Xueqing Chen; Ming Ding; Jie Sheng
Bar-invariant bases of the quantum cluster algebra of type $A_2^{(2)}$
BAR-IN Variant Bases of the Quantum Cluster Algebra of Type $A^{(2)}$

XUEQING CHEN, Whitewater, MING DING, Beijing,
JIE SHENG, Beijing

(Received October 3, 2010)

Cordially dedicated to Prof. Vlastimil Dlab on the occasion of his 80th birthday

Abstract. We construct bar-invariant $\mathbb{Z}[q^{\pm 1/2}]$-bases of the quantum cluster algebra of the valued quiver $A_2^{(2)}$, one of which coincides with the quantum analogue of the basis of the corresponding cluster algebra discussed in P. Sherman, A. Zelevinsky: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Moscow Math. J., 4, 2004, 947–974.

Keywords: quantum cluster algebra, $\mathbb{Z}[q^{\pm 1/2}]$-basis, valued quiver

MSC 2010: 16G20, 20G42, 14M17

1. Introduction

Cluster algebras were invented by S. Fomin and A. Zelevinsky [11], [12] in order to study total positivity in algebraic groups and canonical bases in quantum groups. The study of \mathbb{Z}-bases of cluster algebras has become important. There are many results involving the construction of \mathbb{Z}-bases of cluster algebras (for example, see [17] and [4] for cluster algebras of rank 2, [3] for finite type, [10] for type \tilde{A}, [5] for $\tilde{A}_2^{(1)}$, [6] for affine type and [13] for acyclic quivers). As the quantum analogue of cluster algebras, quantum cluster algebras were defined by A. Berenstein and A. Zelevinsky in [1]. A quantum cluster algebra is generated by the so-called (quantum) cluster variables inside an ambient skew-field \mathcal{F}. Under the specialization $q = 1$, quantum cluster algebras degenerate to cluster algebras.

Recently, D. Rupel [16] defined a quantum analogue of the Caldero-Chapoton formula [2] and conjectured that cluster variables could be expressed in terms of
the refined Caldero-Chapoton formula, and then proved the conjecture for those in almost acyclic clusters. This conjecture has been proved for acyclic equally valued quivers in [15]. Naturally, one may hope to construct \(\mathbb{Z}[q^{\pm 1/2}] \)-bases of quantum cluster algebras. For simply-laced finite and affine quivers, the bases have been constructed in [7] and [8].

In this paper, we deal with the quantum cluster algebra of the simplest non-simply-laced valued quiver \(A_2^{(2)} \) and construct various bar-invariant \(\mathbb{Z}[q^{\pm 1/2}] \)-bases by applying the quantum analogue of the Caldero-Chapoton formula defined in [16]. Under the specialization \(q = 1 \), one of these \(\mathbb{Z}[q^{\pm 1/2}] \)-bases is exactly the canonical basis of the cluster algebra of the valued quiver \(A_2^{(2)} \) discussed in [17]. Moreover, the elements \(\{s_n : n \in \mathbb{N}\} \) in the basis \(\mathcal{S} \) (see Definition 3.4) possess representation-theoretic interpretations.

2. Preliminaries

2.1. Quantum cluster algebras

In what follows, we will give a short review on quantum cluster algebras, for details one can refer to [1]. Let \(L \) be a lattice of rank \(m \) and \(\Lambda: L \times L \to \mathbb{Z} \) a skew-symmetric bilinear form. Let \(q \) be a formal variable and let us consider the ring of integer Laurent polynomials \(\mathbb{Z}[q^{\pm 1/2}] \). The based quantum torus associated with a pair \((L, \Lambda)\) is a \(\mathbb{Z}[q^{\pm 1/2}] \)-algebra \(\mathcal{T} \) with a distinguished \(\mathbb{Z}[q^{\pm 1/2}] \)-basis \(\{X^e : e \in L\} \) and the multiplication given by

\[
X^e X^f = q^{\frac{1}{2} \Lambda(e,f)} X^{e+f}.
\]

Obviously \(\mathcal{T} \) is associative and the basis elements satisfy the relations

\[
X^e X^f = q^{\Lambda(e,f)} X^f X^e, \quad X^0 = 1, \quad (X^e)^{-1} = X^{-e}.
\]

It is well known that \(\mathcal{T} \) is an Ore domain, i.e., it is contained in its skew-field of fractions \(\mathcal{F} \).

A toric frame in \(\mathcal{F} \) is a mapping \(M: \mathbb{Z}^m \to \mathcal{F} \setminus \{0\} \) of the form

\[
M(c) = \varphi(X^{\eta(c)}) =: X^c
\]

where \(c \in \mathbb{Z}^m \), \(\varphi \) is an automorphism of \(\mathcal{F} \) and \(\eta: \mathbb{Z}^m \to L \) is an isomorphism of lattices. By the definition, the elements \(M(c) \) form a \(\mathbb{Z}[q^{\pm 1/2}] \)-basis of the based
quantum torus $\mathcal{T}_M := \varphi(\mathcal{T})$ and satisfy the relations

\[
M(c)M(d) = q^{\Lambda_M(c,d)}M(c + d),
\]
\[
M(c)M(d) = q^{\Lambda_M(c,d)}M(d)M(c),
\]
\[
M(0) = 1,
\]
\[
M(c)^{-1} = M(-c),
\]

where the skew-symmetric bilinear form Λ_M on \mathbb{Z}^m is obtained by transferring the form Λ from L via the lattice isomorphism η. Note that Λ_M can also be identified with a skew-symmetric $m \times m$ matrix given by $\lambda_{ij} = \Lambda_M(e_i, e_j)$ where \{0, \ldots, m\} is the standard basis of \mathbb{Z}^m.

Given a toric frame M, write $X_i = M(e_i)$; then

\[
\mathcal{T}_M = \mathbb{Z}[q^{\pm 1/2}](X_1^\pm 1, \ldots, X_m^\pm 1): X_iX_j = q^{\lambda_{ij}}X_jX_i).
\]

Let A be an $m \times m$ skew-symmetric matrix and \tilde{B} an $m \times n$ matrix with $n \leq m$. The pair (A, \tilde{B}) is called compatible if $\tilde{B}^rA = (D \mid 0)$ is an $n \times m$ matrix with $D = \text{diag}(d_1, \ldots, d_n)$ where $d_i \in \mathbb{N}$ for $1 \leq i \leq n$. For a toric frame M, we call the pair (M, \tilde{B}) a quantum seed if the pair (Λ_M, \tilde{B}) is compatible. Define the $m \times m$ matrix $E = (e_{ij})_{m \times m}$ as follows:

\[
e_{ij} = \begin{cases}
\delta_{ij} & \text{if } j \neq k; \\
-1 & \text{if } i = j = k; \\
\max(0, -b_{ik}) & \text{if } i \neq j = k.
\end{cases}
\]

For $n, k \in \mathbb{Z}$, $k \geq 0$, denote $[n]_q = (q^n - q^{-n}) \ldots (q^{n-r+1} - q^{-n+r-1})/(q^r - q^{-r}) \ldots (q - q^{-1})$. Let $c = (c_1, \ldots, c_m) \in \mathbb{Z}^m$ with $c_k \geq 0$. We can define the toric frame $M': \mathbb{Z}^m \to \mathcal{T} \setminus \{0\}$ as

\[
(2.1) \quad M'(c) = \sum_{p=0}^{c_k} \left[\begin{array}{c} c_k \\ p \end{array} \right] q^{p_k/2} M(Ec + pb_k), \quad M'(-c) = M'(c)^{-1}
\]

where the vector $b_k \in \mathbb{Z}^m$ is the k-th column of \tilde{B}.

Let $\tilde{B}' = \mu_k(\tilde{B})$ be the mutation of \tilde{B} at k (see [11] for details). Then the quantum seed (M', \tilde{B}') is called the mutation of (M, \tilde{B}) in the direction k. Two quantum seeds are mutation-equivalent if each can be obtained from the other by a sequence of mutations. Let $\mathcal{C} = \{M'(e_i): 1 \leq i \leq n, \ (M', \tilde{B}')$ is mutation-equivalent to $(M, \tilde{B})\}$. The elements of \mathcal{C} are called cluster variables. Let $\mathcal{P} = \{M(e_i): n + 1 \leq i \leq m\}$; the elements in \mathcal{P} are called coefficients. The quantum cluster algebra $\mathcal{A}_q(\Lambda_M, \tilde{B})$ is
the \(\mathbb{Z}[q^{\pm 1/2}] \)-subalgebra of \(\mathcal{F} \) generated by the elements in \(\mathcal{C} \cup \mathcal{P} \). We can associate with \((M, \tilde{B})\) the \(\mathbb{Z} \)-linear bar-involution on \(\mathcal{T}_M \) as follows:

\[
q^r/2 M(c) = q^{r/2} M(c), \quad \text{where } r \in \mathbb{Z}, \ c \in \mathbb{Z}^n.
\]

Then we can see that \(XY = YX \) for all \(X, Y \in \mathcal{A}_q(\Lambda M, \tilde{B}) \) and the elements in \(\mathcal{C} \cup \mathcal{P} \) are bar-invariant.

2.2. The valued quiver \(A^{(2)}_2 \)

We can associate a valued quiver (see [16, Section 2] for more details) with a given compatible pair \((A, B)\). Now we set \(A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) and \(B = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} \). Thus we have \(B^{tr} A = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \) denoted by \(D \). The valued quiver \(Q \) associated with this pair is of type \(A^{(2)}_2 \):

\[
1 \rightarrow (4,1) \rightarrow 2.
\]

Let \(\mathcal{S} \) be a reduced \(\mathbb{F}_q \)-species of type \(Q \), see [9] for details. The category \(\text{rep}(\mathcal{S}) \) of finite dimensional representations of \(\mathcal{S} \) over \(\mathbb{F}_q \) is equivalent to the category of finite dimensional modules over a finite-dimensional hereditary \(\mathbb{F}_q \)-algebra \(\Delta \), where \(\Delta \) is the tensor algebra of \(\mathcal{S} \). In the rest of the paper, we will not distinguish the representation of the valued quiver and the module of the corresponding algebra.

It is well known (see [9]) that indecomposable \(\Delta \)-modules are divided into three families up to isomorphism: the indecomposable regular modules with dimension vector \((nd_p, 2nd_p)\) for \(p \in \mathbb{P}^1_k \) of degree \(d_p \) and \(n \in \mathbb{N} \) (in particular, denote by \(R_p(n) \) the indecomposable regular module with dimension vector \((n, 2n)\) for \(d_p = 1 \)), the preprojective modules, and the preinjective modules. Define

\[
R = \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix}, \quad R' = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.
\]

It is well known that the Euler form on \(\text{rep}(\mathcal{S}) \) is given by

\[
\langle V, N \rangle = m(I - R)D_{\mathbb{F}_q}^{tr}
\]

where \(m \) and \(n \) are the dimension vectors of \(V \) and \(N \), respectively. Now, let \(\mathcal{T} = \mathbb{Z}[q^{\pm 1/2}][X_1^{\pm 1}, X_2^{\pm 1}] \) and \(\mathcal{T} \) be the skew field of fractions of \(\mathcal{T} \). Thus the quantum cluster algebra of the valued quiver \(A^{(2)}_2 \) denoted by \(\mathcal{A}_q(1, 4) \) in the sequel is the \(\mathbb{Z}[q^{\pm 1/2}] \)-subalgebra of \(\mathcal{F} \) generated by the cluster variables \(X_k \), \(k \in \mathbb{Z} \), defined recursively by

\[
X_{m-1}X_{m+1} = \begin{cases} q^{1/2}X_m + 1 & \text{if } m \text{ is odd;} \\ q^2X_m^4 + 1 & \text{if } m \text{ is even.} \end{cases}
\]
The quantum Laurent phenomenon [1] implies that each X_k belongs to the subring \mathcal{T} of \mathcal{F}. Let V be a representation of the valued quiver $A_2^{(2)}$ with dimension vector $\dim V = (v_1, v_2)$. For $e = (e_1, e_2) \in \mathbb{Z}_{\geq 0}^2$, denote by $\text{Gr}_e(V)$ the set of all subrepresentations U of V with $\dim U = e$. In [16], the author defined the element X_V of the quantum torus \mathcal{T} by

$$X_V = \sum_e q^{-\frac{1}{2}d_e^V} \text{Gr}_e(V)|X^{(-v_1+v_2-e_2, 4e_1-v_2)}$$

where $d_e^V = 4e_1(v_1 - e_1) - (4e_1 - e_2)(v_2 - e_2)$. This formula is called the quantum analogue of the Caldero-Chapoton formula [2].

Let $C = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$ be the Cartan matrix and Φ the associated root system with simple roots $\{\alpha_1, \alpha_2\}$. Then all negative real roots of Φ can be labeled by $m \in \mathbb{Z} \setminus \{1, 2\}$ as follows:

$$\alpha_{m-1} + \alpha_{m+1} = \begin{cases} \alpha_m & \text{if } m \text{ is odd}, \\ 4\alpha_m & \text{if } m \text{ is even}, \end{cases}$$

where we set $\alpha_0 = -\alpha_2$, $\alpha_3 = -\alpha_1$.

Recall the following result from [16]:

Theorem 2.1 ([16]). For any $m \in \mathbb{Z} \setminus \{1, 2\}$, let $V(m)$ be the unique indecomposable valued representation of $A_2^{(2)}$ with dimension vector $-\alpha_m$. Then the m-th cluster variable X_m of $\mathcal{A}_q(1, 4)$ is equal to $X_{V(m)}$.

3. BASES OF THE QUANTUM CLUSTER ALGEBRA $\mathcal{A}_q(1, 4)$

In this section, we will construct various bar-invariant $\mathbb{Z}[q^{\pm 1/2}]$-bases of the quantum cluster algebra $\mathcal{A}_q(1, 4)$. Under the specialization $q = 1$, these bases are just the \mathbb{Z}-bases of the cluster algebra of the valued quiver $A_2^{(2)}$.

Definition 3.1. For any (r_1, r_2) and $(s_1, s_2) \in \mathbb{Z}^2$, we write $(r_1, r_2) \preceq (s_1, s_2)$ if $r_i \leq s_i$ for $1 \leq i \leq 2$. Moreover, if there exists i such that $r_i < s_i$, then we write $(r_1, r_2) \prec (s_1, s_2)$.

Lemma 3.2. The Laurent expansion in $X_{V(m)}$ has a minimal non-zero term X^{α_m}.

Proof. It is obvious that the module $V(m)$ with dimension vector (v_1, v_2) has a submodule with dimension vector $(0, v_2)$. Thus by the definition of the q-deformation of the Caldero-Chapoton formula and the partial order in Definition 3.1, we obtain that the expansion in $X_{V(m)}$ has a minimal non-zero term X^{α_m}. \qed
Lemma 3.3. Let $R_p(1)$ be an indecomposable regular module of degree 1. Then

$$X_{R_p(1)} = X^{(-1, -2)} + X^{(-1, 2)} + X^{(1, -2)} + (q^{1/2} + q^{-1/2})X^{(0, -2)}.$$

Proof. Note that $R_p(1)$ contains four submodules with dimension vectors $(0, 0)$, $(0, 1)$, $(0, 2)$ and $(1, 2)$. Therefore the lemma immediately follows from the q-deformation of the Caldero-Chapoton formula. □

By Lemma 3.3, the expression of $X_{R_p(1)}$ is independent of the choice of $p \in \mathbb{P}^1_k$ of degree 1. So we set

$$X_\delta := X_{R_p(1)}.$$

Definition 3.4 (Chebyshev polynomials).

1. The n-th Chebyshev polynomial of the first kind is the polynomial $F_n(x) \in \mathbb{Z}[x]$ defined recursively by

$$\begin{cases} F_0(x) = 1, & F_1(x) = x, & F_2(x) = x^2 - 2, \\ F_{n+1}(x) = F_n(x)F_1(x) - F_{n-1}(x) \quad \text{for } n \geq 2. \end{cases}$$

2. The n-th Chebyshev polynomial of the second kind is the polynomial $S_n(x) \in \mathbb{Z}[x]$ defined recursively by

$$\begin{cases} S_0(x) = 1, & S_1(x) = x, & S_2(x) = x^2 - 1, \\ S_{n+1}(x) = S_n(x)S_1(x) - S_{n-1}(x) \quad \text{for } n \geq 2. \end{cases}$$

It is obvious that $F_n(x) = S_n(x) - S_{n-2}(x)$. We denote $z = X_\delta$, $z_n = F_n(z)$, $s_n = S_n(z)$ for $n \geq 0$ and $z_n = s_n = 0$ for $n < 0$. Set

$$\mathcal{B}' = \{X_m^aX_{m+1}^b: m \in \mathbb{Z}, (a, b) \in \mathbb{Z}_{\geq 0}^2\} \cup \{z_n: n \in \mathbb{N}\},$$

$$\mathcal{G}' = \{X_m^aX_{m+1}^b: m \in \mathbb{Z}, (a, b) \in \mathbb{Z}_{\geq 0}^2\} \cup \{s_n: n \in \mathbb{N}\},$$

$$\mathcal{B}' = \{X_m^aX_{m+1}^b: m \in \mathbb{Z}, (a, b) \in \mathbb{Z}_{\geq 0}^2\} \cup \{z^n: n \in \mathbb{N}\}.$$

Remark 3.5. It is easy to check that $X^{(r, 2r)}X^{(s, 2s)} = X^{(r+s, 2r+2s)}$ for any $r, s \in \mathbb{Z}$, and thus the expansions of z_n, s_n and z^n have a minimal non-zero term $X^{-(n, 2n)}$ according to the partial order in Definition 3.1.

We have the following immediate result.

1082
Lemma 3.6. $X_{\delta} = qX_0^2X_3 - q^2(qX_1 + q^{-1/2} + q^{1/2})X_2^2$.

Proof. By $X_0X_2 = q^{1/2}X_1 + 1$, we have $X_0 = X^{(1, -1)} + X^{(0, -1)}$. By $X_1X_3 = q^2X_4 + 1$, we have $X_3 = X^{(-1, 4)} + X^{(-1, 0)}$. Then we can prove the lemma by direct computation. \qed

The following lemma is straightforward but important.

Lemma 3.7. $\overline{X_{\delta}} = X_{\delta}$.

Proof. Note that $X_{\delta} = q^{-1}X_0^2X_3 - q^{-2}(qX_1 + q^{-1/2} + q^{1/2})X_2^2 = q^{-1}X_3X_0^2 - q^{-2}X_2^2(q^{-1}X_1 + q^{-1/2} + q^{1/2}) = \overline{X_{\delta}}$. \qed

Remark 3.8. By Lemma 3.7, we can verify that $\overline{z_n} = z_n$, $\overline{s_n} = s_n$.

For any $\underline{d} \in \mathbb{Z}^2$, define $\underline{d}^+ = (d_1^+, d_2^+)$ such that $d_i^+ = d_i$ if $d_i > 0$ and $d_i^+ = 0$ if $d_i \leq 0$ for any $1 \leq i \leq 2$. Dually, we set $\underline{d}^- = \underline{d}^+ - \underline{d}$.

The proposition below is a special case of [1, Theorem 7.3].

Proposition 3.9 ([1]). Let Q be the valued quiver $A_2^{(2)}$. Then the set

$$\{X_{d_1^+}X_{d_2^+}X_{S_1}X_{S_2} : (d_1, d_2) \in \mathbb{Z}^2\}$$

is a $\mathbb{Z}[q^{\pm 1/2}]$-basis of $\mathcal{A}_q(1, 4)$.

Proof. It is easy to check that the sets $\{X_1, X_{S_2}\}$ and $\{X_2, X_{S_1}\}$ are clusters obtained by the mutation in the direction 2 and 1, respectively, from the cluster $\{X_1, X_2\}$. Therefore the proposition immediately follows from [1, Theorem 7.3]. \qed

The following result is an immediate consequence of the above proposition.

Corollary 3.10. The sets \mathcal{B}', \mathcal{I}' and \mathcal{G}' are $\mathbb{Z}[q^{\pm 1/2}]$-bases of the quantum cluster algebra $\mathcal{A}_q(1, 4)$.

Proof. Note that if \mathcal{B}' is a $\mathbb{Z}[q^{\pm 1/2}]$-basis of the quantum cluster algebra $\mathcal{A}_q(1, 4)$, then \mathcal{I}' and \mathcal{G}' are naturally $\mathbb{Z}[q^{\pm 1/2}]$-bases of $\mathcal{A}_q(1, 4)$ because there exist unipotent transformations between $\{z_n : n \in \mathbb{N}\}$, $\{s_n : n \in \mathbb{N}\}$ and $\{z^n : n \in \mathbb{N}\}$. In what follows, we will only focus on the set \mathcal{B}'. 1083
By Lemma 3.6, we obtain that X_{δ} is in $\mathcal{A}_q(1,4)$. Thus $\{z_n: n \in \mathbb{N}\}$ is contained in $\mathcal{A}_q(1,4)$. Note that for any $v = (v_1, v_2) \in \mathbb{Z}^2$, there exists only one object X_V in \mathcal{B}' such that $\dim V = (v_1, v_2) \in \mathbb{Z}^2$. Then by Proposition 3.9 we have

$$X_V = b_v X_1^{1^+} X_2^{1^+} X_{S_1}^{-1^+} X_{S_2}^{-1^+} + \sum_{\omega \neq 1} b_\omega X_1^{1^+} X_2^{1^+} X_{S_1}^{-1^+} X_{S_2}^{-1^+}$$

where $b_v, b_\omega \in \mathbb{Z}[q^{\pm 1/2}]$. Then by Lemma 3.2, Remark 3.5, we know that b_m must be a nonzero monomial in $q^{\pm 1/2}$. Thus we obtain that \mathcal{B}' is a $\mathbb{Z}[q^{\pm 1/2}]$-basis of $\mathcal{A}_q(1,4)$.

Then we can obtain the following main result of the paper.

Theorem 3.11. The sets \mathcal{B}, \mathcal{S} and \mathcal{G} are bar-invariant $\mathbb{Z}[q^{\pm 1/2}]$-bases of the quantum cluster algebra $\mathcal{A}_q(1,4)$.

Proof. By Lemma 3.7 and Remark 3.8 and the fact that every element in the set $\{q^{-\frac{1}{2}} ab X_m X_{m+1}^b: m \in \mathbb{Z}, (a, b) \in \mathbb{Z}^2_{\geq 0}\}$ is bar-invariant, the theorem follows immediately.

□

4. Some multiplication formulas

In this section, we prove some multiplication formulas and then give representation-theoretic interpretations of the elements $\{s_n: n \in \mathbb{N}\}$ in the basis \mathcal{S}.

First, we define a ring homomorphism of the quantum cluster algebra $\mathcal{A}_q(1,4)$:

$$\sigma_2: \mathcal{A}_q(1,4) \rightarrow \mathcal{A}_q(1,4)$$

by sending X_m to X_{m+2} and $q^{\pm 1/2}$ to $q^{\pm 1/2}$. It is obviously an automorphism which preserves the defining relations.

We have the following result.

1084
Lemma 4.1. \(\sigma_2(X_\delta) = X_\delta. \)

Proof. By direct computation, we have

\[
X_3 = X^{(-1,4)} + X^{(-1,0)}, \\
X_4 = X^{(-1,3)} + X^{(0,-1)} + (q + q^{-1})X^{(-1,-1)}.
\]

Thus we obtain the identity

\[qX_4^2 + q^{-1}X_2^2 = X_3X_\delta. \]

By Lemma 3.6, we have:

\[X_\delta = qX_3^2X_3 - q^2(qX_1 + q^{-1/2} + q^{1/2})X_2^2. \]

Therefore, we have

\[
\sigma_2(X_\delta) = \sigma_2(qX_3^2X_3 - q^2(qX_1 + q^{-1/2} + q^{1/2})X_2^2)
\]

\[= qX_3^2X_5 - q^2(qX_3 + q^{-1/2} + q^{1/2})X_4^2 \]

\[= q^3X_3^{-1}X_4^2 + qX_3^{-1}X_3^{-1} - q^2(qX_3 + q^{-1/2} + q^{1/2})X_4^2 \]

\[= qX_3^{-1}X_2X_3X_4^3 + q^{-1}X_3^{-1}X_2^2 - q^2(qX_3 + q^{-1/2} + q^{1/2})X_4^2 \]

\[= X_4^3 + q^{-1}X_3^{-1}X_2^2 - q^2(qX_3 + q^{-1/2} + q^{1/2})X_4^2 \]

\[= X_\delta. \]

\[\square \]

Proposition 4.2. We have

1. for \(m > n \geq 1, \)

\[z_nz_m = z_{m+n} + z_{m-n}, \]

\[z_nz_n = z_{2n} + 2, \]

2. for any \(n \in \mathbb{Z}, \)

\[X_{2n}X_\delta = q^{-1/2}X_{2n-2} + q^{1/2}X_{2n+2}, \]

\[X_{2n+1}X_\delta = q^{-1}X_{2n}^2 + qX_{2n+2}^2. \]

1085
Proof. (1) It follows from the definition of Chebyshev polynomials.
(2) By Lemma 4.1, we only need to prove the equations

\[X_2X_\delta = q^{-1/2}X_0 + q^{1/2}X_4, \]
\[X_1X_\delta = q^{-1}X_0^2 + qX_2^2. \]

By the defining relations, we have

\[X_0 = X^{(1,-1)} + X^{(0,-1)}, \quad X_4 = X^{(-1,3)} + X^{(0,-1)} + X^{(-1,-1)}. \]

Then we can prove the above equations by Lemma 3.3 and direct computation. □

Note that for any \(\Delta \)-module \(V \), the quantum analogue of the Caldero-Chapton
map of the valued quiver \(Q = A^{(2)}_2 \) defined in [16] can be rewritten as

\[X_V = \sum_\mathcal{L} |\text{Gr}_\mathcal{L} V|q^{-1/2}(e, e) X_{-e} B^{\text{tr}} - (I - R'). \]

Lemma 4.3. For any dimension vector \(m, e, f \in \mathbb{Z}^n_{\geq 0} \), we have

1. \(\Lambda(m(I - R'), e B^{\text{tr}}) = -\langle e, m \rangle \);
2. \(\Lambda(e B^{\text{tr}}, f B^{\text{tr}}) = \langle f, e \rangle - \langle e, f \rangle \).

Proof. It is easy to check that

\[\Lambda(m(I - R'), e B^{\text{tr}}) = m(I - R')\Lambda B^{\text{tr}} = -m(I - R')D^{\text{tr}} e^{\text{tr}} \]
\[= -e D(I - R')^{\text{tr}}m^{\text{tr}} = -e(I - R)D^{\text{tr}} e^{\text{tr}} = -\langle e, m \rangle \]

and

\[\Lambda(e B^{\text{tr}}, f B^{\text{tr}}) = e B^{\text{tr}} \Lambda f^{\text{tr}} = -e B^{\text{tr}} Df^{\text{tr}} = e(R - R')Df^{\text{tr}} \]
\[= e((I - R') - (I - R))Df^{\text{tr}} = e(I - R')Df^{\text{tr}} - e(I - R)Df^{\text{tr}} \]
\[= \langle f, e \rangle - \langle e, f \rangle. \]

□

Corollary 4.4. For any dimension vector \(m, l, e, f \in \mathbb{Z}^n_{\geq 0} \), we have

\[\Lambda(m(I - R') + e B^{\text{tr}}, l(I - R') + f B^{\text{tr}}) \]
\[= \Lambda(m(I - R'), l(I - R')) + \langle f, e \rangle - \langle e, f \rangle + \langle e, l \rangle - \langle f, m \rangle. \]
For Δ-modules V, T and N, we denote by $F_{T,N}^{V}$ the number of submodules U of V such that U is isomorphic to N and V/U is isomorphic to T. The following proposition gives representation-theoretic interpretations of elements s_n, $n \in \mathbb{N}$ in the basis \mathcal{S}. By abuse of language, we still denote by V the dimension vector of the Δ-module V in the bilinear forms involved.

Proposition 4.5. For any $n \in \mathbb{N}$, we have

$$X_{R_p(n)}X_{R_p(1)} = X_{R_p(n+1)} + X_{R_p(n-1)}.$$

Proof. We have the exact sequences

$$0 \rightarrow R_p(1) \rightarrow R_p(n+1) \rightarrow R_p(n) \rightarrow 0$$

and

$$0 \rightarrow R_p(1) \epsilon \tau R_p(n) = R_p(n) \rightarrow R_p(n-1) \rightarrow 0.$$

The term on the left-hand side is

$$X_{R_p(n)}X_{R_p(1)} = \sum_{d} |Gr_d R_p(n)|q^{-1/2/(d;n\delta-n\delta(I-R'))}X^{-dB^{tr}-(n\delta(I-R'))}$$

$$\times \sum_{b} |Gr_b R_p(1)|q^{-1/2/(b;\delta-n\delta(I-R'))}X^{-bB^{tr}-(\delta(I-R'))}$$

$$= \sum_{b,d} |Gr_d R_p(n)||Gr_b R_p(1)|q^{-1/2/(d;n\delta-n\delta(I-R'))}X^{-dB^{tr}-(n\delta(I-R'))}X^{-bB^{tr}-(n+1)\delta(I-R')}.$$

Then by Corollary 4.4, the above equation is equal to

$$\sum_{b,d} |Gr_d R_p(n)||Gr_b R_p(1)|q^{-1/2/(d;n\delta-n\delta(I-R'))}X^{-dB^{tr}-(n+1)\delta(I-R')}.$$

The first term on the right-hand side is

$$\tau_1 := X_{R_p(n+1)} = \sum_{H} F_{G,H}^{R_p(n+1)} q^{-1/2/(b;\delta-n\delta(I-R'))}X^{-bB^{tr}-(n+1)\delta(I-R')}.$$

1087
According to [14, Lemma 16], we have

$$\tau_1 = \sum_{N,Q} q^{(Q,T)} q - q^{\dim_k \Ext^1(Q,T)} F_{FQ}^{R_p(n)} F_{TN}^{R_p(1)} q - 1/2(N+Q,(n+1)\delta - N-Q) X^{-(\delta + d)B^{tr} - (n+1)\delta(I-R')}.$$

Now we consider the term

$$\tau_2 := \sum_{Y} q^{(n\delta - W,\delta)} F_{WY}^{R_p(n-1)} q^{-1/2(Y+\delta,n\delta - Y')} X^{-(\delta + d)B^{tr} - (n-1)\delta(I-R')}.$$

Any submodule Y of $R_p(n-1)$ induces the submodule $Q = p^{-1}(Y)$ and $N = 0$ of $R_p(n)$ and $R_p(1)$ respectively as the following commutative diagram shows:

$$
\begin{array}{c}
0 \rightarrow R_p(1) \rightarrow p^{-1}(Y) \rightarrow Y \rightarrow 0 \\
\downarrow \quad \quad \quad \quad \downarrow \quad \quad \quad \quad \downarrow \\
R_p(n) \rightarrow R_p(n-1) \rightarrow 0 \rightarrow R_p(1) \rightarrow 0
\end{array}
$$

Thus $y = b + d - \delta$ and

$$-yB^{tr} - (n-1)\delta(I-R')$$

$$= -(b + d - \delta)B^{tr} - (n-1)\delta(I-R')$$

$$= -(b + d)B^{tr} + \delta B^{tr} - (n-1)\delta(I-R')$$

$$= -(b + d)B^{tr} + \delta(R' - R) - (n-1)\delta(I-R')$$

$$= -(b + d)B^{tr} - \delta(I-R') + \delta(I-R) - (n-1)\delta(I-R')$$

$$= -(b + d)B^{tr} - 2\delta(I-R') - (n-1)\delta(I-R')$$

$$= -(b + d)B^{tr} - (n+1)\delta(I-R').$$

Then by [14, Lemma 16], we have

$$\tau_2 = \sum_{N,Q} q^{(Q,T)} q^{\dim_k \Ext^1(Q,T)} F_{FQ}^{R_p(n)} F_{TN}^{R_p(1)} q^{-1/2(N+Q,(n+1)\delta - N-Q)} X^{-(\delta + d)B^{tr} - (n+1)\delta(I-R')}.$$

Therefore

$$\tau_1 + \tau_2 = \sum_{N,Q} F_{FQ}^{R_p(n)} F_{TN}^{R_p(1)} q^{-1/2(N+Q,(n+1)\delta - N-Q)} X^{-(\delta + d)B^{tr} - (n+1)\delta(I-R')} X_{R_p(n)} X_{R_p(1)}.$$

1088
Note that the second term on the right-hand side of the desired equation is
\[\tau_3 := X_{R_p(n-1)} = \sum_Y F^{R_p(n-1)}_{WY} q^{-1/2\langle Y,(n-1)\delta - Y \rangle} X_{-y^{R'}+(n+1)\delta(I-R')} . \]

So it remains to prove \(\tau_2 = \tau_3 \), i.e., the equation
\[\langle n\delta - W, \delta \rangle - \frac{1}{2} \langle Y + \delta, n\delta - Y \rangle = -\frac{1}{2} \langle Y, (n-1)\delta - Y \rangle. \]

Note that
\[
\begin{align*}
\langle n\delta - W, \delta \rangle & - \frac{1}{2} \langle Y + \delta, n\delta - Y \rangle \\
& = \langle \delta + Y, \delta \rangle - \frac{1}{2} \langle Y, n\delta - Y \rangle - \frac{1}{2} \langle \delta, n\delta - Y \rangle \\
& = \langle Y, \delta \rangle - \frac{1}{2} \langle Y, (n-1)\delta - Y \rangle - \frac{1}{2} \langle Y, \delta \rangle + \frac{1}{2} \langle \delta, Y \rangle \\
& = -\frac{1}{2} \langle Y, (n-1)\delta - Y \rangle.
\end{align*}
\]

Here we use the fact that
\[\langle \delta, - \rangle = -\langle -, \tau \delta \rangle = -\langle -, \delta \rangle. \]

By Lemma 3.3 and Proposition 4.5, we know that the expression of \(X_{R_p(n)} \) is independent of the choice of \(p \in \mathbb{P}^1_k \) with degree 1. Hence, we set
\[X_{n\delta} := X_{R_p(n)}. \]

The following corollary gives representation-theoretic interpretations of the elements \(\{s_n : n \in \mathbb{N}\} \) in the basis \(\mathcal{S} \).

Corollary 4.6. \(X_{n\delta} = s_n \) for every \(n \in \mathbb{N} \).

Proof. It follows from Proposition 4.5 and the definition of \(s_n \). \(\square \)

Acknowledgement. The authors would like to thank Professor Jie Xiao and Dr. Fan Xu for many helpful discussions and comments.
References

Authors’ addresses: X. Chen, Department of Mathematical and Computer Sciences, University of Wisconsin-Whitewater, 800 W. Main Street, Whitewater, WI 53190, U.S.A., e-mail: chenx@uw.edu; M. Ding, Center for Advanced Study, Tsinghua University, Beijing 10084, P. R. China, e-mail: m-ding04@mails.tsinghua.edu.cn; J. Sheng, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China, e-mail: shengjie@amss.ac.cn.