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Abstract. In this paper, we prove the existence of a global solution to an initial-boundary
value problem for 1-D flows of the viscous heat-conducting radiative and reactive gases.
The key point here is that the growth exponent of heat conductivity is allowed to be any
nonnegative constant; in particular, constant heat conductivity is allowed.
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1. Introduction

The purpose of this paper is to study mathematically an initial-boundary value

problem in the bounded domain Ω := (0, 1) for the 1-D flows of compressible, viscous

and heat-conducting gases in the case that both the reactive processes of combustion

and the radiative effects at high temperature are taken into account. The system

under consideration reads (see [20], [6], [7])

̺t + (̺u)x = 0,(1.1)

̺(ut + uux) + px = (νux)x,(1.2)

̺(et + uex) + pux = (κθx)x + νu2
x + λ̺ϕz,(1.3)

̺(zt + uzx) = (d̺zx)x − ̺ϕz(1.4)

*This work is partially supported by the NSFC (Grant No. 10801111, 10971171) and the
Natural Science Foundation of Fujian Province of China (Grant No. 2010J05011).
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with the initial-boundary conditions

(̺, u, θ, z)(x, 0) = (̺0, u0, θ0, z0)(x),(1.5)

(u, θx, zx)
∣

∣

x=0
= (u, θx, zx)

∣

∣

x=1
= 0.(1.6)

Here, the density ̺ = ̺(x, t), the velocity u = u(x, t), the absolute temperature

θ = θ(x, t) and the fraction of reactant z = z(x, t) are unknown functions. The

positive constants ν, d, and λ are the viscosity coefficient, the species diffusion, and

the difference in heat between the reactant and the product, respectively; while κ is

the heat conductivity satisfying a certain condition given below.

The function ϕ = ϕ(θ), describing the intensity of chemical reaction, mimics the

simplest one-order Arrhenius kinetics (cf. [3], [4], [20]):

(1.7) ϕ(θ) = Kθβe−A/θ
> 0,

where the positive constants A and K are the activation energy and the coefficient

of rate of the reactant, respectively; and β is a nonnegative physical number.

The pressure p = p(̺, θ) and the internal energy e = e(̺, θ) are related with the

density and the temperature by the equations of state (cf. [15], [22]):

(1.8) p(̺, θ) = R̺θ +
1

3
aθ4, e(̺, θ) = cV θ + aθ4/̺,

where the positive constants R, cV , and a are the perfect gas constant, the specific

heat at constant volume, and the Stefan-Boltzmann constant, respectively. The state

functions in (1.8) include the perfect polytropic gas contribution proportional to θ

and the Stefan-Boltzmann radiative contribution proportional to θ4.

Since the pioneering work of Kazhikhov and Shelukhin (cf. [13]), there has been a

lot of literature on the study of global existence and large-time behavior of solutions

for the 1-D models of compressible, viscous and heat-conductive fluids. In particular,

the non-radiative (a = 0) but reactive flows for one-dimensional compressible, viscous

and heat-conductive gases were considered in [2], [3], [4], [14], [19], [21]. The special

case d = 0 (the binary-mixture case) was treated in [5], [23]. The 1-D non-reactive

but radiative flows were studied in [8]. Recently, the combined radiative and reactive

case which is the most general and important case has been extensively studied, see,

for example, [7], [9], [10], [18] among others.

As was pointed out in [7], [8], to prove the global existence of strong/classical

solutions, the following growth condition on the heat conductivity,

(1.9) κ1(1 + θ)q 6 κ(̺, θ) 6 κ2(1 + θ)q for some q > 0,
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plays a mathematically very important role in the proof of a priori estimates, see,

for instance, [7], [8], [18] for q > 4, [10] for q > 2, and [9] for q > 1. Although

condition (1.9) with q > 3 is physically reasonable when the radiative effects at high

temperature are involved (cf. [15]), it is indeed a “regularized” condition from the

mathematical point of view. The reason lies in the fact that condition (1.9) leads

to some additional estimates of temperature from the starting energy-entropy esti-

mates, for example, ‖θ(t)‖L∞ ∈ Lq+4(0, T ) and θ(q−2)/2θx ∈ L2(QT ), and hence, the

nonlinear radiation terms can be well controlled. As a result, the estimates of the

derivatives for the solutions and the pointwise upper bound for temperature can be

obtained in a similar manner to that in [12], [11] by using these additional estimates.

In view of this observation, it is thus mathematically interesting to study the optimal

growth condition of heat conductivity for the problem (1.1)–(1.8). “Optimal” here

means that whether or not there exists a uniquely global strong/classical solution to

the problem (1.1)–(1.8) when the growth condition (1.9) is satisfied by any nonnega-

tive exponent q, especially, when the heat conductivity κ is only a positive constant.

This is our main purpose in this paper. Precisely, we shall prove

Theorem 1.1. Let the heat conductivity κ be a positive constant, and let β ∈

[0, 8]. Assume that for some positive constant C0 we have

C−1
0 6 ̺0(x), θ0(x) 6 C0, 0 6 z0(x) 6 1,(1.10)

‖(̺0, u0, θ0, z0)‖H2(Ω) 6 C0.(1.11)

Then for any given T > 0, the initial-boundary value problem (1.1)–(1.8) has a

uniquely global solution (̺, u, θ, z) defined over QT := Ω × (0, T ) such that

C−1 6 ̺(x, t), θ(x, t) 6 C, 0 6 z(x, t) 6 1 ∀ (x, t) ∈ Q̄T ,(1.12)

‖(̺, u, θ, z)(t)‖H2(Ω) + ‖(̺t, ut, θt, zt)(t)‖L2(0,T ;H1(Ω)) 6 C,(1.13)

where C is a generic positive constant depending on T .

The global existence of solutions will be proved by combining the local existence

theorem and the global a priori estimates. The local existence of solutions can be

shown in a standard way as in [1], [16], [17]. So, to prove the global existence, it

suffices to prove the global a priori estimates stated in (1.12) and (1.13). This will be

done in Section 2. Compared with those works in which various growth conditions on

the heat conductivity were assumed, the a priori global estimates of solutions to the

problem considered are more complicated, and some new ideas have to be developed.

This is mainly due to the effects of radiative pressure, consequently, the boundedness

of ‖̺x(t)‖L2 cannot be obtained directly from the standard energy-entropy estimates
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(cf. Lemma 2.1) and the pointwise upper-lower bounds of ̺ (cf. Lemma 2.2) at the

stage when κ is only a positive constant. The boundedness of ‖̺x(t)‖L2 plays an

important role in the proof of boundedness of θ and the global estimates of high-order

derivatives for the physical quantities. To overcome this difficulty, the key step here

is to derive some higher integrability of θ in terms of the norm ‖uxx‖L2(QT ) and to

bound ‖̺x(t)‖L2 in terms of the norms ‖θ‖L∞(QT ) and ‖uxx‖L2(QT ) (see Lemmas 2.4

and 2.5). This method is different from those used in the previous works mentioned

above.

The analysis in the paper also allows the growth power q in (1.9) to be any positive

constant. More precisely, similarly to the proof of Theorem 1.1, we can show

Theorem 1.2. Let (1.10), (1.11), and β ∈ [0, 8] be satisfied. Assume that κ =

κ(̺, θ) is strictly positive, continuously differentiable on R+ ×R
+, and for any q > 0

let

κ1(1 + θ)q 6 κ(̺, θ) 6 κ2(1 + θ)q ∀ ̺ ∈ (0, +∞),(1.14)

|κ̺(̺, θ)| 6 κ2(1 + θ)q , |κθ(̺, θ)| 6 κ2(1 + θ)q−1,(1.15)

where κ1 and κ2 are positive constants. Then problem (1.1)–(1.8) has a uniquely

global solution (̺, u, θ, z) satisfying (1.12), (1.13).

Theorem 1.2 will be proved in Section 3. It is clear that Theorem 1.2 covers the

most physically interesting case of thermal radiation (i.e. q = 3), and extends thus

the existence results in [7], [9], [18]. Moreover, by virtue of (1.12) and (1.13) one can

easily deduce Hölder estimates of the solutions to problem (1.1)–(1.8) (see, e.g. [18]).

We remark here that the results of Theorems 1.1 and 1.2 hold for more general

Arrhenius-type law where the rate function of chemical reaction has the form (cf. [20])

f(̺, θ, z)zm =

{

0 for 0 6 θ < θI ,

c0̺
m−1θre−c1/(θ−θI)zm for θ > θI ,

where c0, c1 > 0, r 6 4, m > 1 is the kinetics order, and θI > 0 is the ignition

temperature (ignition is ignored if θI = 0), since the pointwise boundedness of z and

̺ given in (2.1) and (2.6) is still valid in this situation. So, the existence result for

the higher-order kinetics case treated in [10] with q > 2 being assumed, is extended

to any growth exponent q > 0. We also note that the condition β ∈ [0, 8] improves

the result in [18] where β ∈ [0, 13/2] was assumed.
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2. Proof of Theorem 1.1

In this section, we prove our main result stated in Theorem 1.1. For this purpose,

we need to establish some a priori global estimates for the solution and its derivatives.

For simplicity, throughout the rest of this paper we use the same letter C to denote

generic positive constants possibly depending on T . As usual, we begin with the

standard energy-entropy estimates, which can be found in [4], [7], [19], [18], by using

the Lagrangian coordinates.

Lemma 2.1. For any fixed T > 0 and t ∈ [0, T ] we have

0 6 z(x, t) 6 1 ∀ (x, t) ∈ [0, 1]× [0, T ],(2.1)
∫ 1

0

̺(x, t) dx =

∫ 1

0

̺0(x) dx > 0,(2.2)

∫ 1

0

[̺(θ + u2 + z) + θ4](x, t) dx 6 C,(2.3)

∫ 1

0

̺z(x, t) dx +

∫ t

0

∫ 1

0

̺ϕz dxds 6 C,(2.4)

∫ t

0

∫ 1

0

(κθ2
x

θ2
+

u2
x + ̺ϕz

θ

)

dxds 6 C.(2.5)

With help of Lemma 2.1, similarly to the proof in [13], [16], it is easy to establish

Lemma 2.2. For any fixed T > 0 we have

C−1 6 ̺(x, t) 6 C ∀ (x, t) ∈ [0, 1]× [0, T ],(2.6)
∫ T

0

‖θ(t)‖4
L∞ dt +

∫ T

0

∫ 1

0

θ8(x, t) dxdt 6 C.(2.7)

As an immediate consequence of Lemma 2.2, we find

Lemma 2.3. For any fixed T > 0 we have

sup
t∈[0,T ]

∫ 1

0

(u2 + z2)(x, t) dx +

∫ T

0

∫ 1

0

(u2
x + z2

x) dxdt 6 C,(2.8)

∫ T

0

(‖u(t)‖4
L∞ + ‖z(t)‖4

L∞) dt +

∫ T

0

∫ 1

0

(u6 + z6) dxdt 6 C.(2.9)

P r o o f. Multiplying (1.2) and (1.4) by u and z in L2(Qt) (Qt := (0, 1)× (0, t)),

respectively, by virtue of Lemma 2.2 we obtain (2.8) after integrating by parts.
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Observing that

‖u(t)‖2
L∞ 6 2

∫ 1

0

|u||ux| dx 6 C

(
∫ 1

0

u2
x dx

)1/2

,

we immediately deduce from (2.8) that ‖u(t)‖4
L∞ ∈ L1(0, T ). Consequently,

∫ T

0

∫ 1

0

u6(x, t) dxdt 6

∫ T

0

‖u(t)‖4
L∞ ·

∫ 1

0

u2(x, t) dxdt 6 C.

Analogous estimates for z can be shown in the same manner. �

To continue, we need some further estimates on temperature, which will be used

later to bound the radiation terms and to prove the pointwise boundedness of tem-

perature. For simplicity, we set

Θ := ‖θ‖L∞(QT ) = sup
t∈[0,T ]

‖θ(t)‖L∞ .

We shall prove

Lemma 2.4. For any given T > 0 and t ∈ [0, T ] we have

∫ 1

0

θ8(x, t) dx +

∫ t

0

∫ 1

0

κθ3θ2
x dxds 6 C + C

(
∫ t

0

∫ 1

0

u2
xx dxds

)1/2

,(2.10)

∫ 1

0

θ11(x, t) dx +

∫ t

0

∫ 1

0

κθ6θ2
x dxds 6 C + C

(
∫ t

0

∫ 1

0

u2
xx dxds

)15/16

.(2.11)

P r o o f. To prove this lemma, we first rewrite (1.3) as follows, using (1.1) and

(1.8):

(2.12) a(θ4)t +cV ̺θt +cV ̺uθx +a(uθ4)x +
(

R̺θ+
a

3
θ4

)

ux = (κθx)x +νu2
x +λ̺ϕz.

Multiplying (2.12) by θ4 and integrating the resulting equation by parts over Qt,

we have by Lemmas 2.1–2.3 and the fact that ϕ 6 Cθβ that (keeping in mind that

β ∈ [0, 8])

∫ 1

0

θ8(x, t) dx +

∫ t

0

∫ 1

0

κθ3θ2
x dxds(2.13)

6 C + C

∫ t

0

∫ 1

0

(θ8|ux| + θ4u2
x + θ12

)

dxds

6 C + C

∫ t

0

(‖θ(s)‖8
L∞ + ‖ux(s)‖2

L∞) ds,
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where we have also used the Cauchy-Schwarz inequality and the identity

∫ t

0

∫ 1

0

(uθ4)xθ4 dxds = −4

∫ t

0

∫ 1

0

uθ7θx dxds =
1

2

∫ t

0

∫ 1

0

θ8ux dxds.

To deal with ‖θ(s)‖8
L∞ , we first utilize (2.3) and Hölder’s inequality to infer that

‖θ(s)‖
9/2
L∞ 6 C + C

∫ 1

0

θ2θ3/2|θx| dx 6 C + C

(
∫ 1

0

θ3θ2
x dx

)1/2

,

and hence,
∫ t

0

‖θ(s)‖9
L∞ ds 6 C + C

∫ t

0

∫ 1

0

θ3θ2
x dxds.

This, together with Young’s inequality, gives

(2.14)

∫ t

0

‖θ(s)‖8
L∞ ds 6 ε

∫ t

0

‖θ(s)‖9
L∞ ds +

C

ε
6 Cε

∫ t

0

∫ 1

0

θ3θ2
x dxds +

C

ε
.

On the other hand, it follows from (2.8) that

∫ t

0

‖ux(s)‖2
L∞ ds 6 C

∫ t

0

‖ux(s)‖L2‖uxx(s)‖L2 ds(2.15)

6 C

(
∫ t

0

‖uxx(s)‖2
L2 ds

)1/2

.

So, putting (2.14), (2.15) into (2.13) and taking ε > 0 small enough, one immediately

gets (2.10).

Similarly, multiplying (2.12) by θ7 and integrating it by parts, we get

∫ 1

0

θ11(x, t) dx +

∫ t

0

∫ 1

0

κθ6θ2
x dxds(2.16)

6 C + C

∫ t

0

∫ 1

0

(θ11|ux| + θ7u2
x + θ15) dxds

6 C + C

∫ t

0

∫ 1

0

(θ7u2
x + θ15) dxds.

In view of (2.10), we have for any s ∈ (0, t) that

∫ 1

0

θ7(x, s) dx 6

(
∫ 1

0

θ8(x, s) dx

)7/8

6 C + C

(
∫ t

0

‖uxx(s)‖2
L2 ds

)7/16

,
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from which and (2.15) we deduce that

∫ t

0

∫ 1

0

θ7u2
x dxds 6

∫ t

0

‖ux(s)‖2
L∞ ·

∫ 1

0

θ7(x, s) dx(2.17)

6 C + C

(
∫ t

0

∫ 1

0

u2
xx dxds

)15/16

.

Moreover, due to the estimates

∫ t

0

∫ 1

0

θ15 dxds 6 C

∫ t

0

‖θ(s)‖11
L∞ ·

∫ 1

0

θ4(x, s) dxds 6 C

∫ t

0

‖θ(s)‖11
L∞ ds

and

∫ t

0

‖θ(s)‖12
L∞ ds 6 C + C

∫ t

0

(
∫ 1

0

θ2θ3|θx| dx

)2

ds 6 C + C

∫ t

0

∫ 1

0

θ6θ2
x dxds,

it is easy to see that

∫ t

0

∫ 1

0

θ15 dxds 6 C

∫ t

0

‖θ(s)‖11
L∞ ds 6 C

(
∫ t

0

‖θ(s)‖12
L∞ ds

)11/12

(2.18)

6 C + C

(
∫ t

0

∫ 1

0

θ6θ2
x dxds

)11/12

.

Plugging (2.17) and (2.18) into (2.16) and using the Cauchy-Schwarz inequality, we

immediately arrive at (2.11). Therefore, the proof of Lemma 2.4 is complete. �

As aforementioned in the introduction, due to the effect of radiative pressure, we

cannot obtain the boundedness of ‖̺x(t)‖L2 directly from Lemmas 2.1–2.3 when the

heat conductivity is only a positive constant. Instead, we shall bound ‖̺x(t)‖L2 by

Θ = ‖θ‖L∞(QT ) and ‖uxx‖L2(QT ), which is crucial for the estimates of derivatives of

the solutions.

Lemma 2.5. For any fixed T > 0 we have

sup
t∈[0,T ]

∫ 1

0

̺2
x(x, t) dx +

∫ T

0

∫ 1

0

θ̺2
x dxdt(2.19)

6 C(1 + Θ) + C

(
∫ T

0

∫ 1

0

u2
xx dxdt

)15/16

.

P r o o f. By virtue of (1.1) and (2.6), we can rewrite (1.2) in the form

[

̺
(

ν
̺x

̺2
+ u

)]

t
+

[

̺u
(

ν
̺x

̺2
+ u

)]

x
= −

(

R̺θ +
a

3
θ4

)

x
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which, multiplied by (ν̺x/̺2 + u) in L2, results in

L :=
1

2

∫ 1

0

̺
(

ν
̺x

̺2
+ u

)2

(x, s) dx
∣

∣

∣

t

0
+ νR

∫ t

0

∫ 1

0

θ

̺2
̺2

x dxds(2.20)

=

∫ t

0

∫ 1

0

[(

−R̺θx −
4a

3
θ3θx

)(

ν
̺x

̺2
+ u

)

− Rθu̺x

]

dxds :=

3
∑

i=1

Ri,

where the left-hand side can be bounded as follows, using (2.3) and (2.6),

L > C−1

(
∫ 1

0

̺2
x(x, t) dx +

∫ t

0

∫ 1

0

θ̺2
x dxds

)

− C.

To bound the right-hand side, we first make use of (2.3) and (2.5)–(2.7) to deduce

|R1| :=

∣

∣

∣

∣

∫ t

0

∫ 1

0

R̺θx

(

ν
̺x

̺2
+ u

)

dxds

∣

∣

∣

∣

6 δ

∫ t

0

∫ 1

0

θ̺2
x dxds + Cδ−1

∫ t

0

∫ 1

0

θ2
x

θ
dxds + C

∫ t

0

∫ 1

0

(

θ2u2 +
θ2

x

θ2

)

dxds

6 δ

∫ t

0

∫ 1

0

θ̺2
x dxds + Cδ−1(1 + Θ), 0 < δ < 1.

Secondly, using (2.6)–(2.8), (2.10), and (2.11), we obtain from the Cauchy-Schwarz

inequality that

|R2| :=

∣

∣

∣

∣

∫ t

0

∫ 1

0

4a

3
θ3θx

(

ν
̺x

̺2
+ u

)

dxds

∣

∣

∣

∣

6 δ

∫ t

0

∫ 1

0

θ̺2
x dxds + Cδ−1

∫ t

0

∫ 1

0

θ5θ2
x dxds + C

∫ t

0

∫ 1

0

θ4|ux| dxds

6 δ

∫ t

0

∫ 1

0

θ̺2
x dxds + Cδ−1

∫ t

0

∫ 1

0

(θ3 + θ6)θ2
x dxds + C

∫ t

0

∫ 1

0

(θ8 + u2
x) dxds

6 C + δ

∫ t

0

∫ 1

0

θ̺2
x dxds + Cδ−1

{

1 +

(
∫ t

0

∫ 1

0

u2
xx dxds

)15/16}

,

since integrating by parts yields
∫ t

0

∫ 1

0

θ3θxu dxds =
1

4

∫ t

0

∫ 1

0

θ4ux dxds 6 C

∫ t

0

∫ 1

0

θ4|ux| dxds.

Finally, it follows from (2.7) and (2.8) that

|R3| :=

∣

∣

∣

∣

∫ t

0

∫ 1

0

Rθu̺x dxds

∣

∣

∣

∣

6 δ

∫ t

0

∫ 1

0

θ̺2
x dxds + Cδ−1.

Thus, putting the estimates of L, Ri (i = 1, 2, 3) into (2.20) and choosing δ > 0 small

enough, we obtain the desired estimates indicated in (2.19) by taking the super-norm

over t ∈ [0, T ]. �
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In order to estimate ‖ux(t)‖L2 and ‖uxx‖L2(QT ), we first need to prove

Lemma 2.6. For any fixed T > 0 we have

(2.21) sup
t∈[0,T ]

∫ 1

0

u4(x, t) dx+

∫ T

0

∫ 1

0

u2u2
x dxds 6 C +C

(

sup
t∈[0,T ]

∫ 1

0

u2
x(x, t) dx

)1/2

.

P r o o f. Multiplying (1.2) by u3 and integrating the resulting equation by parts

over Qt, one infers from (2.6), (2.7), and the Cauchy-Schwarz inequality that

∫ 1

0

u4(x, t) dx +

∫ t

0

∫ 1

0

u2u2
x dxds

6 C + C

∫ t

0

∫ 1

0

(θ + θ4)u2|ux| dxds

6 C +
1

2

∫ t

0

∫ 1

0

u2u2
x dxds + C

∫ t

0

∫ 1

0

(1 + θ8)u2 dxds

6 C +
1

2

∫ t

0

∫ 1

0

u2u2
x dxds + C sup

t∈[0,T ]

‖u(t)‖2
L∞

6 C +
1

2

∫ t

0

∫ 1

0

u2u2
x dxds + C

(

sup
t∈[0,T ]

∫ 1

0

u2
x(x, t) dx

)1/2

.

This completes the proof of (2.21). �

Lemma 2.7. For any fixed T > 0 we have

sup
t∈[0,T ]

∫ 1

0

u2
x(x, t) dx +

∫ T

0

∫ 1

0

(u2
t + u2

xx) dxds 6 C(1 + Θ2),(2.22)

∫ T

0

‖ux(t)‖2
L∞ dt 6 C(1 + Θ),

∫ T

0

∫ 1

0

u4
x dxdt 6 C(1 + Θ3).(2.23)

P r o o f. Multiplying (1.2) by ut and integrating it by parts over (0, 1)×(0, t), we

deduce from (2.5)–(2.9), (2.11), (2.19), (2.21), and the Cauchy-Schwarz inequality

that

∫ 1

0

u2
x(x, t) dx +

∫ t

0

∫ 1

0

u2
t dxds(2.24)

6 C + C

∫ t

0

∫ 1

0

(u2u2
x + θ2̺2

x + θ6θ2
x + θ2

x) dxds

6 C

(

sup
t∈[0,T ]

∫ 1

0

u2
x(x, t) dx

)1/2

+ C

(
∫ T

0

∫ 1

0

u2
xx dxdt

)15/16

+ C(1 + Θ2),
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where we have used (2.7) and (2.19) to get

∫ t

0

∫ 1

0

θ2̺2
x dxds 6

∫ t

0

‖θ(s)‖2
L∞ ·

∫ 1

0

̺2
x dxds

6 C(1 + Θ) + C

(
∫ T

0

∫ 1

0

u2
xx dxdt

)15/16

.

Equation (1.2) also implies that

∫ T

0

∫ 1

0

u2
xx dxds 6 C

∫ T

0

∫ 1

0

(u2u2
x + θ6θ2

x + θ2̺2
x + θ2

x + u2
t ) dxds

6 C

(

sup
t∈[0,T ]

∫ 1

0

u2
x(x, t) dx

)1/2

+ C

(
∫ T

0

∫ 1

0

u2
xx dxds

)15/16

+ C(1 + Θ2) + C

∫ T

0

∫ 1

0

u2
t dxds

which, together with (2.24) and Young’s inequality, gives

(2.25)

∫ T

0

∫ 1

0

u2
xx dxds 6 C(1 + Θ2) + C

(

sup
t∈[0,T ]

∫ 1

0

u2
x(x, t) dx

)1/2

.

Hence, adding (2.25) to (2.24) and taking the super-norm over t ∈ [0, T ], we conclude

from Young’s inequality that

sup
t∈[0,T ]

∫ 1

0

u2
x(x, t) dx +

∫ T

0

∫ 1

0

(u2
t + u2

xx) dxds 6 C(1 + Θ2),

which proves (2.22). As an immediate result, using (2.8) and Hölder’s inequality, we

also have

∫ T

0

‖ux(t)‖2
L∞ dt 6 C + C

∫ T

0

‖ux(t)‖L2‖uxx(t)‖L2 dt

6 C + C

(
∫ T

0

‖uxx(t)‖2
L2 dt

)1/2

6 C(1 + Θ)

and
∫ T

0

∫ 1

0

u4
x dxdt 6 C

∫ T

0

‖ux(t)‖2
L∞ ·

∫ 1

0

u2
x dxdt 6 C(1 + Θ3).

The proof of (2.23) is therefore complete. �
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To complete the proof of Lemmas 2.4–2.7, we are now in a position to estimate Θ.

In the previous works (see, e.g., [7], [9], [18], . . .), the proof of boundedness of θ

depends heavily on the growth condition of heat conductivity with various positive

exponents q which play an important role in handling the strongly nonlinear radiation

terms (∼ θ4). In the present paper, we can remove such growth constraint on κ by

using the previous lemmas.

Lemma 2.8. We have θ(x, t) 6 C for all (x, t) ∈ Q̄T . Furthermore,

(2.26) sup
t∈[0,T ]

∫ 1

0

θ2
x(x, t) dx +

∫ T

0

∫ 1

0

(1 + θ3)θ2
t dxdt 6 C.

P r o o f. If we multiply (2.12) by θt in L2(Qt) and integrate by parts, we have

by (2.1), (2.6), (2.7), and the Cauchy-Schwarz inequality that

∫ 1

0

θ2
x(x, t) dx +

∫ t

0

∫ 1

0

(1 + θ3)θ2
t dxds(2.27)

6 C + C

∫ t

0

∫ 1

0

(u2θ2
x + u2θ3θ2

x + θ5u2
x + θ2u2

x + u4
x + θ(2β−3)+) dxds

:= C + C

6
∑

i=1

Ri,

where (1.7) and (2.7) were used to get that

∫ t

0

∫ 1

0

θβ |θt| dxds 6















ε

∫ t

0

∫ 1

0

θ2
t dxds + Cε−1, β ∈ [0, 4],

ε

∫ t

0

∫ 1

0

θ3θ2
t dxds + Cε−1

∫ t

0

∫ 1

0

θ2β−3 dxds, β ∈ [4, 8],

for any small ε ∈ (0, 1). The right-hand side of (2.27) can be estimated term by term

as follows. First, using (2.5), (2.8), (2.22), and Sobolev’s inequality, we find

R1 6 Θ2 sup
t∈[0,T ]

‖u(t)‖2
L∞

∫ t

0

∫ 1

0

θ2
x

θ2
dxds 6 CΘ2 sup

t∈[0,T ]

‖ux(t)‖L2 6 C(1 + Θ3).

Secondly, by virtue of (2.10) and (2.22) we have

R2 6 sup
t∈[0,T ]

‖u(t)‖2
L∞

∫ t

0

∫ 1

0

θ3θ2
x dxds 6 C(1 + Θ2).

Thirdly, it follows from (2.7) and (2.22) that

R3 + R4 6 C(1 + Θ)

∫ t

0

(1 + ‖θ(s)‖4
L∞) ·

∫ 1

0

u2
x dxds 6 C(1 + Θ3).
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Finally, recalling that 0 6 β 6 8, we have by (2.23) and (2.7) that

R5 + R6 6 C(1 + Θ3) + CΘ5

∫ t

0

∫ 1

0

θ8 dxds 6 C(1 + Θ5).

Putting the estimates of Ri (i = 1, . . . , 6) into (2.27), we get

(2.28) sup
t∈[0,T ]

∫ 1

0

θ2
x(x, t) dx +

∫ T

0

∫ 1

0

(θ2
t + θ3θ2

t ) dxds 6 C(1 + Θ5).

To deal with the high-order term Θ5, we first make use of (2.11) and (2.22) to see

that

(2.29) sup
t∈[0,T ]

∫ 1

0

θ11(x, t) dx 6 C(1 + Θ2).

On the other hand, due to

‖θ(t)‖
13/2
L∞ 6 C + C

∫ 1

0

θ11/2|θx| dx 6 C + C

∫ 1

0

(θ11 + θ2
x)(x, t) dx,

we deduce from (2.28) and (2.29) that

Θ13/2
6 C(1 + Θ5)

which, combined with Young’s inequality, immediately leads to

Θ 6 C, i.e., θ(x, t) 6 C for all (x, t) ∈ Q̄T .

Therefore, combining this with (2.28), we complete the proof of Lemma 2.8. �

As an immediate consequence of Lemma 2.8, by (1.1) and Sobolev’s inequality we

infer from Lemmas 2.5 and 2.7

Lemma 2.9. For any fixed T > 0 we have

sup
t∈[0,T ]

(‖̺x(t)‖L2 + ‖̺t(t)‖L2 + ‖u(t)‖L∞ + ‖ux(t)‖L2) 6 C,(2.30)

∫ T

0

‖ux(t)‖2
L∞ dt +

∫ T

0

∫ 1

0

(u2
t + u2

xx + u4
x) dxds 6 C.(2.31)

In view of Lemmas 2.1–2.9, we can prove a positive lower bound for θ and estimates

of higher-order derivatives for (u, θ, z) in a very standard way.
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Lemma 2.10. For any fixed T > 0 and t ∈ [0, T ] the pair (u, θ, z) satisfies

∫ 1

0

(u2
t + u2

xx)(x, t) dx +

∫ t

0

∫ 1

0

u2
xt dxds 6 C,(2.32)

θ(x, t) > C−1, ∀ (x, t) ∈ Q̄T ,(2.33)
∫ 1

0

(z2
x + z2

t + z2
xx)(x, t) dx +

∫ t

0

∫ 1

0

z2
xt dxds 6 C,(2.34)

∫ 1

0

(θ2
t + θ2

xx)(x, t) dx +

∫ t

0

∫ 1

0

θ2
xt dxds 6 C.(2.35)

P r o o f. We only sketch the proof. Differentiating (1.2) with respect to t, mul-

tiplying it by ut, and integrating the resulting equation over Qt, by Lemmas 2.1–2.9

we find

1

2

∫ 1

0

̺u2
t (x, s) dx

∣

∣

∣

∣

t

0

+ ν

∫ t

0

∫ 1

0

u2
xt dxds

=

∫ t

0

∫ 1

0

[

(̺u)x(u2
t + uuxut) − ̺uxu2

t −
(

R̺θ +
a

3
θ4

)

xt
ut

]

dxds

=

∫ t

0

∫ 1

0

[

−(̺u)(u2
t + uuxut)x − ̺uxu2

t +
(

R̺θ +
a

3
θ4

)

t
uxt

]

dxds

6 ε

∫ t

0

∫ 1

0

u2
xt dxds + Cε−1 + Cε−1

∫ t

0

(1 + ‖ux(s)‖L∞) ·

∫ 1

0

u2
t dxds,

from which we obtain (2.32) by taking ε > 0 appropriately small and applying

Gronwall’s lemma. Note that the boundedness of ‖uxx(t)‖L2 follows from (1.2).

In view of the state equations (1.8), equation (1.3) can be written as

θt + uθx +
uxpθ

̺eθ
θ −

κ

̺eθ
θxx =

νu2
x + λ̺ϕz

̺eθ
> 0.

Define the parabolic operator

L(f) :=
∂f

∂t
+ u

∂f

∂x
+

uxpθ

̺eθ
f −

κ

̺eθ

∂2f

∂x2
,

where the coefficients are bounded due to (2.6), (2.32), and Lemmas 2.8–2.9. Thus,

if we choose θ̃(t) := inf
x∈[0,1]

θ0(x)e−Kt with K suitably large as a compared function,

then we obtain (2.33) by applying the standard comparison argument.
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Multiplying (1.4) by ̺−1zxx and integrating it over (0, 1) × (0, t), one gets

∫ 1

0

z2
x(x, t) dx +

∫ t

0

∫ 1

0

z2
xx dxds 6 C + C

∫ t

0

∫ 1

0

̺2
xz2

x dxds

6 C + C

∫ t

0

‖zx(s)‖L2‖zxx(s)‖L2 ds

6
1

2

∫ t

0

∫ 1

0

z2
xx dxds + C,

from which and Sobolev’s inequality we easily get

sup
t∈[0,T ]

‖zx(t)‖2
L2 +

∫ T

0

‖zx(t)‖2
L∞ dt +

∫ T

0

∫ 1

0

z2
xx dxdt 6 C.

Using this and the estimate ‖̺t(t)‖L2 6 C in (2.30), we can prove (2.34) in a manner

similar to the proof of (2.32). The estimates of θ indicated in (2.35) can be shown

in exactly the same way by using Lemmas 2.1–2.9 and (2.32)–(2.34). �

As the final step, we still need to estimate the second order derivatives of density.

Lemma 2.11. For any given T > 0 and t ∈ [0, T ] we have

∫ 1

0

(̺2
xx + ̺2

xt)(x, t) dx 6 C.

P r o o f. As in Lemma 2.5, it follows from (1.1) and (1.2) that

ν̺xt + R̺θ̺x = −ν(2̺xux + u̺xx) − ̺2(ut + uux) − ̺
(

R̺θx +
4a

3
θ3θx

)

which, differentiated with respect to x, results in

ν̺xxt + R̺θ̺xx = − ν(3̺xxux + 2̺xuxx + u̺xxx) − 2̺̺x(ut + uux)

− ̺2(uxt + u2
x + uuxx) − R(3̺̺xθx + ̺2

xθ + ̺2θxx)

−
4a

3
(̺xθ3θx + 3̺θ2θ2

x + ̺θ3θxx).

Multiplying this by ̺xx and integrating it over (0, 1)×(0, t), we have by Lemmas 2.1–

2.10 and the Cauchy-Schwarz inequality that

∫ 1

0

̺2
xx(x, t) dx +

∫ t

0

∫ 1

0

̺2
xx dxds 6 C + C

∫ t

0

(1 + ‖ux(s)‖L∞) ·

∫ 1

0

̺2
xx dxds,
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where we have also used Sobolev’s inequality and the estimates
∫ t

0

‖̺x(s)‖2
L∞ ds 6 C + C

∫ t

0

‖̺x(s)‖L2‖̺xx(s)‖L2 ds

6 C + C

∫ t

0

‖̺xx(s)‖2
L2 ds,

∫ t

0

∫ 1

0

u̺xx̺xxx dxds = −
1

2

∫ t

0

∫ 1

0

ux̺2
xx dxds

6 C

∫ t

0

‖ux(s)‖L∞ ·

∫ 1

0

̺2
xx dxds,

∫ t

0

∫ 1

0

̺2
x|̺xx| dxds 6 C

∫ t

0

∫ 1

0

̺2
xx dxds + C

∫ t

0

‖̺x(s)‖2
L∞ ·

∫ 1

0

̺2
x dxds

6 C + C

∫ t

0

∫ 1

0

̺2
xx dxds.

Thanks to (2.31), we have that ‖ux(s)‖L∞ ∈ L1(0, T ). Thus, by virtue of Gron-

wall’s lemma we obtain ‖̺xx(t)‖2
L2 6 C, from which and (1.1) it also follows that

‖̺xt(t)‖
2
L2 6 C. The proof of Lemma 2.11 is therefore complete, and so is that of

Theorem 1.1. �

3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. To this end, we first notice

that under the assumptions of Theorem 1.2, the estimates established in Lemmas 2.1–

2.7 remain valid. So, to prove Theorem 1.2, we only need to prove the estimates

analogous to those in Lemma 2.8 under the growth conditions (1.14) and (1.15). To

do so, we begin with the observation

(3.1)

∫ T

0

‖θ(t)‖q+4
L∞ dt +

∫ T

0

∫ 1

0

θq+8 dxdt 6 C, q > 0,

which follows from (1.14), (2.3), (2.5), and (2.6). The combination of (2.5), (2.10),

and (2.22) also gives

(3.2)

∫ T

0

∫ 1

0

(1 + θ)q+3θ2
x dxdt 6 C(1 + Θ), Θ := ‖θ‖L∞(QT ).

Similarly to the derivation of (2.27), multiplying (2.12) by κθt in L2(Qt) gives

∫ t

0

∫ 1

0

(κθx)(κθt)x dxds +

∫ t

0

∫ 1

0

(1 + θ)q+3θ2
t dxds(3.3)

6 C

∫ t

0

∫ 1

0

(1 + θ)q(u2θ2
x + u2θ3θ2

x + θ5u2
x + θ2u2

x + u4
x + θ(2β−3)+) dxds,
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where the right-hand side can be estimated in the same manner as in Lemma 2.8 as

follows:

(3.4) RHS of (3.3) 6 C(1 + Θq)(1 + Θ5) 6 C(1 + Θq+5).

The first term on the left-hand side of (3.3) can be written as

L1 =

∫ t

0

∫ 1

0

(κθx)(κθt)x dxds(3.5)

=

∫ t

0

∫ 1

0

(κθx)[(κθx)t + κ̺̺xθt − κ̺̺tθx] dxds

=
1

2

∫ 1

0

(κθx)2(x, s) dx

∣

∣

∣

∣

t

0

+

∫ t

0

∫ 1

0

κθx(κ̺̺xθt + uκ̺̺xθx + ̺κ̺uxθx) dxds

=
1

2

∫ 1

0

(κθx)2(x, s) dx

∣

∣

∣

∣

t

0

+

3
∑

i=1

Li
1.

Due to (2.19) and (2.22), we have (k+ := max{k, 0})

|L1
1| 6 ε

∫ t

0

∫ 1

0

(1 + θ)q+3θ2
t dxds + Cε−1

∫ t

0

‖(κθx)(s)‖2
L∞

∫ 1

0

(1 + θ)q−3̺2
x dxds

6 ε

∫ t

0

∫ 1

0

(1 + θ)q+3θ2
t dxds + Cε−1(1 + Θ2+(q−3)+)

∫ t

0

‖(κθx)(s)‖2
L∞ ds,

while, due to (2.6), (2.8), (2.19), and (2.22), we obtain

|L2
1 + L3

1| 6 C

∫ t

0

‖κθx(s)‖2
L∞

∫ 1

0

(|u||̺x| + |ux|) dxds

6 C

∫ t

0

‖κθx(s)‖2
L∞

(
∫ 1

0

(̺2
x + u2

x) dx

)1/2

ds

6 C(1 + Θ)

∫ t

0

‖κθx(s)‖2
L∞ ds.

So, taking ε > 0 small enough, we infer from (3.3)–(3.5) that

∫ 1

0

(1 + θ)2qθ2
x(x, t) dx +

∫ t

0

∫ 1

0

(1 + θ)q+3θ2
t dxds(3.6)

6 C(1 + Θq+5) + C(1 + Θ2+(q−3)+)

∫ t

0

‖(κθx)(s)‖2
L∞ ds.
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Noticing that ‖u(t)‖2
L∞ 6 ‖u(t)‖L2‖ux(t)‖L2 6 C(1 + Θ) and β ∈ [0, 8], by virtue

of (2.22), (2.23), (3.1), and (3.2) we deduce from (2.12) that

∫ t

0

∫ 1

0

(1 + θ)q−3|(κθx)x|
2 dxds

6 C

∫ t

0

∫ 1

0

(1 + θ)q−3[(1 + θ)6θ2
t + (θ2 + θ8)u2

x + u2(1 + θ6)θ2
x + u4

x + θ2β ] dxds

6 C

∫ t

0

∫ 1

0

(1 + θ)q+3θ2
t dxds + C(1 + Θ)

∫ t

0

‖(1 + θ)(t)‖q+4
L∞ ·

∫ 1

0

u2
x dxds

+ C sup
t∈[0,T ]

‖u(t)‖2
L∞

∫ t

0

∫ 1

0

(1 + θ)q+3θ2
x dxds + C(1 + Θ(q−3)+)

∫ t

0

∫ 1

0

u4
x dxds

+ C(1 + Θ5)

∫ t

0

∫ 1

0

(1 + θ)q+8 dxds

6 C

∫ t

0

∫ 1

0

(1 + θ)q+3θ2
t dxds + C(1 + Θ5 + Θ3+(q−3)+).

Consequently,

∫ t

0

‖(κθx)(s)‖2
L∞ ds 6 C

∫ t

0

∫ 1

0

|(κθx)||(κθx)x| dxds(3.7)

6 C

(
∫ t

0

∫ 1

0

(1 + θ)q+3θ2
x dxds

)1/2(∫ t

0

∫ 1

0

(1 + θ)q−3|(κθx)x|
2 dxds

)1/2

6 C(1 + Θ1/2)

(
∫ t

0

∫ 1

0

(1 + θ)q−3|(κθx)x|
2 dxds

)1/2

6 C(1 + Θ1/2)

(
∫ t

0

∫ 1

0

(1 + θ)q+3θ2
t dxds

)1/2

+ C
(

1 + Θ3 + Θ(4+(q−3)+)/2
)

,

where we have used (3.2). Inserting (3.7) into (3.6) and using Young’s inequality, we

find

∫ 1

0

(1 + θ)2qθ2
x(x, t) dx +

∫ t

0

∫ 1

0

(1 + θ)q+3θ2
t dxds(3.8)

6 C
(

1 + Θq+5 + Θ5+2(q−3)+ + Θ(8+3(q−3)+)/2
)

.

Thanks to (2.11) and (2.22), we have

‖θ(t)‖
q+13/2
L∞ 6 C + C

∫ 1

0

θ11/2θqθx dx 6 C + C(1 + Θ)

(
∫ 1

0

θ2qθ2
x dx

)1/2

,
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which, combined with (3.8), yields

Θ2q+13 = sup
t∈[0,T ]

‖θ(t)‖2q+13
L∞ 6 C + C(1 + Θ2) sup

t∈[0,T ]

∫ 1

0

θ2qθ2
x dx(3.9)

6 C
(

1 + Θq+7 + Θ7+2(q−3)+ + Θ(12+3(q−3)+)/2
)

.

It is easy to check that 2q + 13 > max{q + 7, 7 + 2(q − 3)+, 6 + 3(q − 3)+/2} for

any q > 0. Therefore, applying Young’s inequality again, we deduce from (3.9) that

Θ = ‖θ‖L∞(QT ) 6 C. This, together with (3.8), leads to

(3.10) sup
t∈[0,T ]

(‖θ(t)‖L∞ + ‖θx(t)‖L2) +

∫ T

0

∫ 1

0

(1 + θ)q+3θ2
t dxdt 6 C.

With help of (3.10), we can obtain all the desired estimates by following arguments

similar to those in the proof of Lemmas 2.9–2.11. The proof of Theorem 1.2 is thus

complete. �
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