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1967 ACTA UNIVERSITATIS CAROLINAE- MATHEMATICA ET PHYSICA No i Pag 23-54 

On the Rotation Effect in Eclipsing Binaries 

M. PLAVEC 

Astronomical Ins t i tu te , Ondfejov 

{Received November 18, 1966) 

Formulae are derived for the rotation effect on spectral lines of the Algol-like eclipsing 
binaries, observed during primary eclipses. Discussed are the rotation factor, representing the 
displacement of a line as a whole, and profiles of spectral lines. The finite intrinsic width of spectral 
lines is taken into account, and formulae are also given for linear limb darkening. 

Numerical examples illustrate the application to actual eclipsing binaries. Represented are 
three cases: partial eclipses (Algol), total occultation (U Sagittae) and a transit eclipse with annular 
phase (YZ Cassiopeae). Results are shown by means of tables and diagrams. Problems of practi­
cal application are shown in more detail for the case of U Sagittae. 

I . Introduction 

Spectrographic observations of the Algol-type eclipsing binaries during eclipse 
are of considerable and manifold importance. Here under the name "Algol-type" 
we understand simply systems in which the secondary component is of so much 
a later spectral type that during the most part of the primary eclipse (naturally with 
the exception of the total occultation and closely adjacent phases of an advanced 
partial eclipse) the spectrum of the primary star is not seriously blended by the 
secondary spectrum, and its changes can be studied. In other words, the secondary 
star is assumed to act as a dark screen moving across the disk of the primary com­
ponent. 

Originally it was thought that these observations would lead straightforward 
to the determination of the rotational velocity of the primary and from it to its 
dimensions on the assumption that its rotation is synchronized with the period of 
revolution in the system. However, it has been found that just in the Algol-like 
systems deviations from synchronism occur and the primary components rotate 
as a rule faster that expected on the basis of synchronism. Thus this method for 
determining absolute dimensions is not reliable, but the non-synchronized rotation 
is such an interesting problem in itself that the determination of rotational velocities 
remains very important. 

However, the phenomena observed during eclipses are often complex, since in 
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many systems the spectrum of the primary component is contaminated by circum-
stellar gaseous streams. These latter phenomena may be actually of even greater 
interest than rotation itself; however, in order to study them, we have again first 
to allow for pure effects of rotation. 

Naturally we get much more information if we can study the line contours; 
in many cases, however, all that can be done is the measurement of the shift of a line 
as a whole, by setting the wire of the spectrocomparator on the optical centre of 
gravity of the line. In such a case, the interpretation of the observations prerequires 
the calculation of the rotation factor, which will be derived in section 4. 

An analytical formula for the rotation factor was derived first by Petrie (1938) 
for the case of uniformly bright disks. Kopal (1942) was the first to point out that 
Petrie's formula admits of considerable simplification. Introducing his associated 
alpha functions, Kopal not only derived an elegant form, but also succeeded in 
solving the more general case of non-zero limb darkening. However, this elegant 
form has its drawbacks; it requires much more computation work, which can hardly 
be done on an automatic computing machine, since it involves an extensive use of 
special tables by Kopal and by Cesevic. Quite often, these tables are not available. 
All these complications are not warranted by the observations, which are usually not 
accurate enough to reveal the small difference between uniform disk and a disk 
with a certain degree of limb darkenning. Several test computations performed by 
J. Horn show that the differences are very small indeed. 

We shall therefore return to Petrie's formula and derive in section 4 a new 
form, equivalent to the original one but simpler. It will be seen that the simplifica­
tions introduced by a different choice of variables are not merely formal; they make 
it possible to use one and the same formula for all possible cases of partial eclipses, 
contrary to Petrie's procedure. The application is easy and no special tables are 
required, as numerical examples will show. Also the derivation of the formula is 
shorter, and, I believe, more elegant. 

Sections 6 and 7 deal with line profiles during eclipse. It is interesting to realize 
that this problem has not been seriously attacked until by Kopal in 1959. (Kopal, 
1959). Kopal investigated only the problem of spectral lines that are intrinsically 
narrow, while here we shall treat actual lines, i.e. those of finite intrinsic width; 
in particular, Doppler- and Stark-brodened lines will be considered, although the 
formulae derived will be quite general. 

Throughout the whole paper, we shall make the following fundamental assump­
tions: (1) The stars are spherical, (2) they rotate as rigid bodies, (3) their axes of 
rotation are perpendicular to the orbital plane, (4) their orbits are circular. In many 
systems these conditions are only nearly fulfilled, but in most cases the effect of 
the deviations can be expected to be small. Moreover, in case of (1) and (4) it can 
be further diminished by a sulitable choice of osculation elements. 

In view of the fact that most of the actual observing material is of rather limited 
accuracy, it is proposed here to apply first the simple theory developed here, and 
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only if systematic and significant deviations are found, recourse should be made 
to more refined methods of analysis. Several papers have been published studying 
effects of non-sphericity of the stars (Kopal, 1959), differential rotation and inclined 
axes (Porfirjev and Kalenicenko, 1964; Hosokawa, 1953). 

The great importance of detailed investigations of deviations from the simple 
model is obvious. But, first of all, we must have a consistent theory of the rotation 
effect fro the simple model and this is what is presented here. This theory is also 
fully sufficient for many present-day practical needs. 

Effort has been made to make the formulae easily applicable for numerical 
computations. As these applications will most probably be made by students of 
eclipsing binaries, consistency was attempted in notation, formulation etc. with the 
current usage in the theory and practice of photometric studies of eclipsing binaries. 
Also the units were chosen according to this principle. Therefore also some of the 
formulae in sections 2, 3, and 5 are presented in a new form. 

2. Formulae for Axial Rotation 

Let us introduce a rectangular coordinate system with its origin at the centre 
of the primary component (the one being eclipsed at the primary minimum). The 
ry-plane is perpendicular to the line of sight, and the #-axis is positive towards the 
observer. Let the -y-axis be the projection of the axis of rotation of the primary 
component onto the tangential plane. Then, according to our fundamental assump­
tion (3), the #-axis joins the nodes of the relative orbit of the secondary component 
on the tangential plane. Let us take the x-axis positive in the direction of the ascend­
ing node (in the sense used in the theory of orbits of spectroscopis binaries: the star 
recedes from us at the ascending node). This implies that those points on the 
apparent disk of the primary have positive abscissae that are receding from us owing 
to axial rotation; also, the centre of the secondary (eclipsing) component has a po­
sitive ^-coordinate after the primary mid-eclipse. 

Consider first the axial rotation of the primary component. According to our 
assumption (3), the angle between the axis of rotation and the line of sight is equal 
to the inclination of the orbital plane of the binary, i. Thus the components of the 
vector of the angular velocity of rotation are 

co = [0; co sin i; co cos i] (2.1) 

Let an arbitrary point on the surface of the star have coordinates 

/ = [*';•/;*'] 

The linear velocity of rotation of this point will be given by the vector product 

V = co X r' 
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We can observe only the radial component of this velocity, i.e., its ^-component. 
However, it is customary to take the radial velocity as positive when the object is 
receding from the observer; therefore the correct formula is 

Vr(x') = x' co sin i (2.2) 

Evidently the radial component of the velocity of rotation of any point on the 
stellar disk depends only on its x-coordinate in our reference frame. 

Now an agreement must be made about the units. It is usual with the eclipsing 
binaries to take the radius of the relative orbit as unit of length; fractional radii of 
the components, expressed in terms of this unit, are denoted r\ and r<z. The length 
A of the radius of the relative orbit itself is most conveniently expressed in terms of 
solar radii, RQ. Thus we can write 

x' = x A RQ = 0.696A06 A x , (2.3) 

and x' is now expressed in kilometres, while x is the dimensionless fractional co­
ordinate defined in terms of the same unit as r\. 

The angular velocity of rotation can be written as 

*> = - £ • (2.4) 
It is generally assumed that in most cases, the period of axial rotation Pr is equal 
to the period of orbital revolution, P. However, just in the best observed Algol-
type binaries it has been shown that the primary components rotate in many cases 
considerably faster. We shall therefore introduce a factor of asynchronism, / , 
and write 

2 nf ro «\ 
co = — — . (2.5) 

If the two periods P and Pr are equal (case of synchronism), then / = 1. If the 
primary rotates f a s t e r , /> 1. 

The orbital period P is usually expressed in days. In order to get the radial 
velocity in (2.2) in km/sec, we must write the formula in the following form, using 
(2.3) and (2.5): 

F ^ ) = 86 400 .P*"1"' ( Z 6 ) 

or, inserting numerical values for the constants, 

Vr(x) = 50.615 L£- x sin i . (2.7) 

The extreme values of Vr correspond to x = ± r\. It is clear that the linear 
equatorial velocity of rotation of the star is 

Ve = 50.615 ̂ 4-n, (2.8) 
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so that (2.7) can be also expressed in the form 

Vr{x) =—Ve sin i . (2.9) 
ri 

This form is particularly useful in cases when we do not know the absolute di­
mensions of the system, but Ve sin i can be determined directly from the broa­
dening of the spectral lines. 

According to the Doppler principle, the displacement AX corresponding to the 
radial velocity Vr is 

j l^7 = -wcy
ninj' (2-10) 

or, inserting numerical values for the constants, 

AX= 1.688. 10-4 --?-£_! x sin i . (2.11) 

The maximum value of this Doppler displacement is 

-4Amax = 1.688 . 10-4 i ^ i n sin i. (2.12) 

In these formulae, AX and X are to be expresssed in the same units, most con­
veniently in Angstroms. 

3. Geometry of Eclipse 

Fig. 3.1 shows the configuration of the two components at a moment t during 
ingress. The phase angle (9, given by the well-known formula 

© = ^ - ( t - t 0 ) , (3.1) 

where to is the instant of the primary minimum (mid-eclipse), is negative. We can 
also assume, without loss of generality, that the centre of the secondary component 
projects into the second quadrant of the position angle 9?, which we shall measure 
counterclockwise from the positive direction of the x-axis (see Fig. 3.1). Thus the 
coordinates of the (centre of the) eclipsing component are 

XQ = sin 0 = d cos cp (3.2) 

•yo = cos 0 cos i = b sin cp , (3.3) 

where the distance between the projected centres, 6, is given by the well-known 
formula 

d2 = sin2 0 sin2/ + cos2/ . (3.4) 
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Let the radii of the two components be r± (eclipsed) and r2 (eclipsing), respect­
ively. We shall introduce, as is usual, the auxiliary variable s by writing (cf. Fig. 3.1.) : 

s = n cos y , 
and then 

= r\ + á2 — 2 d s . (3.5) 

(3.6) 

The coordinates of thes intersections of the two limbs are then 

xi = s cos <p + q sin <p X2 = s cos <p — q sin <p 

yi = s sin <p — q cos <p y2 = s sin <p + q cos <p 

where we have abbreviated q = + (rf —52)i . The signs of the discriminants were 
chosen so as to make x\ ^> X2. This means that Pi (xi, y{) is the upper point of 

Fig. 3.1. Projected disks of the components at 
a phase near the beginning of eclipse. 

intersection during ingress, but it is the lower point of intersection at egress, because 
then yi 5^ y2. 

The angle <p is determined by formulae (3.2) and (3.3); during ingress, 

— n^L<p^Ln, while during egress, 0 ^ <p < — n. The use of the angle <p in (3.6) 

can be avoided, since we can write 

sin <p Уo xo 
T " ' C 0 S 9 , = T 

It should be noted that at egress the eclipsing component projects into the 
first quadrant of <p, and the phase-angle 0 is positive. 

Mid-eclipse occurs when 0 = 0. The coordinates of the eclipsing body are 

xo = 0, yo = d = cos /; furthermore, <p = —-n. If the eclipse even at this central 

phase is partial, the points of intersection remain real and are: 

y\ = /y2 = s, xi = — x2 = (rf — 52)i . (3.7) 

However, if | r2 — ri | > <5, the eclipse is complete: total for r2 > ri and annular 
for ri > r2. The complete eclipse lasts from the second contact 02 to the third 
contact 03', these phase angles are given by 

[(r2 — r i ) 2 —cos2i]i 
SІП ©2,3 = + 

sin г 
(3.8) 
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If the eclipse is total, our formulae for line profiles etc. to be derived in following 
sections naturally lose their sense, since the primary component is invisible. 
However, in case of an annular eclipse, the spectrum of the primary component 
never disappears completely, and special formulae must be derived for this phase. 

For the sake of completeness, it should be remarked here that in general our 
formulae apply only to the intervals of phases < <9i, ©2 > and <©3, ©4 > , during 
which the system displays partial eclipse. The phases of the first and fourth con-
tacts are given by _ i 

Sln 01'4 = T S7 • (3'9) 

Important for us is also the formula for the area (of the disk of the component 
under eclipse) eclipsed at any given moment. Elementary geometry offers us 
several possible formulae; for our purpose, the following one is probably the most 
convenient : 

E = ~ n (r\ + r\) — r\ arcsin d (r\ — s2)% — 
2 , r i (3-10) 

— ri arcsin . 
2 r2 

The uneclipsed (bright) portion of the disk has then an area B = nr\ — E, or 

1 S u S 

B = —n (r\ — r\) -f r\ arcsin \- r\ arcsin h d q . (3.11) 
I Y\ T2 

The advantage of these formulae lies in the fact that they apply to all phases 
of partial eclipses, disregarded whether s < 0 or s > <5; it will be seen in the next 
section that this brings about a considerable simplification. 

During the annular phase of a transit eclipse, the eclipsed area remains constant 
and is equal to the area of the smaller component; 

E = nY\, so that B = n(v\ — Y\). (3.12) 
If the disk of the primary is uniformly bright, the amount of light observed by 

the observer is proportional to the area B (0). If we take into account also limb darken­
ing, proportionality no longer holds, and special tables must be used (e.g. Merrill, 1950) 
in order to calculate the instantaneous light of the primary L\ (u, 0). It is no more 
possible to express L in terms of elementary functions for an arbitrary u: Using 
Merrill's tables for selected values of the limb-darkening coefficient w, we can 
write for the light of the primary at phase 0 , L(w, 0), 

L(u, 0) = n Y\ ( l — 1 n) [1 — a"(*, p)], (3.13) 

if the eclipse is an occultation (larger star in front); and 

L(uy 0) = n Y\ (1 - 1 u) [1 - r a*(*, p) (3.14) 
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for a transit (smaller star in front). Merrill's superscript x is equivalent to our u, 
k = ri/r2 for occultation and k = r%\r\ for transit, while 

Ò — Г2 

P = n 

4. The Rotation Factor 

If it is not possible to study the actual profile of the spectral lines (because they 
are too narrow, faint or the dispersion is low), we can measure only the rotational 
displacement, during eclipse, of a line as a whole, by setting the wire of the spectro-
comparator on the optical centre of gravity of the line. If we denote the observed 
displacement of the radial velocity from the extrapolated radial velocity curve 
(corresponding to the orbital motion) by Vr, we can write formally 

Vr = F. Vesini, (4.1) 

thus introducing the so-called rotation factor F. As can be seen by comparing (4.1) 

with (2.9), F represents a mean value of x/Yi, averaged over the uneclipsed portion 

of the disk of the primary. Thus we can write 

F _ $$I(x,y) x&x&y 

n $$I(x,y) dxdy 

where I(x, y) describes the local surface brightness on the disk of the primary, and 
the integrals extend over the visible portion of its disk. 

Now, when integrating over the whole uneclipsed area, it is advantageous to 
transform to another coordinate system in which the configuration during eclipse 
is always symmetrical with respect to the x-axis. This can be easily done, since it is 
only necessary to turn the axes x and y in the tangential plane by the angle tp, 
defined by (3.2) and (3.3). The new X-axis then always joins the centers of the two 
stars (cf. fig. 3.1), and we have 

x = X cos <p — Y sin cp , (4.3) 

which can be substituted into (4.2). An immediate advantage of this transformation 
is that, in virtue of the above-mentioned symmetry, 

jjYKX, Y ) d K d Y = 0 , 

and (4.2) can be rewritten as follows: 

p _ sm@ jjI(X, Y)XdXdY 

d n $$I(X, Y ) d K d Y 

However, if we want to obtain the final formula in terms of elementary functions, 

we must restrict ourselves to uniformly bright disks; for these, (4.4) can be simplified 

F = i i n o J 7 x d Z d F 
nd JJdXdY 
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The denominator is now simply the area of the uneclipsed portion of the disk 
of the primary; we need not perform the integration, since 

UdXdY = B(6) 

as defined by formula (3.11) or (3.12), respectively. 
Proceeding now to the evaluation of the integral in the numerator, 

N=$$XdXdY, 

it is important to realize that, by virtue of symmetry, the contributions from any 
two surface elements placed symmetrically with respect to the Y-axis cancel each 
other. The integral is zero both for the whole uneclipsed disk and for central 
annular eclipse. Using this, we can proceed in a way best seen from Fig. 4.2, which 

Fig. 4.2. 

represents the configuration of the two stars at a moment during egress. We can 
first calculate the integral A/i over the whole area of the disk of the secondary, and 
apply it with a negative sign; then we integrate over the area II between the chord 
P1P2 and the limb of the secondary (integral A/2), and eventually over the segment 
III bounded by the chord P1P2 and the limb of the primary to the right of this 
chord (N3); then we shall have 

N = — A/i + N2 — N3 . (4.7) 

A/i is best calculated in polar coordinates with the pole at Xo = d (centre of 
the secondary), and with the polar angle a measured counterclockwise from the 
positive X-axis. We have 

2n r2 

Ni = j j r (6 + r cos a) dr da = n 6 r\ . (4.8) 
0 0 

If the eclipse is complete and annular, N = — A/i . (4.9) 
The integral Afe is also easily calculated. First, we integrate along a horizontal 

line from X = 5 to X = + (r\ — Y2)i , and obtain 

/ • 

X d X = i ( r ? - Y 2 - s 2 ) , 
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and the following integration is to be performed within the limits —(Y\ — s2)* 
and + (Y\ — s2)i . For the sake of convenience, let us write again 

q = + (r2 — :52)i . 

Then the result of the second integration can be put down very simply as 

N3 = ~ q* . (4.10) " 

The integral N2 is somewhat intricate, because we must take care to derive 
a unique formula valid for cases when s < d, as well as for the phases of a transit 
eclipse when more than half of the disk of the secondary already projects on the 
disk of the primary, and s > d. l^robably the best way to do it is to integrate first 
in vertical strips, between limits + [r| — (X— d)2]i ; we obtain 

/ J XdXdY=2 j[r\-(X — d)2]idX, 
(area II) 

to be integrated between the limits X = s and X = d + r2. Substituting w = X— d, 
we can perform the integration easily, and obtain 

N2 = d(ó — s)[r\ — (s—d)2]i +±-TZÓY\ + 

2 3 5 $ 
+ — [r| — (5 — <5)2]2 — 6Y\ arcsin 

(4.11) 

3 n v y j * r2 • 

However, the geometry of the configuration and formula (3.5) show that 

[Y\ — (S — d)2]i=q. 

Therefore, 

1V2 = d (d — s) q + — n d Y\ — d Y\ arcsin h -~- q3 . 

The last term cancels out with the right-hand side of (4.10) when combined 
into N according to (4.7); the final formula becomes 

N = d\(d — s) q 7T-7IY\ + Y\ arcsin . (4.12) 
L 2 r2 J 

Inserting this into (4.5), we obtain for the rotation factor 

where 

1 d — s 
N'(0) = q(d — s) — n Y\ + Y\ arcsin ^— , 

1 s ó — 5 
B(&) = ~^-TI(Y\ — Y\) + Y\ arcsin \- r\ arcsin \- qd 

2 r\ r2 
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for any phase of partial eclipse. If the eclipse is complete and annular, equ. (4.9) 
and (3.12) apply, and we get a very simple formula: 

_ sin 0 — r22 
r\ r\ — r\ 

(4.14) 

From (4.14) we see immediately that F is positive during ingress (when 0 < 0), 
negative during egress, and zero at mid-eclipse. But the same is true quite generally 
for all phases of the partial eclipse, to which formula (4.13) applies. The denominator 
B(0) is always positive because of its geometrical meaning. We shall now show that 
the numerator is always negative, thus making the sign of F always opposite to 
that of 0. For the advanced phases of a transit eclipse, when s > <5, this is easily 
seen, since all three terms combined into Nr(0) are negative. When 8 > s, our 
reasoning can be based on geometrical arguments. From Fig. 3.1 we see that 
(8 — s) q represents the area of the triangle FI2.P1P2. But substracted from it is the 
larger area of the sector H2P1P2 (bounded by the limb of the secondary between Pi 
and P2); this area is given by the remaining two terms. 

Let us now compare (4.13.) with Petrie's form. In order to see the difference 
clearly, let us write down Petrie's formulae for the numerator in case of a transit. 
Petrie writes (in our notation) 

Case I.: 8 > s: 

^L _: _ [q r*-8*-r\ + q{^_ qZ)i + ^ arcsin X J . (4.15) 

Čase II.: s> 8: 

N_ 
ð [ r2 $2 r2 q 1 

q -̂  q (r\ — q2)i + nr\ — r\ arcsin — 

(4.16) 

Our introduction of s by means of (3.5) might appear as a mere formal simplifica­
tion of the first right-hand terms; but, in fact, a systematic use of this variable 
makes it possible to avoid the ambiguities encountered by Petrie. Consider, for 
example, the second right-hand terms in (4.15) and (4.16). In Case I, 

(r22 — q2)% = 8 — 5 , 

while in Case II, 

Similarly, in Case I, 

while in Case II, 

01 — c7-)i = s — 6. 

q 1 ð — s 
arcsin — = — л — arcsin r2 2 r2 

• q 1 , . Л _ 
arcsin — = — л + arcsin T2 2 Y2 

It is clear that, using 8 and s instead of q, we can write down a unique form of the 
right-hand terms of (4.15) or (4.16). In a similar way, another Petrie's ambiguity 
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is removed in the case of the denominator, where he had to distinguish between 
cases 5 > 0 and s < 0. Also, it is not necessary for us to distinguish between occulta-
tion and transit as long as the eclipse is not complete. 

Example 4.1: Partial Eclipse - Algol 

According to the catalogue by Kopal and Mrs. Shapley (1956), Algol has the 
following elements: P = 2.86731 days, n = 0.227, r 2 = 0.239, i = 82.°0, A = 
= 15.70. It is slightly more convenient to express phases as fractions of the period, 
0 = 0/2 7i, or in days, 0d = P . 0. By (3.9), partial eclipse begins at 0 = —26.7°, 
or at 0 = — 0.074. In equ. (3.8), r2 — n < cos i, the eclipse is partial. Its ephe-
meris and the values of the rotation factor are given in Table 4.L Note that from 
a certain phase of the eclipse, F begins to diminish again and is zero at mid-eclipse. 
It is unnecessary to continue the table through the phases of egress. It is easy to 
see that 6(0) = <$(—0), s(0) = s(—0), B(0) = B(—0), F(0) = —F(—0). 

Table 4.1 Rotation Effect of Algol 

Ф Ô 5 B\nr\ ғ 
Vr (km/sec) 

B\nr\ 

/ = 0.6 1 1.4 

- 0.064 0.412 0.199 0.951 0.0433 1.6 2.7 3.8 
- 0.056 0.369 0.177 0.883 0.0972 3.6 6.0 8.5 
- 0.048 0.325 0.154 0.800 0.1569 5.9 9.8 13.7 

- 0.040 0.283 0.132 0.708 0.2158 8.1 13.4 18.8 

- 0.032 0.242 0.109 0.610 0.2655 9.9 16.5 23.2 

- 0.024 0.204 0.089 0.514 0.2920 10.9 18.2 25.5 

- 0.016 0.171 0.069 0.428 0.2715 10.1 16.9 23.7 

- 0.008 0.148 0.055 0.365 0.1740 6.5 10.8 15.2 

0 0.139 0.049 0.342 0 0 0 0 

+ 0.008 0.148 0.055 0.365 - 0 . 1 7 4 0 - 6 . 5 - 10.8 - 15.2 

The three last columns in Table 4.1 give numerical values of the rotational 
component of the radial velocities, calculated by means of equ. (4.1), into which 
we inserted from (2.8). The equatorial velocity of rotation in case of synchronism 
is Ve = 62.3 km/sec; the actual velocity is probably not far from it. 

Example 4.2: Annular Eclipse - YZ Cassiopeae 

The elements, taken from the same catalogue as above, are: P = 4.46722 days, 
n = 0.1417, r 2 = 0.0769, i = 88.°2, A = 19.40; therefore, synchronized Ve = 
= 31.15 km/sec 

Partial eclipse begins at 0 = — 0.0347, annular phase begins at 0a = —0.0091. 
For phases \0\ < \0a\> formulae (3.12) and (4.14) must be used instead of (3.11) 
and (4.13). 
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Table 4.2 Rotation Effect of YZ Cassiopeae 

Ф ô s B\nr\ ғ 
Vг (km/sec) 

B\nr\ 

f=0.6 1 1.4 

- 0.032 0.202 0.136 0.986 0.0133 0.2 0.4 0.6 
- 0.024 0.153 0.123 0.897 0.0886 1.7 2.8 3.9 
- 0.016 0.105 0.120 0.782 0.1660 3.1 5.2 7.2 

- 0.008 0.058 — 0.705 0.1477 2.8 4.6 6.4 
0 0.031 — 0.705 0 0 0 0 

+ 0.008 0.058 — 0.705 -0 .1477 - 2.8 - 4.6 - 6.4 

Table 4.2 shows that the rotation effect in YZ Cas is small; this is because 
the eclipsing body is considerably smaller than the primary. 

Example 4.3: Total Eclipse - U Sagittae 

Elements by Kopal and Shapley are: P = 3.3806184 days, n = 0.210, r2 = 
= 0.278, i = 90.°0, A = 19.40. Hence, if we assume synchronism, Ve = 61.0 km/sec. 

First constact occurs at 0 =—0.0811, occultation becomes total at 0t = 
= —0.0108. Ephemeris of the eclipse and the rotation factor are contained in 
Table 4.3. The rotation factor is much larger than in the two previous cases; i7-* 1 
as 0 -> 0*, i.e. F attains its maximum possible value. It can be shown that this 
maximum value is attained if and only if i = 90° and the eclipse is total; for, in 
general, when 0 -> 0^ F approaches a limit given by the formula 

F ^ [ - , - - ! ) - - « » - « ] -
(T2 — Yi) s in i 

Values of the rotation factor F are plotted against phase in Fig. 4.3 for the 
three systems considered here. 

Table 4.3 Rotation Effect of U Sagittae 

Ф Ô 5 B\nr\ ғ 
Vr (km/sec) 

B\nr\ 

f=0.6 1 1.4 

- 0.080 0.482 0.206 0.998 0.0023 0.1 0.2 0.2 
- 0.072 0.437 0.181 0.947 0.0491 3.0 4.2 5.4 
- 0.064 0.391 0.153 0.863 0.1209 7.3 10.3 13.3 
- 0.056 0.345 0.124 0.757 0.2078 12.7 17.7 22.8 
- 0.048 0.297 0.093 0.634 0.3068 18.8 26.2 33.7 
- 0.040 0.249 0.058 0.497 0.4168 25.4 35.6 45.8 
- 0.032 0.200 0.017 0.352 0.5388 32.9 46.0 59.1 
- 0.024 0.150 - 0.035 0.202 0.6772 41.3 57.8 74.3 
- 0.016 0.100 - 0 . 1 1 5 0.061 0.8473 51.7 72.3 93.0 
- 0 . 0 0 8 0.050 - 0.305 0.000 — — — -— 
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Fig. 4.3. Rotation factor 
F plotted against phase 
0 (infractions of period) 
for three systems. 

Comparison with Observations of U Sagittae 

U Sagittae is a system very suited for the study of the rotation effect, because 
the eclipse is total and the star is sufficiently bright. Struve (1949) secured an 
unusually rich material of 43 spectrograms during two consecutive eclipses on July 
30/31 and August 1/2, 1949. The dispersion was 40 A/mm. Because the hydrogen 
lines and CallK are distorted by gas streams, Struve listed separately the radial 
velocities of the He I lines, and of all lines together except H and CallK. There is 
no systematic difference between these latter velocities and those of He I ; therefore 
we shall use the values based on a greater number of lines. 

Struve calculated the phases with the help of Jacchia's formula: 

Tmin = J. D. 2417130.4151 + 3.3806184 E + 0.0043 sin (0.°107 E + 266°), (4.18) 

but he remarks himself that the observed minima occured earlier than would be 
consistent with Jacchia's elements. From the intensities of the lines of the secondary 
component on his spectrograms, Struve concluded that the mideclipse actually 
occurred earlier by 0.028 day = 0.0082 P. This correction, however, appears at 
first sight somewhat too large. Irwin, observing two minima in October 1949 with 
a photoelectric photometer, obtained a correction of —0.0162 day to the linear 
formula 

Tmin = J.D. 2417130.4170 + 3.3806184 E . (4.19) 
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Again, Svecnikov (1955) collected 14 minima of U Sge observed near the epoch 
of Struve's observations. Except for Irwin's observations, these are visual minima, 
and therefore Svecnikov quite correctly gives a much larger weight (100) to Irwin's 
normal minimum than to the other observations (1-5). No wonder, then, that 
Svecnikov's mean O— C = —0.0151 day does not differ materially from Irwin's 
result. The 13 visual observations show rather a large scatter between O — C = 
= —0.002 and —0.027. Only this latter single observation supports Struve's cor­
rection; the average of the visual observations is —0.012 day. 

Table 4.4 Radial Velocities of U Sagittae at Eclipse 

Vr (km/sec) computed 
Ф V0 

/ = 1 1.2 1.4 1.6 1.8 

- 0.080 + 28.1 + 28.3 + 28.3 + 28.3 + 28.3 + 28.4 
- 0.072 25.3 28.3 28.9 29.5 30.1 30.7 
- 0.064 22.5 29.8 31.3 32.8 34.2 35.7 
- 0.056 19.5 32.2 34.7 37.2 39.8 42.3 
- 0.048 16.5 45.2 38.9 42.7 46.4 50.1 
- 0.040 13.3 38.8 43.8 48.9 54.0 59.1 
- 0.032 10.2 43.0 49.6 56.2 62.7 69.3 
- 0.024 6.9 48.2 56.5 64.7 73.0 81.3 
- 0.016 3.6 55.3 65.6 76.0 86.3 96.6 
+ 0.016 - 10.0 -61.6 -72 .0 - 8 2 . 3 -92 .6 - 103.0 
+ 0.024 - 13.4 -54.7 -63 .0 - 71.2 -79 .5 -87.8 
+ 0.032 - 16.9 -49.7 - 5 6 . 3 -62.9 -69 .5 - 7 6 . 0 
+ 0.040 - 2 0 . 3 -45.8 - 50.8 -55.9 - 6 1 . 0 - 6 6 . 1 
+ 0.048 -23.8 - 4 2 . 5 -46 .2 -50 .0 -53 .7 -57 .5 
+ 0.056 -27.2 -40 .0 -42 .4 -45 .0 -47 .5 -50 .0 
+ 0.064 - 30.6 -38.0 -39 .5 -40.9 -42.4 -43.9 
+ 0.072 -34 .0 -37 .0 -37 .6 - 38.2 -38.8 - 3 9 . 4 
+ 0.080 -37 .3 -37 .4 -37 .5 -37 .5 -37 .5 -37 .6 

Thus we can conclude that Irwin's result appears to be most reliable, and since 
the epoch of Struve's spectrographic observations precedes Irwin's only by two 
months, we believe that it is justified to calculate the phases of Struve's spectro­
grams with the help of the linear formula 

Pmin = J.D. 2417130.4008 + 3.3806184 E. (4.20) 

This is exactly the formula applied by McNamara (1951) in his paper on the spectro­
graphic orbit of U Sagittae. McNamara's orbital elements are very reliable, and were 
used for computing the orbital-motion component of the radial velocity of the prima­
ry component during eclipse, Vn. Combined with the radial velocity due to rotation, 
Vr, (the latter calculated for several values of the factor of asynchronism/), they give 
the final predicted values of radial velocity listed in Table 4.4 and plotted in Fig. 4.4. 
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Fig. 4.4. Rotation effect 

in U Sagittae. Individual 
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velocity curves for several 

values of the parameter f. 

Fig. 4.4 shows that even the observations of such an expert as Struve was show 
a very large scatter. This only supports my contention that the present-day obser­
vations do not warrant any more accurate theory. In order to derive a reliable value 
for the velocity of rotation, the observations were lumped into 9 normal points. 
Table 4.5 gives for these points the phase 0, number of plates n, mean observed 
radial velocity V, and its mean error m.e. 

Table 4.5 Struve's Obser vations of U Sge - Normal Points 

Ф V m.e. km/sec 
km/sec ± 

- 0.0742 5 + 32.3 4.0 

- 0.0651 6 + 28.3 3.9 

- 0.0548 5 + 32.6 3.2 

- 0.0452 4 + 42.8 2.5 

- 0.0349 4 + 52.5 4.2 

- 0.0236 5 + 61.9 3.4 

+ 0.0428 4 - 5 9 . 9 1.8 

+ 0.0576 6 - 4 8 . 0 3.1 

+ 0.0833 3 - 4 0 . 1 4.9 
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Fig. 4.5. Rotation effect 
in U Sagittae. Struve's 
observations - normal 
points. 

V(km/sec) V(kmjs9c) 

The normal points together with their mean errors are plotted in Fig. 4.5; drawn 
are also curves representing the theoretical rotation effect. It is believed that the 
agreement between theory and observations in the more advanced stages of the 
eclipse (which are more important for the determination) is not bad. What is strange, 
however, is that for ingress the observations seem to be fairly well represented by 
the curve / = 1.35, approximately, while for egress the fit is decidedly better for 
/ = 1.7. If we decrease the observed phases by about 0.004 P, the agreement 
between ingress and egress is much better, and the observations are fairly well 
represented by the curve/ = 1.5 (se Fig. 4.5, full circles). This adjustment means 
that the correction to the linear ephemeris (4.19) was not —0.016 days as assumed 
after Irwin, but roughly —0.030 days, i.e. that, surprisingly enough, Struve was 
quite correct in his estimate in spite of all the photometric observations. Normal 
points with corrected phases are represented by full circles in Fig. 4.5. 

With / = 1.5, the equatorial velocity of rotation of the primary component 
of U Sge turns out to be approximately 90 km/sec. Observations do not permit to 
state the result with more accuracy. Struve himself estimated 85 to 90 km/sec, 
although he considered a value as high as 100 km/sec as possible. Koch, Olson and 
Yoss (1965), studying the rotational broadening of lines outside eclipse, found 
Ve = 76 ± 12 km/sec. From my plates, taken at Victoria with a dispersion of 
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10 A/mm (twice as high as the one used by the above-mentioned authors), J. Horn 
derived Ve = 80 km/sec. We can conclude that the primary component of U 
Sagittae rotates faster than it should in case of synchronism, but the deviation is 
not so large as e.g. in U Cephei. 

5. Line Profiles Outside Eclipse 

We shall now turn our attention to cases where we can study the profiles of 
the spectral lines. As has already been stated in section 1, we assume that the second­
ary, or eclipsing, star acts only as a dark screen, and does not cause blending of 
spectral lines. Moreover, we assume that the intrinsic profile does not vary across 
the disk of the primary. All this can be expressed otherwise and more accurately by 
saying that in our model, the distortion of the line contours during eclipse is entirely 
due to the fact that rotational broadening becomes asymmetrical, because part of 
the disk is eclipsed. 

Before we begin with the investigation of the distortions during eclipse, 
we must derive formulae for rotationally broadened profiles outside eclipse. 
It is advantageous to return now to the coordinate system x, y, z used in 
sections 2 and 3, since in this coordinate frame the local radial velocity due to 
rotation, and the corresponding Doppler shift, are functions of the ^-coordinate 
only. 

Suppose now that, if the primary were non-rotating, the observer would receive 
a certain amount of radiation Io(Ao) dA within the elementary interval of wavelengths 
between Ao and Ao + dA. Suppose now for a while that there is no radiation emitted 
at other frequencies. Now if the star rotates, the observer will see this radiation 
re-distributed over an interval of wavelengths (Ao — AXma,x, Ao + zJAmax), the width 
of which depends on Ve sin z, and is given by formula (2.12): 

zlAmax = L 6 8 8 m 10-4 *°f£ r i
 s i n { . ( 5 . 1 ) 

Consider now the radiation received at a wavelength A lying inside this interval. 
If the stellar radiation is strictly monochromatic, as we assume, then all the radiation 
between A and A + dA comes from the vertical strip between x and x + dx on the 
disk of the primary, where x and A — Ao -= AX are connected by equation (2.11), 
or by the equivalent of it: 

x AX 
n AÅc 

(5.2) 

Before proceeding further, let us remark here that when formulating equations 
of this problem, it becomes increasingly awkward to use the symbols A — Ao or 
ZIA, because we have to form differences of these differences. Let us therefore 
simplify the symbolism by introducing a new variable Z = A — Ao, which expresses 
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the distance in Angstroms from the centre of the line. Writing conveniently 
^Mmax = Zm, we can rewrite (5.2) into 

Z=^x. (5.3) 

Suppose now that the distribution of surface brightness at the given wavelength 
is described by a function I(x, y). Then the amount of radiation received at the 
wavelength Z, expressed in terms of the total amount of radiation, will be described 
by the following function F(x), which we shall call the broadening function: 

(rj-*")1/-

2 J I(x,y)dy 
pM = TAJT2 • (5-4) 

2 J J I(x,y) dydx 
-rx 0 

Let us now adopt the usual form of the law of limb darkening, namely 

I(x, y) = IQ (1 — u + u cos y) , (5.5) 

where the term involving the angle of foreshortening y can be expressed in the form 

cos y = — = — [r2 — (x2 + y2)]± . (5.6) 
n r± 

Inserting from (5.6) into (5.5) and then into (5.4), we can evaluate the integrals 
in terms of elementary functions, and obtain 

6 (1 - u) (r\ - *-) + ^ L (r\ - *-) 

F ^ = (3-u),rin • (5-?> 

For a uniformly bright disk, (5.7) reduces into an almost trivial formula 

Formulae (5.7) and (5.8) are well-known, and are given in any textbook on 
astrophysics as formulae for the rotationally-broadened profile of an intrinsically 
monochromatic line. Only usually another variable is used, namely the distance along 
the x-axis expressed in terms of the stellar radius, | = xjri. We shall preserve our 
units, having in mind the application to the eclipses; but it will be useful to have the 
broadening function expressed in terms of Z instead of x. This is simple by virtue of 
(5.3); the formula reads 

«*>- l 0-oJ. • (59) 

We can now pass over to real spectral lines, i.e. to lines with a finite intrinsic 
width. Let us assume that the intrinsic profile of a line is described by a function 
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W(Z) of the wavelength difference Z -= A — 2o. More precisely, let IF(Z) represent 
the depth of an absorption line, expressed as a fraction of the continuum at that 
wavelength. We suppose always that other factors affecting the position of the line 
have been allowed for; thus XQ is the tabular central wavelength of the line. 

What will be the resulting depth D(Z) of the line when rotational broadening 
applies ? In order to answer this question, let us single out a wavelength Z. If the 
star were non-rotating, the depth of the line at this point would be W(Z). 

Now, on the disk of the rotating star, only the radiation coming from the points 
on the -y-axis remains undisplaced; the contribution to D(Z') of an elementary 
strip along this axis will therefore be F(0) W(Z) dZ. Radiation coming from a strip 
at x is displaced by an amount Z(x) given by (5.3); therefore, its contribution to 
D(Z') is F(Z) W(Z' — Z) dZ. Integrating over the whole disk, we get 

D(Z') = J" F(Z) W(Z' — Z)dZ. (5.10) 
~zm 

Thus, in order to obtain the depth D of an absorption line at any one single 
point of the line profile, we have to perform an integration. 

It is not necessary to make the transformation from ^ t o Z ; sometimes it is 
more convenient to have the formula (5.10) expressed directly in terms of x; it reads 

+n 

JҲZ') = í F(x) WІZ'—~ x) dx . 
(5.11) 

Our problem is now to find the laws W(Z) of the intrinsic contours of the lines. 
For this purpose, spectra of three non-rotating stars were selected; a Lyr (AOV), 
a CMa (A1V), and o Peg (A1V). For all three, Ve sin i = 0 according to Slettebak 
(1954). (It is in fact not accurate to call them non-rotating stars; they may be viewed 
pole-on). An examination of these spectra reveals that they contain essentially two 
types of line profiles. Weaker lines, as those of Fe I, Fe II, Ca I 4226 A, and Mg II 
4481 A, can be described, to a fair degree of accuracy, by a Doppler contour: 

W(Z) = C exp [— (Z/d)2], (5.12) 

where C is the central depth, and d can be obtained from the width of the line 

between the half-intensity points W = — C. 

The Stark-broadened hydrogen Balmer lines have very broad intrinsic con­

tours, which can be approximated by 

W(Z) = fe+g

1

|Z|./, + C exp [-(Z/d) 2 ] . (5.13) 

As a matter of fact, the outer wings conform very well to a simple Z - 5 / 2 formula, 
and most of the profile is well approximated by the first term on the right-hand 
side of (5.13), with two empirical constants, b and g. But a relatively very narrow 
Doppler core is superimposed, represented by the second term. The constant g 
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can be derived from the shape of the outer wings, and then b_1 is the extrapolated 
central depth of the pure Stark profile. A comparison with the actual depth gives 
C, and then d can also be found. 

Inserting (5.12) or (5.13) into (5.10) or (5.11), we can calculate, point after 
point, the profiles of spectral lines broadened by the rotational effect. In the past, 
considerable effort was made to find approximate methods that would permit to 
calculate formulae like (5.10) with desk computers without too much trouble; 
cf., e.g., Unsold (1955). The best thing to do at the present time is to perform the 
necessary numerical quadratures on a digital computer, as has been done in the 
following examples. 

Example 1: Doppler profile 

It has been found by our measurements that a mean profile representing well 
the MgH 4481 line in the three stars aLyr, aCMa, OPeg, is described by (5.12) with 

Fig. 5.1. Rotational broadening of Mg II 
4481 A. Depth of the line is plotted against 
wavelength; Ve sin i is expressed in km/sec. 

Fig. 5.2. Rotational broadening of Hy. 

C = 0.60, d = 0.40. The contours for five different values of Ve sin i (km/sec) are 
shown in Fig. 5.1. 

Example 2: Stark profile 

Again, we can represent Hy in al the three stars fairly well by a mean profile, 
which, after J. Horn, has the following parameters: b = 2.15, g = 0.008, C = 0.22, 
d = 1.9, which are to be inserted into (5.13). Contours for three values of Ve sin i are 
in Fig. 5.2. Note that rotation changes only the central part of the profile (eliminates 
gradually the narrow central Doppler core), while the wings remain unchanged. 

Because the spectral type of the three stars with Ve sin i = 0 is similar to the 
spectral type of the majority of the primaries of the Algol systems (B8-A2), we 
believe that the intrinsic profiles adopted here can be used in the discussion of the 
broadened and distorted profiles of the binaries. 
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6. Line Profiles at Eclipse - Uniformly Bright Disk 

It has already been said that the line profiles become asymmetrical during 
eclipse because part of the disk is eclipsed, so that the purely rotational broadening 
effects is no more symmetrical. This means that, when performing the integration 
indicated in (5.11), we must bear in mind that, passing over the disk of the primary 
component from x = — n to x = + Yi, the broadening function F(x) changes not 
only its numerical value, but also its analytic form. 

It is quite feasible to formulate the problem directly for the more general case 
of an arbitrary darkened disk. But is it more convenient to start with a uniformly 

Fig. 6.1. Zones a-d on 
the disk of a partially 
eclipsed star. 

bright disk, because the formulae are much simpler and the problem is clearer. 
Moreover, we have stated that in many practical applications, the assumption of 
a uniformly bright disk is a good approximation for the rotation factor, and the same 
is true for line profiles. 

Thus, dealing with a uniformly bright disk, our task is to modify appropriately 
formula (5.4), which can now be written in a more general form as 

F(x) = 
B( ) 

(6.1) 

where J(x) dx is the area of the visible part of an elementary vertical strip between x 
and x + dx, while B(0) is the total area visible of the disk of the primary at a given 
phase 0. These definitions are obvious generalizations of those introduced in 
section 5. 

Now B(&) can be evaluated by means of equ. (3.11) and is constant for a given 
profile, i.e. for a given 0. Our ask is therefore to study the function J(x). Fig. 6.1 
represents the configuration at a phase of partial eclipse. We see that we can disting­
uish four regions on the disk of the primary. 
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In region (a), any elementary vertical strip is fully visible from its upper 
boundary at + (r\ — x2)1'* to the lower boundary at —(r\ — x2)1!*; thus we have 

Ja(*) = 2(r8 —a*)1/.. (6.2) 

In region (b), the visible portion of an elementary vertical strip consists of two 
parts, bounded by the respective limbs of the two stars. Using again the symbols 
*o, yo for the coordinates of the centre of the secondary (eclipsing component), we 
obtain, after a short algebra, 

Jb(x) = 2{(r\ - *2)V- - [r\ - ( x - so)2]1'-}. (6.3) 

Again, in the region (c), only the portion of the vertical strip is uneclipsed that 
lies between the lower limb of the secondary and the lower limb of the primary; 
we find 

Jb(x) =yo — \r\ — (x — xo)2]1'- + (r\ — x2)1/-. (6.4) 

While this form of the broadening function is the most complicated, the follow­
ing one is the simplest possible: for, in region (d), the vertical strips are completely 
eclipsed, and we have 

Mx) = 0 . (6.5) 

Inserting now the appropriate form of J(x), as given by any of the equations 
(6.2) to (6.4), into (6.1), and from it again into (5.11), we can perform the numerical 
integration. Thus, for example, for the configuration shown in Fig. 6.1, we have 

D(Z') = B'K&)[JMx) w(z'--^)dx + 

j Hx)w(z'-^dx+ J ^(*)ir(z'-^-)d*| 
(6.6) 

x*+rt 

+ 
J \ ri / 

*i *o+rs 

As a matter of fact, we should write on the left-hand side D(Z', 0) , thus 
indicating that it is a function of phase, since the limits of the integrals on the right-
hand side vary with phase. We see that we must make full use of the ephemeris 
of the eclipse as derived in section 3. We need to know the coordinates of the centre 
of the secondary, (xo,^o)- as well as those of the points of intersection Pi(xi,yi) and 
P2(*2> .V2). Only the abscissae of these points appear explicitly in (6.6). However, 
we must consider the -y-ccordinates, too, since the configuration in Fig. 6.1 is by 
no means the only possible; the zones (a) — (d) can be, under circumstances, situated 
in a different order, or they may be absent. There is a great variety of possible con­
figurations depending on the photometric elements n , r%, and z, and each case 
must be studied individually before we proceed to actual computations of the 
profiles. 

An important role is played by the points Gi(xo + Y2, .yo) and G2(xo — Y2> yo) 
on the limb of the secondary. If either of them projects on the disk of the primary, 
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the zones (b) are present, otherwise not. Thus, in particular, if yo is always larger 

than r\, regions (b) are absent during all phases of the eclipse. This condition can be 

formulated in a different way if we consider the configuration at mid-eclipse; with 

(9 = 0, equ. (3.3) simplifies to yo = cos i, and our condition can be stated as follows: 

If cos i > n , zones (b) do not appear. 

But the presence or absence of zones (b) is not the only possible cause of 

different configurations. Fig. 6.2 shows the course of events during the eclipse of 

Fig. 6.2. Successive phases of primary eclipse 

of Algol (schematically - relative sizes and 

positions are not preserved). 

Algol, which is typical for a number of other systems. Shortly after the secondary 

has encroached upon the disk of the primary, we have a configuration of the type A: 

there are two zones (a), and one zone (c). We can write down the intervals of x in 

the form of a small table: 

Interval oj of x 

-Г\ ^ X ^ X2 

%2 ;=S x ^ X\ 

X\'/ L ^ x ^ r\ 

Kind of zone 

(a) 

(c) 
(a) 

However, as soon as yt becomes negative, the first zone (a) changes into (d)> 

the intervals remaining otherwise unchanged (configuration B). 

When now the point G\ enters on the disk of the primary, a zone (b) is inter­

posed between (c) and (a); (c) extends now from X2 to x\ as before, but is followed 

by (b) between x\ and xo + r2> and (a) is restricted between (xo + Y2) and r\. This 
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configuration is shown Fig. 6.2C. It would not be difficult to describe qualitati­
vely the changes in configurations during the whole eclipse. It is more important, 
however, to formulate quantitatively the equations determining the phases at which 
these changes in configuration occur. 

The problem is to find phases 

©5, ©6 at which one of the points of intersection coincides with the point 
(—n,0) ; 

©7, 08 at which the same happens for ( + n , 0); 
©9> ©IO at which the point Gi(xo + Y2? yo) coincides with one of the points of 

intersection; 
©ii, ©12 the same for G%(xo — Y^ yo). 

For this purpose, let us return to the equations (3.6) for the coordinates of the 
points of intersection. Eliminating q between the two equations of either pair, we 
obtain the equation of the chord in the form 

xoxi + yoyi = s d , (6.7) 

and the same form for the other intersection. Again, making use of (3.5), we can 
rewrite (6.7) as follows: 

d2 + r2 _ r2 _ 2 (XoXl + yoyi) = o , (6.8) 

a form identical for either of the points of intersection. As a matter of fact, equ. 
(6.8) is equation in one variable, namely 0 , which enters into d through (3.4), and 
into xo and yo through (3.2) and (3.3), respectively. It is, however, more convenient 
to regard XQ = sin © as independent variable, and write the equation (6.8) in the 
form 

xl sin2/ — 2 (JCOXI + yiyo) + Y\ — Y\ + cos2/ = 0 . (6.9) 

Here, it is true, yo is also a function of 0 , or of xo. However, when looking for ©5 
to ©g, we insert -vi = 0, so that the term containing yo disappears. In order to 
avoid double indices, let us write for the while xo = u; we get two quadratic equa­
tions : 

For ©5,6 • ©5>6 = arcsin us>6 and u follows from 

w2 sin2/ + 2YIU + Y\ — Y\ + COS2/ = 0 . (6.10) 

For ©7,8: ©7?8 = arcsin W7>8 and u are roots of 

u2 sin2/ — 2 n u + Y\ — Y\ + cos2/ = 0 . (6.11) 

In the equations determining the phases at which the points Gi or G2 fall on 
the limb of the eclipsed star, the factor at yo is not generally zero but yo again; 
however even here this variable can be eliminated. This is best seen when we 
return for a while to (6.8) and insert for xi and yi the coordinates of Gi or G2. 
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After a little algebra we get 

for ©9,10: &9,10 = arcsin ug, io> 

u2 sin2/ + 2 r2 u + rf — r\ + cos2/ = 0 ; (6.12) 

for 0n , i2 : 0n, i2 = arcsin un,i2, 

u2 sin2/ — 2 r2 u + rj> — r? + cos2/ = 0 . (6.13) 

In all cases, the principal value of arcsin u is to be taken, for — n^LO fg + — n. 

Numbering now the roots Uj so that we take first the discriminant with the 
positive sign and then with the negative sign, we see that us = —us3 u6 = —u7> 
and similarly u9 = —ui2? uio = —un- This is quite a natural result, since the eclipse 
is perfectly symmetrical with respect to phase 0 = 0. Thus it is sufficient to solve 
only the equations (6.10) and (6.12), or the other pair. 

Example 6.1: Partial eclipse - Algol 

Equations (3.9), (6.10) to (6.13) give: 0i = — 26.7°, <95 = —25.0°, <99 = 
= —24.8°, 0io = —3.3°, ©6 = —1.8°. This means: Partial eclipse begins at 
—26.7°. The configuration corresponds to A in Fig. 6.2. At —25.0°, the lower 
point of intersection falls on the jc-axis, configuration changes into B. At —24.8°, 
point G± begins to project on the disk of the primary, the configuration changes 
into C, which can be symbolically described as follows: 

—n < (d) <X2< (c) <xi< (b) < x0 + r2 < (a) < n . 

This situation lasts for most part of the ingress, until phase —3.3°; at this phase, 
point Gi leaves the disk of the primary, and the distribution of zones in this con­
figuration D is 

—n < (d) <x2< (c) < xi < (a) < n . 

At phase —1.8°, the point of intersection P2 passes again through the point x = 
= —ru y = 0, this time in the direction of positive y's. As Fig. 6.2E shows, zone 
(d) disappears and is replaced by (a), so that the configuration is 

—n < (a) <X2< (c) < xi < (a) < + n . 

After mid-eclipse, the course of events is symmetrically reversed: at phase 
+ 1.8°, Pi passes through ( + n , 0) towards negative values of yu the configura­
tion is 

—n < (a) <x2< (c) < xi < (d) < + n , 

i.e. symmetrically reversed with respect to D, etc. 
We are now able to write down the correct form of formula (6.1), using for 

individual intervals in x the appropriate formulae (6.2) to (6.5), respectivelly. These 
will be inserted into (5.11), and numerical integration can be performed, if we 
specify the law of the intrinsic line broadening, as described by the function W(Z). 
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The line Mgll 4481 shows the effect of rotational distortion very distinctly, being 
of small intrinsic width, and was therefore chosen for numerical computations. Its 
intrinsic profile was represented by the Doppler contour (5.12) with the same 

Fig. 6.3. Predicted varia­
tions in the profile of 
Mgll in Algol during 
primary eclipse. 

constants as in Example 5.L Several profiles of this line at various phases of the 
eclipse are displayed in Fig. 6.3. 

In the case of Algol, these computations can be well compared with observa­
tions. For example, the author of the present paper secured at Victoria a series of 
spectrograms with dispersion 5 A/mm for this purpose. The interpretation, however, 
is more difficult, because the profiles are blended by lines due to the third com­
ponent in the Algol system; therefore, the discussion is outside the scope of this 
paper. 

Example 6.2: Annular Eclipse - YZ Cassiopeae 

This system is also fairly bright, so that an analysis of the profiles is feasible, 
but nothing has been done so far. Our predicted profiles represent again the line 
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Fig. 6.4. Predicted varia­
tions in the profile of 
Mgll in YZ Cas during 
primary eclipse. 

Mgll 4481 and vere computed - similarly as those for Algol — on the assumption 

that the rotation of the primary is synchronized with the period of revolution. The 

case is interesting because here we have a transit of a small secondary (r2 = 0.0769) 

across the disk of a much larger primary ( n -= 0.1419). The interest is, however, 

rather theoretical, since the distorsion of the line profiles is quite small, as Fig. 6. 

4 shows. 

Partial eclipse begins at phase —0.0347 P (<9i = —12.°49). Already at —0.0346, 

Gi enters on the disk (6>i0 = —12.°45), and at —0.0340 ( 0 6 = —12.°25), P2 

crosses the x-axis and the configuration becomes of the well-known type C. 
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Fig. 6.5. Predicted varia­
tions of the profile of 
Mgll in U Sagittae 
during primary eclipse. 
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What is new here is the situation after —0.0716 (@5 
above the x-axis, and the configuration is 

°1), when P2 returns 

—Y2 < (a) <x2< (c) < xi < (b) < xo + r2<(a)< + n . 

Then, at phase —0.0097 (&i2 = —3.°5), the point G2 already begins to project 
on the disk of the primary, and for a short while the configuration is 

— n < (a) <x0 — r2< (b) < x2 < (c) < xi < (b) < x0 + r2 < (a) < + n . 

We have thus five zones, but already at the phase —0.0091 (&2 = —3.°28) the 
complete annular eclipse begins, the duration of which is 0.0182 P ; during all this 
time, the configuration is —n < (a) < xo — r2 < (b) < xo + r2 < (a) < + r\. 
When calculating the profiles for this annular phase, B (©) is to be computed by 
(3.12). 

Fig. 6.6. Predicted variations of the profile of 
Hy in U Sge during primary eclipse. 
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Example 6.3: Total Eclipse - U Sagittae 

This case is very simple, since i -= 90°. G\ enters on the disk at the moment 
of the beginning of the eclipse, and during the whole ingress the configuration is 
the same, namely —r± < (d) < X2 = x± < (b) < xo + r2 < (a) < + n . 

Several representative profiles of the Mgll 4481 line are shown in Fig. 6.5. 
For this system, in which the rotational effect is particularly large because the eclipse 
is total, also the profiles of the line Hy were computed. Its intrinsic profile was 
adopted in the form (5.13) and constants were chosen as in Example 5.2. Fig. 6.6 
shows that the distortion of the hydrogen lines during eclipse is very small, because 
the intrinsic width is very large. Only the central parts of the line are affected to 
a certain degreee, the outer wings are practically quite unchanged. 

The fact that the hydrogen lines are displaced as a whole but practically remain 
symmetrical is very important: it means that it should be possible to derive the 
rotational effect from their displacement as in the case of weak lines (cf. section 4, 
rotation factor); only the determination of the line centre will be as a rule less 
accurate. Actually, the rotational velocity of S Equ was so derived (Plavec, 1966). 

7. Line Profiles at Eclipse - Disks with Limb Darkening 

Passing now over to the more general case of disks with non-zero limb darkening, 
we can take over a great deal of the analysis from sections 5 and 6. The resulting 
depth of the absorption line in question at a given wavelength will be again given 
by formula (5.10), where the broadening function is again formally given by (6.1). 
However, the meaning of J(x) and B(&) must be generalized. 

Suppose again that the distribution of surface brightness (at a given wavelength) 
over the disk of the primary is decribed by I(x, y)> and also that the intrinsic profile 
of the line in question is the same over the whole disk. Then, always considering 
radiation at a given wavelength within the line, 

J(x) = fl(x,y)dy, (7.1) 

where the integration extends over the visible part of the elementary vertical strip 
between x and x + dx, and 

B(G)=$$I(x,y)dydx, (7.2) 

where the integration extends over the whole visible portion of the disk of the 
primary. In other words, F(x) is now the ratio of brightnesses, not of areas. 

We assume again the usual linear law of limb darkening (5.5), but we shall 
write it directly in the form (5.6): 

/(*,y) = Io[l-u + ±[f*- (x* + yo]1/.] ; (7.3) 

this function is to be inserted into (7.1) and (7.2). 
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It has already been said in section 3 that the total light of the uneclipsed area 
B(0) cannot be, for u -7-= 0, expressed in terms of elementary functions. Special 
tables were prepared for this purpose (Merrill, 1950), giving the functions uaoc> 
uatr for u = 0.1, 0.2, ..., 1.0. Only for these particular values of u can our computa­
tions be performed. We have 

B( ) = / 0 ( l — ±- u\ n r- (1 — a) (7.4) 

Only the last factor varies with 0; let us call it B'(0). 
Inserting now (7.3) into (7.1), and together with (7.4) into (6.1), we can write 

F(x) _ L , [ 3 ( i - , ) _ L r , ) + _ 3 * 
B'(6) [ 3-« nr\ J W ^ 3 — u nr: k H ' 

where 

J(x) = J 4У = Ућ— Уdy 

Уd 

Уh 

K(x) = j [-- — («-+з,-)]V.dy: 

(7.5) 

(7.6) 

y y iň ~ (*2 + y*)V' + y (*? - *2) arcsin ( r f J ^ 2 ) V , 
Уd 

(7.7) 

The upper limit yn and the lower limit yd are expressed by different relations 
according to the zone in which the elementary strip in question lies. 

Now the geometry of the problem is identical with that studied in detail 
in section 6; therefore we take over the zones (a), ..., (d) and calculate the 
integrals J(x) and K(x) for each zone. But the formulae for Ja(x), ..., Jd(x) 
have already been derived in section 6, equations (6.2) to (6.5). We are left with 
integrals K(x). 

Because the elementary strips in zone (d) are completely eclipsed, we have, 
besides Jd(x) = 0, also 

Kd(x) = 0. (7.8) 

In zone (a), the limits of integration areyn = + (r\ — x 2 ) \ y a = —(r\—#2)1 / 2. 
Inserting them into (7.7), we find 

Ka(x) =±.Я(Ą — X * ) . (7.9) 

In zone (b), the visible portion of the strip consists of two parts, with limits 
yn = + (r\ —^x2)1!* and yd = yQ -{- ]/r| — (x — x0)

2, and again yh = -yo — 
- l/rf - (X - X0)2, Уg = - (r\ - *-)V. 
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Inserting these limits into (7.7), we get 

* C ) = 4 » M - *) + | M - **) [arcsin » ~ j ^ - J * ~ ^ ] -

1 / 2 ^ • -yo + l/r| — (x — xo)2 

— (r{ — x2) arcsin - • ' 
2 W ' " ( r 2 _ x 2 ) V 2 

+ 4 [yo - l / r l - ( x - x o ) 2 ] [r2 - x2 - [yo-]/rl-(x-xo)]2]lh — 

— \ bo + ]/r2
2— (x — xo)2] [r\ — x2 - [y0 + ]/r| - (x - *o)2]2]Vf . 

This is certainly an awkward formula, but an effort to bring it into a more manage­
able form failed. 

Finally, for the zone (c), the limits are yn = yo — ]/r\ — (x — xo)2, yd = 
= — (r2 — x2)ll°-, and the formula is somewhat simpler: 

is r \ ! / 2 ô  , ! / 2 2\ - yo — ]/r\—(x — xo)2 . Kc(x) =—7i (r{ — x2) + — (r{ — x2) arcsin v ' 
Vi x) ( 7 < 1 1 ) 

+ 4" - ^ — l / r l - ( x - x 0 ) 2 ] [r? - x2 - b o - V r | - ( x - x 0 ) 2 ] 2 ] 1 / 2 . 

It is obvious that actual computations of line profiles at eclipse with non-zero 
limb darkening are much more time-consuming than in the case of uniformly 
bright disks. 

References 

1. HOSOKAWA Y., 1953: On the Rotation Effect of Velocity Curves. Publ. A. S. Japan, 5, 114 
2. KOCH R. H., OLSON E. C , YOSS K. M., 1965: A Spectrographs Investigation of Some Bright 

Eclipsing Binaries, ApJ 141, 955 
3. KOPAL z., 1942: On the Rotation Factor, Proc. Nat. Ac. Sci. Washington 28, 133 
4. KOPAL Z., 1959: Close Binary Systems, chapt. V., Chapman and Hall, London 
5. KOPAL z., SHAPLEY M. B., 1956: Catalogue of Elements of Eclipsing Binary Systems. Jodrell 

Bank Annals, 1/4, 141 
6. MCNAMARA D. H., 1951: A Spectrographs Study of U Sagittae. ApJ 114, 513 
7. MERRILL J. E., 1950: Tables for Solution of Light Curves, Contr. Princeton Obs. 23 
8. PETRIE R. M., 1938: The Calculation of Rotation Factors for Eclipsing Binaries. Publ. D.A.O. 

Victoria 7, 133. 
9. PLAVEC M., 1966: S Equulei, A New Close Binary with Gaseous Streams. BAC 17, No. 6 

10. PORFIRJEV v. v., KALENICENKO v. v., 1964: Issledovanije krivych lucevych skorostej. A2 41, 858 
11. SLETTEBAK A., 1954: The Spectra and Rotational Velocities of Stars of Types B8-A2, ApJ 119, 

146 
12. STRUVE o., 1949: Spectroscopic Binaries. M N 109, 487. 

54 


		webmaster@dml.cz
	2012-10-05T19:19:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




