7→ R2, R1 7→ R1 and R2 7→ R0 induces a ∆+-

preserving automorphism φ : ∆ −→ ∆. As before, let R = R1R2 and L = R2R0.

Then the restriction φ : ∆+ −→ ∆+ sends R 7→ RL and L 7→ L. The map {6, 3}b,c

is simply the (φ-)dual Dφ({3, 6}b,c). By [1] we have X({3, 6}b,c) = 〈wb−c〉, where

w = LR3 (in fact, w = xyxyx with x = (RL)−1 and y = L). By Lemma 2.1,

X({6, 3}b,c) = 〈(wφ)b−c〉,

where wφ = L(RL)3. This word wφ is “bipartite” and has order N/(b, c) [1]; so

rewriting R = X , LRL = Y we get wφ = XYX . By Theorem 3.1, X((3, 3, 3)b,c) =

〈(XYX)b−c〉 and

κ =
N/(b, c)

(N/(b, c), b− c)
=

N

(N, (b − c)(b, c))
.

�

The smallest reflexible covering of H = (3, 3, 3)b,c is the covering core H∆ and

the largest reflexible hypermap covered by H is the closure cover H ∆. It follows

from [4] that the covering H∆ → H is smooth (non-branch covering), while the

covering H → H ∆ may, in general, not be smooth. However, the word XYX seen

as an automorphism acts like a translation (Figure 1); so the chirality groupX(H ) is

δXYX

δ

Figure 1

generated by a translation. Factoring out the chirality group, the type ofH remains

unaltered. This means that the covering H → H ∆ is also smooth, as expected by

Theorem 3.2, and thus both H∆ and H ∆ are toroidal hypermaps of type (3, 3, 3).

Now we use Theorem 3.2 to compute H∆ = W −1(M∆2
) and H ∆ = W −1(M ∆2),

where M is the bipartite toroidal map {6, 3}b,c. Since {6, 3}b,c = D̺({3, 6}b,c),

where ̺ is the ∆+-automorphism R 7→ RL and L 7→ L, by Lemma 2.1 we have
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M∆2
= D̺(({3, 6}b,c)∆2

) and M ∆2 = D̺(({3, 6}b,c)
∆2). Using [1] for ({3, 6}b,c)∆2

and ({3, 6}b,c)
∆2 we get:

Theorem 4.2. Let H = (3, 3, 3)b,c and d = (b, c). If (b− c)/d 6≡ 0 mod 3 then

the chirality index of H is κ = N/d2, H∆ = (3, 3, 3)dκ,0 and H ∆ = (3, 3, 3)d,0. If

(b− c)/d ≡ 0 mod 3 then the chirality index ofH is κ = 1
3N/d

2, H∆ = (3, 3, 3)dκ,dκ

and H ∆ = (3, 3, 3)d,d.
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