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1970 ACTA UNIVERSITATIS CAROLINAE MATHEIIATICA ET PHYSICA V0L»11 

THE KINEMATIC AND DYNAMIC PROPERTIES OF SEISMIC WAVES 

IN THE NEIGHBOURHOOD OF CAUSTICS 

J . ZAHRADNÍK 

Geophysical I n s t i t u t e , Faculty of Mathematics and Physics, Charles 
Un iversity, Prague 

(Received 1 June 1970) 

KINEMATICKÉ A DYNAMICKÉ VLASTNOSTI SEISMICKtCH VLN V OKOLÍ KAUSTIK. V práci 
byly studovány teoret ické hodochrony a amplitudové křivky refragovanó vlny P v o-
l i kaustik. 

Byly počítány amplitudy v bodech, l e ž i c l c h na povrchu vertikálně nehomogerail-
ho elast ického prostředi, ve kterém působí bodový harmonický zdroj. Bylo použito 
nejen paprskových, a le i t zv . modifikovaných asymptotických vzorců, dávajících na 
kaustice konečnou amplitudu. Byla provedena řada numerických výpočtů a porovnány 
výsledky, získané použitím paprskových a modifikovaných vzorců1 (obr. -*)• 

V práci je diskutováno, Jaký v l i v má na amplitudové křivky v okolí kaustik 
frekvence zdroje a změna parametrů prostředí. Bylo z j i š těno, že s rostoucí frek­
vencí nabývá amplitudová křivka výraznějšího maxima b l í ž e u kaustiky (obr. 6 ) . 
Značný v l i v malých změn parametrů prostředí na tvar amplitudové křivky demonstru­
je obr. 5« 

1. Introduction 

Very strong waves, similar to those i n the region of the c r i t i ­
cal poin t , are recorded i n the neighbourhood of a caust ic (deep 
seismic sounding, seismic prospection e t c . ) , but the physical cha­
racter of each of the two types of waves i s rather d i f feren t . Un­
l ike the c r i t i c a l point caust ics are not connected with any re f le­
c t i n g boundaries i n the medium. 

To avoid mistakee in the so lu t ion of an inverse problem of 
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seismology (due to the false interpretation of the strong waves) 

a theoretical study of kinematic and dynamic properties of body 

seismic waves is necessary. We must solve the direct problem for 

some mathematical models of medium and source. The theoretical 

analysis of kinematic properties (e.g. using travel-time curves) 

i9 simpler, but not sufficient. Therefore, the study of dynamic 

parameters, such as amplitudes, periods, amplitude and phase spe­

ctra, theoretical seismograma, etc., ie very ueeful. 

Very detailed analyai3 of the neighbourhood of the critical 

point has been given, for inatance, by V. Cervertf /6/f but, so far 

as 1 know, similar analysis for the caustic has not been carried 

out up to thia time. Only R. Sato /16/ 8tudied 8pecial case of SH 

waves in the inhomogeneous sphere and H. Bremmer /4/ dealt with an 

electromagnetic case. 

So-called formal solutions for components of the displacement 

vector are unsuitable for further physical discusdion. Therefore, 

asymptotic solutions for high frequencies of harmonic source are 

usually looked for. According to the asymptotic formulas, the am­

plitudes of displacement components reach infinite values at a 

cauatic. This result following from the ray theory is obviously 

incorrect, but it is approximately in agreement with high recorded 

amplitudes. 

There are some so-called modified asymptotic methods giving a 

finite value for the amplitude at a caustic. We shall deal with 

these methods (geometrical method, method of uniform asymptotic 

expansion, integral approximation of the third order) in Chapter 2. 

I have not yet seen any numerical calculations and physical 

discussions materialized on the basis of modified asymptotic me­

thods in literature. 

The aim of the present paper ia to perform (Chapter 3) a physi­

cal discussion of amplitude curves in the neighbourhood of a cau­

stic. We shall apply one of the modified asymptotic methods and 

compute the amplitudes of displacement component in the region of 

caustic for many different models of medium and frequencies of 

source. We shall also compare these results with those obtained on 

the basis of asymptotic ray methods. 

The influence of changes of parameters of the medium as well as 
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of the frequencies of the source upon the amplitude curve will be 

investigated. At the end of Chapter 3 we shall consider briefly 

the more complicated models with several caustics* 

2. Formulation and analysis of the problem 

The first part of the Chapter will deal with the relation be­

tween the equation of motion and the wave equation in the inhomo-

geneous medium. Further, an analysis will be given of the asympto­

tic solution of the wave equation for a given medium, source and 

type of waves. Relations between several asymptotic solutions, re­

striction of their validity and accurate definition of the caustic 

will be discussed. Solutions which are valid in the neighbourhood 

of caustics will be presented. 

2.1._Bciuation ofjnotion and wave^efluation in_the_inhomog£neoue 

elastic medium 

Let us start from the equation of motion for inhomogeneous,per­

fectly elastic and isotropic medium, which is derived in the infi­

nitesimal theory of elasticity. 

The medium is characterised by Lame 'a parameters A . (^ and 

the density § • In general, these quantities are dependent on co­

ordinates. Let us suppose that body forces are negligible. Let 

there be a source of harmonic elastic waves in the medium. The mo­

del of the medium and the source will be defined precisely in sec­

tion 2.2. 

In the special case of a homogeneous medium ( > , </*/, $ are con­

stant) the equation of motion describes the motion of two types of 

wave front8. Let us denote velocities of these fronts ap '. a^ . 

With the wave front moving with the velocity ap (P waves) the 

purely longitudinal motion is connected. The so-called S-wave8 are 

purely transversal. Therefore, the equation of motion can be sub­

stituted by an equivalent system of two wave equations for scalar 

and vector potentials y> , \y . We obtain: 

Ay* (l/a2)(^/3t2) , 4?« (l/a|)02y/at2) , (1) 

ap - 1|( A+ 20/§' , ag = (yf , (la) 
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u = gradf + rotvj? , (lb) 

where "A" is the Laplace operator, t the time, "u the vector 
of displacement. 

In the case of inhomogeneous medium, the situation i3 more com­
plicated. It becomes simpler for high frequencies of harmonic 
source. Then two types of wave fronts are propagated with the ve­
locities ap , as , given by formulas (la), in which ^f p . f g 
are the functions of coordinates. We say that P-waves and S-waves 
are propagated in the medium. But, the P-wavea are not purely lon­
gitudinal (the vector u hae alao transvereal component, i.e. the 
component tangent to the wave front) and the S-waves are not pure­
ly transversal /7/. Thus, for an inhomogeneous medium we can con­
clude: The system (1) of wave equations is not equivalent to the 
equation of motion, not even for high frequencies. 

It can be shown that with some additional pre-requisitee ful­
filled the P-waves can be described by the wave equation only. 
What these "additional pre-requisites" are will be explained in 

section 2.5.1. 

In all the paper, we shall deal with the P-waves only. Let the 
P-waves be fully described by the wave equation for scalar poten­
tial. The time dependence will be given by factor exp(-iort). Let 
us introduce the potential i£> , which is not dependent on the time, 
by the formulas: 

Af • k2v/> = 0 , (2) 

If = (grad vp exp(-iort) , (3) 

where OJT = 2l£ f is the angular frequency of the source, f the 

frequency, k - ̂ /a the wave number. The velocity a~ f which is 

denoted by a as well as the potential <j> are functions of coor­
dinates. 

To use the equation (2) for the study of P-waves in the case of 
a given medium means to find a solution which would satisfy the 
equation (2), the source condition, the conditions at infinity or 
some other conditions. The solution, we are looking for, can be 
written in two different forms: a) Integral solution (the so-cal­
led formal solution /3, § 24/, /15f Chapter 3/, which is inconve-

80 



nient for physical discussion and, therefore, its asymptotic ex­

pression must be found; b) Asymptotic solution in the form of ray 

series /l/, /2/. 

2.2._Model_of medium_and_source;..tjpe of_waves_ 

2.2.1. Model of medium 

We shall define the model of the medium similarly as in A 3 A 

The isotropic perfectly elastic medium is composed of a system of 

inhomogeneous planparallel layers located on a homogeneous half-

space. (The system of the layers and the homogeneous half-space 

will be often called inhomogeneous half-space.) 

Thia model is applicable for the Earth's crust studies at small 

epicentral distances at which the curvature of the Earth is negli­

gible. 

Let us assume that the velocity a ,(a = a-p), of compressional 

waves is the* function of the depth only. The derivative of the ve­

locity is continuous or discontinuous (discontinuity of second or­

der) on the boundaries of layers but the velocity is always conti­

nuous. There are not any reflecting boundaries (except the surface 

of the inhomogeneous half-space) in the medium. We suppose that 

the chariges of velocity are small in the whole medium except the 

surface (discontinuity of first order) and those boundaries which 

are discontinuities of second order. 

We introduce the cylindrical coordinates r , z , nf by putting 

the surface of the inhomogeneous half-space in the plane z « 0 

and orientating the axis z towards the medium; so the depth is 

given by the z-coordinate. The origin of the coordinate system can 

be chosen at an arbitrary point of the surface. 

2.2.2. Model of source 

The point source is located on the z-axis in a thin homogeneous 

layer. The depth of the source and the thickness YIQ of the homo* 
geneous layer are assumed to be small. Only a spherical harmonic 

P-wave is emitted from the source. For the potential in the thin 

homogeneous layer we can write: 
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<f « exp (i k0R0)/RQ f (4) 

where kQ - ar/a-^ , ur is the angular frequency (6ir-.*oo; see aec-

tion 2.3), a, the velocity of P-waves near the aurface of the me­

dium^ RQ the distance between the source and the receiver located 

in the homogeneoua layer. 

In this paper we ahall often use the ray conceptions valid only 

for high frequencies. Let ^i represent the angle between the z-

axia and an arbitrary ray at the source. Not only \p^ , but also 
the quantities u = sin <f̂  , or \ ' k^sin (̂  will be called pa­

rameters of the ray. Unlike y^ and u the parameter f is also 

dependent on frequency. 

Neither kinematic nor dynamic quantities are dependent on the 

coordinate A?*. The source lies on the z-axisf therefore the coor­

dinate r of the receiver (point of observation) represent the 

epicentral distance. 

2.2.3. Type of waves 

In the model described above the refracted P-wave can exist.Any 

ray of this wave reaches the depth in which the velocity is such 

as to make the ray form an angle %/2 with the vertical.The de­

scending and ascending parte of the ray are symmetric with each 

other. 

2.2._Asymptotic solutions 

2.3.1. Integral approximation 

For the potential of apherical waves in the neighbourhood of 

the eource we have 

y(rfz) -= exp (i k0R0)/RQ . 

Let us express the spherical wave as a superposition of plane wa­

ves /3, §S 18, 19/. When we use the Hankel function of zero order 

we obtain for the potential of the spherical wave in the homogene­

ous neighbourhood of source 
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7Г/2-ioo 

y(z,г ) = (ik0/2) ^ ' ( I C Q Г sin f^expUkQCosy^.zЬin / ^ d ^ . 

-lГ/2+ieo 

Afteг subэtitution ř - kQзin /^ we have 
+ 0 0 

f ( г , z ) = (i/2) ,(D н£-'( |r)вxp(i |3 0 ж>.< {/(-»(>>*{ , (5 ) 

where /3Q = vkQ - § • The potential of the spherical wave on the 

lower boundary of the thin layer is given by the formula (5), in 

which z = h
Q
—»0 . 

The potential at any point of the inhomogeneous medium may be 

expressed by 

y(r,z) * (i/2) I H^
X )
(Jr) f(z,J) <{//3

0
>dJ . (6) 

-oo 

The expression for the *(z$l )
 w a 8

 found by L.M. Brekhovskikh 

/3
t
 §5 16, 38/. For the case of z = 0 the expression yields: 

z
m 

f(OJ) = 1 * exp {i(-lT/2 • 2 I /3(z) dz)j , (7) 

0 

where fl(z) = \/k
2
(z) - j

 2

 f
 k(z) * <u/a(z) , z

m
 is the depth 

for which /3(s
m
)

 =
 0 . In the ray conception, it is a depth at 

which the minimum of the ray lies. The first term of (7) gives the 

direct wave propagating inside the homogeneous layer. Here we are 

not interested in this wave* The second term gives, after a sub* 

stitution into (6), the refracted wave. For the potential of the 

refracted P-wave, at the point lying on the surface, we obtain the 

formal solution 

?(r) = (i/2) 

-oo 0 

H ^ í j г b x p (i(-7Г/2 • 2 | IІU)ázY}q/ß0)ă\. (8) 

Note 1: In our simplification we shall study neither waves refle­

cted from the surface in proximity of a source (pP-wave) nor the 
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multiple reflections (PP, PPP, . . . ) . 

Let us pass from the formal solution (8) to the asymptotic so­

lution. For I r » 1 i.e. in the so-called wave zone we can re-
3
 (1) 

place the Hankel function HA ' by its asymptotic expression.The-

refore 
-•co 

y(г) » (l/l/гTг) exp(i 7Г/4) exp 

'~oo 

{iw(г,pj (,Ţ//Э
0
) đ{ , (9) 

rzm 

w(гЛ ) = -1Г/2 + 2 l ß(z) đz + fг (9a) 

It is possible to write the phase function w in the form w(rJ) 

s o/f (r, \ ) , where or is the angular frequency, X is some time 

function (section 2.3.3.). Asymptotic relations for the potential 

(9) may be simply written for high frequencies. The integration 

path of the steepest descent will pass through the saddle point 

^
0 1
 , for which 

( d*/d\ ) |
0 1
 * 0 . (10) 

Note 2; Generally more than one root can satisfy the equation 

(10). In the case of two saddle points f oi» !\02 *
h e
 integra­

tion path consists of two branches passing through t
0 1
 and 

^02-

For a high frequency and for one saddle point I
 0 1
 the method 

of the steepest descent (integral approximation of second order) 

yields 

y(r,0) «= ^(r) » ( 1 / l/rk^w^jcotg^cos ^ ) exp(iwQ1) , (11) 

where the partial derivative with respect to r is denoted by the 

prime and where w
0 1
 = w(r, s

0
O « By rearrangement we obtain: 

f (г) ftř (1/ |/г cotg^.lӘг/P /^' ) exp(iw
01
) * 

(12) 

- (1/L) exp (iarГ) . 
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2.3.2. Ray approximation 

By the ray theory /l-2/f the aolution of the equation (2) ie 

given in the form of a ray aeries. 

Let ue deal with the ao-called zeroth approximation only. For­

mulae for the potential ^ in our model of medium have been deri­

ved by J. Jansk^ /13/. The potential at the point lying on the 

surface (i.e. for z = 0) ehould be written: 

f(r,Ofur)« f * I exp (i9) f (13) 

A = 1/L , L = |/r c o t g f 1 prAty- j ' , (13a) 

0 = uxt. ( 1 3 b ) 

The quantity L is the spreading function. Its square ie defined 

as the ratio of the cross-sectional area of the ray tube at the 

point under study and the cros3-9ectional area of the same ray 

tube on the surface of the unit sphere around the source. The wa­

ve motion, propagating along the ray, passes from the source to 

the point of obeervationa at the time V . In other words, V is 

the "arrival time". 

Note 1: The ray method may be applied for the equation of motion 

as well as for the equation (2). But, in the inhomogeneous medium, 

the P-wavea are purely longitudinal in the zeroth approximation 

only. 

2.3.3. Comparison between integral and ray approximation 

We obtain the same formulas for the amplitude at the point of 

the surface as from (12) and (13), There is a little difference 

between the phasee of (12) and those of (13). Uaing /3, $ 38.3/ 

we can write # = Z - Z/2ur . Here we are interested only in 

high frequenciea and therefore *tf « *C . 

Let ue give the geometrical interpretation of the derivatives 

of the phaae function w . 

wj = w'(r, £ 0) = 0 , i.e. r = r( £ Q) , (\4) 
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where r(J) is given by: r(£) = -9(-7T/2 • 2 /3(z)dz)/a* . 

0 
The equation (14> can serve us for the determination of the epi-
central distance, when the parameter f0 of the ray is known. 

For z 1 0 : 

w0 = w'(r,z,?0) = 0 i.e. r = r(z,fQ) . (14a) 

(14a) is the equation of the ray. Similarly: 

w0 s "{W = ° i-e- "(9 r ( ^ / 3 f >fQ
 = 0. (1.5) 

and for z ̂  0 : 

w0 = w0(z,^0) = 0 i.e. -( 3r(z,f )/3J >c = 0 . (15a) 

For the third derivative: 

wj - W'" <Z,fQ) = - 0
2 P ( 8 , { ) / ^ 2 ) , # 

We can conclude that for one or more saddle points the inte­
gral approximation of the second order is equivalent to the ze-
roth ray approximation for one or more rays. We say that •the 
fields of individual rays* are given by asymptotic formulas. The 
quantity # ,( V = V ) represents the time required by the wave 
motion to pass along the ray from the source to the point of ob­
servation, *the arrival time*. 

2#£._Re8trictions of_validit£ of_asymptotic solutions._Caustic_ 

It is clear from (11), (12) that the asymptotic formulas lose 
their physical sense for 

w 0 1 * w
H(^Q1) = 0 or for L ± 0 . (16) 

In the case of w 0 1 * 0 , the equation (10) has two roots | 0 1 , 

£02 • for which woi s w02 = ° • U s i n£ ^14) we can write r * 
- p({01) = r(^ 0 2). 

The first and the second derivatives of w equal to zero si­
multaneously provided ( Q I s S 02 * Let us denote this singular 
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point by f
 0
 . We can write for this point wj

 a
 w

0
 * 0 , i.e. 

(14) and (15), when ^
 0
^
 s
 (Q2 •

 F r o m
 ***)

 w
® obtain 

г = r( f
0
) * r* . (17) 

Note 1: The prime denotes the partial derivative with respect to 

| (w is also a function of r )
f
 and therefore both wJ ¥ 0 and 

w0 - 0 hold , when r j* r* (i.e. i Q 1 j / 0 2 ) . 

What is the meaning of the point r = r*? Let us deal with mo­
re general formulas (14a) f (15a). Eliminating | 0 from both 
equations we obtain the implicit equation of the plane curve: 

P(rfz) = 0 . (18) 

Since (14a) is the equation of the ray, (18) is the equation of 
the envelope of the ray, so-called caustic. The quantity r = r* 
is the coordinate of the point lying on the caustic and on the 
surface simultaneously. We can say that r* denotes the epicen­
tral distance, in which the caustic intersects the surface. 

A caustic separates the shadow and the illuminated zone. In 
the ray conception there is no ray penetrating into the shadow. 
In any point of the illuminated region, there are two rays cor­
responding to two saddle points £ oi ' Co2 * If the Point °* 
observation lies near the caustic, the parameters / 0 1 , | 0 2 of 
rays passing through this point approach the mean value £ Q. Than 

I 01 = £o2 = f 0 *or r = r* ' 0 n ly one ray passes through r * r* 
and is the tangent to the caustic there. 

Another definition of a caustic may be introduced: The caustic 
points are those in which L « 0 . Both definitions of a caustic 
are equivalent in our case of a vertically inhomogeneous medium. 

We can conclude that in the neighbourhood of a caustic, the 
asymptotic (ray or integral) formulas give an infinite value of 
the potential. As regards the ray formulas, we have proved it for 
the zeroth approximation only, but it is a common property for 
all the terms of the ray series, as shown in /ll/. 

2.£^Modif ied as£m£totic_solution8_ 

We shall describe three methods giving the so-called modified 
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aeymptotic solutions of the wave equation, which are finite at a 

caustic. For individual methods eee more detaila in /3-4/, /10-

-12/t /14/. 

2.5.1. Geometrical method 

Thia method is a modification of the ray theory for the neigh­

bourhood of a caustic. The method has been used not only for a 

wave equation /10/, but also for an equation of motion /ll/. The 

assumption of a high frequency is neceasary. Many quantities used 

in the method can be interpreted geometrically (radii of curvatu­

re of the ray and of the caustic, etc.). The solution is valid in 

the neighbourhood of a caustic only. For an increasing frequency 

it can be identified with the ray solution. However, increasing 

the distance from the caustic, the solution cannot be transformed 

into a ray one. The solution can be expres3ed in two different 

forms: in the form of Airy function or in the form of the field 

of two raya (one ray approaching and the other leaving the cau-

3tic). 

It haa been ahown by T.B. Yanovakaya /12/ that: "if the phaae 

of the approaching wave at a large distance from the caustic is 

0, then in the vicinity of the caustic it changes, becoming 3T/12 

on the caustic. At the point where the ray is a tangent to the 

caustic the phase jumps to - Tf/12 and at large distances from 

the caustic it becomes -5L/2. H 

Let us deal with the geometrical method applied to the equa­

tion of motion. As was shown in /ll/, the displacement vector ~u 

of the P-wave has not only the longitudinal component, parallel 

to the cauatic and proportional to or ' , but also a transver-

aal component, perpendicular to the caustic and proportional to 

ar-l/o^ -̂ e c a n say ^hat in the neighbourhood of a cauatic the P-

wave ia not purely longitudinal in general. In thia paper we are 

interested in high frequenciee only. Therefore, in the neighbour­

hood of a cauatic the tranevereal component of the P-wave is ne­

gligible in comparieon with a longitudinal one (if we are not in­

terested eepecially in the diaplacement component, perpendicular 

to the caustic). 

We have also another reason for not considering the transver­

sal component: The same expressions for longitudinal part of the 
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P-wave field (in the vicinity of the caustic) has been derived 

not only from the equation of motion, but also from the wave 

equation using the geometrical method (acoustical case /10/). 

Therefore, for high frequencies we can study the neighbour­

hood of a caustic with sufficient accuracy when using the wave 

equation (2). 

The remaining part of this paper is devoted to the integral 

methods* 

2,5.2. Integral approximation of the third order 

For the potential of the refracted P-wave in the wave zone, we 

have found the integral expression (9). In the neighbourhood of a 

caustic (in the illuminated zone) the phase function w has two 

saddle points ( Ql » £ 02 • ̂  splitting of the integration con­

tour into two branches passing through the saddle points is possi­

ble. But those two contributions (fields of both rays) are no 

longer independent, when the saddle points are very close to one 

another /4/. The method which can be used in that case will be 

described below. 

The point | 0 , (w0 « 0) is the saddle point (w0 = 0) only when 

r = r* (see Note 1, section 2.4.). For the points lying near the 

caustic, the phase function w can be expressed by the first 

terms of Taylor series: 

*<M } = wo * wo A{ -fo 5 + ( wo" / 6 ) H " f o)3 • (19) 

Particularly for r = r* , i t holds that w0 * 0 , therefore: 

w(r, | ) - w0 • (w^ /6 ) ( f - | 0 ) 3 . (20) 

Note 1: Such an approximation in which the exponent is expanded 

in a Taylor series up to the third-order term will be called in­

tegral approximation of the third order. It is permitted only 

when w0" | is not very small. The case of small |w0
,/( | is typi­

cal of a contact of two caustics. It will be briefly discussed in 

the section 3*3.6. 

Let us substitute the expansion into (9). The function V J / / 3 Q 

varies only slightly in the neighbourhood of a caustic, when the 

rays are passing through a medium in which the changes of veloci-
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ty are small as compared with the wave-length. Then the function 

l/TV /SQ will be replaced by the constant value (ff^//^n^ 

The new integration path will pass through £ Q. We put 

*oM-sV + ( < / 6 ) ( i"^o ) 3 = 8 1 + *3/3 

where s = 2"" '•* | wQ | '•*(£ - / Q) is the new integration vari­

able, and t is given by: 

t = t 2
1/3 (r - r<£0) ) |wQ

m |"1/3 . (21) 

We choose the signs "+" or "-" for w0 > 0 or n»0 < 0 re­

spectively. 

If we take into account that u = siny, , u*" • ^ Q A 0 and 

introduce the Airy function: 
oO 

v(t) = (l/ifjf ) 1 cos (s t + s3 /3) ds , (22) 

0 

we obtain / 3 , § 38.4/: 

f ( r ) = A(r) exp ( l S ) , (23) 

A(r) = 3f(r*) v(t) /v(0) , (23a) 

A(r*) = 2 5 / 6 [ r * ( l - u * 2 ) / u * ] " kQ
1/6 | - 3 2 r / 3 u 2 | \ v(0),(23b) 

t = 1 2 1 / 3 (r - r*) k2/3 | - 9 2 r / 3 u 2 |"1 / 3 . (23c) 
u* 

"'• w(r*,^0) • 3t/4 = urlf*- X/A . (23d) Ђ 

In the above expressions k
Q
 = £<-J/a, is the wave number in the 

neighbourhood of a surface of the medium; the choice of the sign 

in (23c) is the same as in (21), £** is the ••arrival time" at the 

epicentral distance r* . 

The formulas (23) give the so-called modified asymptotic solu­

tion which was looked for. It holds not only for r = r* but al­

so in some neighbourhood of a caustic. It remains finite at a 

caustic as well. Neither for high frequencies nor for larger di­

stances from the caustic can the expressions (2 3) be transformed 

into the ray ones. The formulas (23) are not valid for larger di­

stances from the caustic. 
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The solution (23) is qualitatively similar to that given by 

geometrical method, but the formulas (23) are more suitable for 

numerical calculations. 

2.5.3. Method of uniform asymptotic expansion 

The method of uniform asymptotic expansion is an integral me­

thod, based on the aaymptotic expansion of an integral similar to 

(9). It looka for a solution valid not only at a caustic and in 

the neighbourhood of it, but also at larger distances from it. At 

larger distances the method gives the same result as the ray the­

ory for the fixed frequency. 

Such a solution /5/, /14/ has the form of the sum of two terms 

containing the Airy function and ita derivative. In the vicinity 

of a caustic, the term with the derivative is negligible; we ob­

tain the formulas (23)• It is important that the coefficients at 

Airy function and at its derivative depend on the position of the 

point of observation. This is an advantage of this method in com­

parison with the integral approximation of the third order where 

the coefficient was constant. 

Ҙ. Kinematic andd dynamic propertieэ of refracted wave in the 

neighbourhood of a caustic 

In this chapter the kinematic and dynamic quantities which are 

nece ary foг the construction of the travel-time and amplitude-

distance cuгve, a well a the method of numerical computation 

will be de cribed. The formula and the results of numerical com-

putations will be discu ed from a phyэical point of view in the 

econd part of the chapter. The propertie of the travel-time and 

amplitude-diэtance curve in the vicinity of a cau tic will be 

inve tigated in detail. We hall compare the amplitude cuгve 

computeđ on the ba i of the a ymptotic and the modified asympto-

tic formulas. 
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3#l#_Com2utation_of kinematic and dynamic suantities^ 

3.1.1. Kinematic quantities 

Here we are interested in the computation of the functions 

t « ?<£) , r = r ( £ ) , dr/9$ , 3 2r/3£ 2 . (24) 

We shall also describe a procedure of finding the quantities | Q, 

r* . 

For the type under study, that of a layered medium, the P-wave 

velocity is dependent on the depth only. The dependence of the ve­

locity on the depth will be called velocity section. The two dif­

ferent types of velocity sections are used: 

1) The so-called constant-velocity gradients: The dependence is 

linear inside the layers there are discontinuities of the second 

order on the boundaries. 

2) The so-called continuous velocity gradients: Both the velocity 

and its derivative are continuous through boundaries. The formulas 

for both types of velocity sections and the method of computation 

of the first three functions (24) are described in the paper /13A 

As regards the second derivative (3 r/3| ) , we need it only 

for | = ( Q . To find it, the numerical differentiation can be 
used. 

The quantity f Q is the parameter of the ray, tangent to the 

caustic in the point r* . Such a ray will be called "the boundary 

ray? connected with a caustic*. The | Q is given by (15), i.e. 

( 3 r / ^ )| = 0 . (25) 

In a layered medium, the expression for the derivative has a form 

of a sum. In solving the equation (25) the numerical method (e.g. 

method of halving an interval) must be used. When the parameter f Q 

is known, the epicentral distance r* can be determined by inser­

ting fiQ into (14); (r* = r(£Q) ). 

3.1.2. Dynamic quantities 

The dynamic quantities of our interest are: 

a) Amplitude X and phase 0 of the potential at the zeroth ap­

proximation of the ray theory (see (13) )• 
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b) Amplitude 1^ and phase ^ of the potential of an interfe­

rence wave at the zeroth approximation of the ray theory (see 

below). 

c) Amplitude A and phase 9 of the potential given by modified 

asymptotic formulas (23). 

The zeroth approximation for the potential Tp^ of an interfe­

rence wave is given by: 

T i
( г )
 *

 X
i

< г ) вx
P <-"5Vг) ) , (26) 

(26a) 

"Ф^ * tan"1 (IjвinS"-^ • I^aíiЛГ^Ì/ttiCOбф^ + I^coвlГg) ,(2бb) 

^ ( г ) - X^ r ) exp (iT^ťг) ) , 

where I
1
 , T^ , TT-̂  , "̂ "

2

 a r e t h e
 amplitudes and the phases of 

the potential of individual rays, arriving at an epicentral di­

stance r . The amplitudes A-̂
 f
 X^ are given by (13) • However, 

the formula (13) cannot be used for phases, because there is a 

caustic in the medium. In the vicinity of a caustic the phase is 

oscillating (section 2.5.1.). At greater distances from a caustic 

there is the phase shift (-3T/2) between the "approaching" and the 

"leaving" rays. Therefore, the phases are given by 

"5*1 * ^ l ' "5*2 "
 u/C2 "

 %/Z * ( 2 6 c ) 

where the arrival times are denoted by T^ , t
2
 for the ap­

proaching and the leaving rays respectively. (By "leaving ray" we 

mean the ray which has touched the caustic.) 

It is also possible to use the formulas (26) in the immediate 

neighbourhood of a caustic, but expressions for I
1
 , ̂  , " ^ , 

"9*2
 a r e v e r

y inaccurate there. 

The values of v(t) have been found by numerical interpolation 

(see Tables of v(t) in /3/, A 7 / ) . 

The conversion coefficient is given by 

S« 2m
2
(m

2
- 2u

2
)>/l - u

2
/[(m

2
- 2 u

2
)

2
 • 4u

2
ta

2
- u

2
 V 1 - u

2
],(27) 

where u is the parameter of the ray (u « s i n ^ ) , m the ratio 
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of compressional velocity to the shear velocity near the surface 

of the medium. 

3.1.3. Short description of programme for numerical calculations 

Epicentral distance, arrival time, derivative of the distances 

and the amplitude A(r) are computed with the constant step in the 

parameter u • As soon as the caustic is found, the quantities 

corresponding to the so-called "boundary ray connected with a cau­

stic" are calculated (r*,T*, 0 2 r / 3 u 2 ) ^ , A(r*) ). Beyond the 

caustic not only A(r) but also A(r) (for the fixed frequency) 

are computed. Moreover, the amplitude A(r) for the shadow zone 

(where the argument t > 0) is computed with a constant step in 

the distance. 

In the second version of the programme the amplitude A,(r) of 

the interference wave is computed, too. 

In the third version the amplitudes A.,(r) , A(r) are computed 

for the given sy3tem of frequencies. 

All the numerical calculations have been performed on the MINSK 

22 computer (Numerical Centre, Charles University). 

3»2.JTrayel-time_curye_of refracted waye_in the neighbourhood of 

caustic 

The travel-time curve ia given by parametric equations: 

V = <£(f) , (28) 

r = r(p . (29) 

Every cauatic ia connected with the turning point (the point ot 

revereal) of the travel-time curve, but the inverse statement is 

not valid generally. 

Only in the modele with the continuoue velocity gradients,every 

turning point of the travel-time curve is connected with a caustic. 

In Fig. 1 there are three different velocity sections and parts 

of corresponding travel-time curves with one (the curve 1) or two 

points of revereal (the curves 2 and 3). There are also schematic 
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illustrations of the travel-time curves in the same picture. As 

can be seen from Fig. 1, the travel-time curve is very sensitive 

to small changes in the velocity section, but the poeition of the 

caustic variea only slightly. 

Fig. 2 shows the travel-time curve for a more complicated model 

of medium with two caustic3 (at epic<mtral distances r * 59*058, 

r2 * 59.173 km). 

The travel-time curves given in other figured are only schema­

tic. 

2*2*_Amplitude_curve_of refracted wave^iji the neighbourhood of_a_ 

caustic 

The amplitude curve can be defined as the dependence of the am­

plitude of the vertical displacement component (denoted generally 

by V or especially by 7, 7^, V ) on the epicentral distance r . 

Therefore, in the next section, we shall briefly discuss the rela­

tion between the potential and the displacement components. 

3*3*1* Conversion coefficient 

When using (3) the expressions for the displacement components 

can be derived from the potential. Those expressions are valid on­

ly at internal points of the medium, but not on the surface. The­

refore, the so-called conversion coefficients are used. 

By multiplying the amplitude A(r) of potential at any point 

of surface by the corresponding conversion coefficient (given by 

(27) ) we obtain the amplitude V(r) of the vertical displacement 

component. In the vicinity of a caustic the coefficient <f(r) is 

approximately constant, i.e. 

<T(r) « J(r*) . (30) 

3*3*2. Amplitude curve by asymptotic ray expressions 

The amplitude curves computed on the basis of the asymptotic 

(ray) formulas are given in /13/* Neither the amplitude curve 

7 = 7(r) , nor the travel-time curve form a one-value function in 
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the vicinity of a caustic. They have several branches there. 

The travel-time and amplitude curves in Fig. 4 have two bran­
ches, because the two rays are passing through any point of illu­
minated region* The two parameters £ close to one another cor­
respond to the two ray8 in the vicinity of a caustic. 

The curves in Fig. 3 have three branches (1,2,3). The parame­
ters of three rays passing through any point are denoted by f-. , 

f 2 » i 3 * 0nly tw0 parameters 1 2 > f 3
 are close to one an­

other in the vicinity of a caustic. 

The amplitude V given by the asymptotic formulas (13) assumes 
high values in the vicinity of a caustic (see Fig. 3 and Fig. 4). 
It is necessary to investigate in which region the asymptotic for­
mulas are invalid. 

Let us discuss the "interference amplitude curve" at the zeroth 
ray approximation Vi . To avoid numerical complications, we shall 
compute only the interference of those rays the parameters | of 
which are Close to one another (see above). Fig. 4 gives an exam­
ple of an "interference amplitude curve9* V^(r). The amplitude 
curve V^(r) assumes the high values for r * r* , being infinite 
for r = r* exactly. On the descending part it has the point of 
inflexion. Beyond the first minimum the curve is oscillating. As 
it is seen from Fig. 4, the asymptotic formulas are unsuitable be­
tween the caustic and the point of inflexion. 

3.3.3. Amplitude curve by modified asymptotic expressions 

An example of such curve is shown in Fig. 4. The amplitude V(r) 
increases from very small values in the shadow and is finite at 
the caustic; it reaches its maximum and then decreases to zero. 

We are interested here in the amplitude V , i.e. in the inter­
ference between only such rays the parameters £ of which are clo­
se to one another. It is without loss of generality, because the 
large value of the amplitude is typical of such rays only (see the 
branches 2 and 3 in Fig. 3). The field of the third ray(the,branch 
1 in Fig. 3) is only additional at any epicentral distance in the 
vicinity of a caustic. 

It must be pointed out that the calculations performed on the 
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Fig. 4. Amplitude curves found by different method*. For details, see text. 

baaia of (23) are formal only. The influence of the model on the 

amplitude curve is given only by the constant factor connected 

with a caustic (see section 3.3.5). Using the formulas (23) we 

must bear in mind that some assumptions must be satisfied. In 

other words, the formulas (23) become invalid-, if: 

1. The point of observation does not lie in the wave zone. 
2. The frequency is not high. 
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3. More than two rays with parameters £ close to one another pass 

through a given epicentral distance. 

4. Just the two rays with parameters f close to one another pass 

through a given epicentral distance, but the variations of ve­

locity (along the rays) are not small. 

5. The parameters £ of two rays passing through a given epicen­

tral distance are no longer close to one another. Note that in 

this case the ray formulas can be used! 

3.3:4.^Comparison between the amplitude curves.§^Y^
n^^y asympto­

tic vand #modified #a8vmDtotic#formulas 

A comparison between V^ = V^(r) and V « V(r) has been made 

for many models of a medium with a constant velocity gradient and 

for different frequencies. Let us describe the typical Fig. 4. 

The point of inflexion of the curve V.(r) lies near the maxi­

mum of v*(r) • Between the maximum and zero of the curve V , the 

curves V. and V are very close to one another* The amplitude 

Vi(r) decreases only to the positive minimum and the V(r) de­

creases to zero. The amplitude curve V,(r) is intersected by the 

curve V(r) . In the vicinity of the point of intersection the 

curves V. , V can be connected without interruption. The zeroth 

value of the amplitude V(r) is incorrect. It shows that the mo­

dified asymptotic formulas are no longer valid. (The parameters 

are not near one another.) 

We can conclude: The asymptotic formulas are not suitable be­

tween the caustic and the point of inflexion of V^(r). The modi­

fied asymptotic formulas become invalid in such distances in which 

the amplitude V(r) decreases to zero. In the inverval of epicen­

tral distances between the maximum and zero of the V(r) the 

asymptotic formulas as well as the modified asymptotic ones can be 

used, but they are not absolutely correct. The accuracy has not 

been investigated quantitatively, because more exact calculations 

(numerical integrations of formal solution) have not been perfor­

med. 
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3.3.5. The influence of the parameters of the medium and of the 
frequency of eource on the amplitude curve 

For the sake of simplicity the amplitude curve (its parts are 
computed with the use of different formulaa) will be denoted by Y. 

The heavy line deacribes the amplitude V calculated by the 
modified asymptotic formulas. (In Fig. 5 this line id full, dashed 
and dot-and-dashed for three different velocity sections.) The 
thin line describe9 the amplitude V , calculated by the ray for­
mulaa. In those regions where both V and V were calculated, V 
is denoted by the dotted line. 

Let us discuss the influence of the parameters of the medium. 
The influence of the parametera on the V is given by the con-
atant value -3 r/3u += D , connected with the caustic. Not on-

'"/ i i u 

ly the value y(r*"), but also the maximum value and the position 
of this maximum ia determined by D . Small changes of velocity 
(see section 3.2 and Fig. 5) in the depth of 15 km (5.6; 5.8 or 
6.0 km/sec) yield large changed in the value of D (3750; 6041; 
12536) and, conaequently, large changee in the poaition of maxi-
mum of V and its magnitude (see Fig. 5). It must be pointed out 
that V repre8ent9 only the interference of the two rays in any 
epicentral distance. 

Let us discuss the influence of the frequency on the amplitude 
curve V . It ia clear from Fig. 6 that when the frequency ia in­
creasing, the maximum is shifted to the caustic and becomes higfrer. 
(The region in which the ray formulae are invalid i8 narrower.) 
Let us denote the epicentral distance in which the maximum of V 
lies by rM . The dependence of the quantity (r̂  - r*) on the 
frequency f will be discussed quantitatively. When using the 
formula (23c) and the fact that the Airy function v(t) has the 
maximum for t = -1.02 , we obtain 

rM * r* = C(l/f)2/3 , (3D 

where C * ? 1.02 a2/3 |-92r/3u2| # /2
1/3(2 * ) 2 / 3 . 

The quantity C is constant for a given model of a medium.The 
dependence (3D for a-̂  * 5.6 km/sec and for different values of 
D ie given in Fig. 7. The formula (3D can be written also as 
follows: 
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Fig. 5. Influence of change* of a Telocity-depth graphe on the amplitude 
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Fig. 6. Influenee of the frequaяey on the aшplituđe eurтe Y« 

r„ - r* + C ( l / f ) 2 / 3 , (32) 

i . e . similarly as in the case of the cr i t ical point /6/: 

rM - r* • B(r M /f) 1 / 2 , (33) 
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where 

dium. 

£ is the constant dependent on the parameters of the me-

Similarly as in the paper /6/, we can conclude that the posi­

tion of the caustic may be found by the application of (32) on the 

experimentally obtained amplitude curves for different frequencies. 

This process is schematically illustrated in Fig. 7 (in the small 

frame). The difference between the dependences (32), (33) is only 

small and therefore it can be hardly used for the distinction be­

tween the caustic and the critical points in the interpretations 

of seismic measurements. 

2% 

20Ì 

15 

n 

ľ~~ 0-200 
'0 5 ÎÕ 15 20 25 f(Hz) 

Fig. 7. (ru - r*) verßua írequвncy. For detailв, вee text. 

3.3.6. Model of medium with several caustics 

The model with constant velocity gradients given in Fig. 8 is 

interesting, because there are two caustics in that medium. The 

corresponding epicentral distances differ only very slightly rt * 
b
 59.173, r£ = 59.058 km. There are "left* turning points of the 

travel-time curve both in rf and rt 
well as the amplitude curve V(r) for 

. The travel-time curve, as 

f - 10 cps, are given in 
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the same picture (Fig. 8 ) . Since the points of reversal of the 
travel-time curve (denoted by 1 and 2 ) l i e at s l i g h t l y diffe­
rent epicentral d istances, the regions in which we use the modi-
f led asymptotic formulas overlap. 

Fig* 8, Amplitude curve (with two caustic*) for a complicated modal with 
etant velocity gradients. 

70 fŞпГ 

Fig* 9. Amplitude curve (with two caustics) for a complicated model with junHKf 
cue velocity gradients. 
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The velocity section with continuous velocity gradients, the 

corresponding amplitude curve V(r) for f - 10 cps and the 

schematic picture of the travel-time curve are given in Pig. 9. 

The illuminated zones of the two caustics overlap. At a decreased 

frequency the regions in which we used the modified asymptotic 

formulas can also overlap. 

We can conclude that the regions mentioned above overlap, when 

the frequency is small, and/or when the turning points connected 

with the caustics are close to one another. More than two rays 

with slightly different parameters ^ can pass through the point 

of observation in these cases; moreover, the quantity I *Q I c o u l d 

be small. In all the cases mentioned above the assumptions of our 

theory (see section 3*3.3.) are not fulfilled. The calculations, 

if they are performed, are formal only. (Nevertheless, the appro­

ximate information about the position of the amplitude-curve maxi­

ma could be of some importance!) It would be suitable to use some 

other method in these special cases. 

4. Conclusions 

The theoretical travel-time and amplitude curves have been stu­

died in this paper. 

The travel-time curves have been calculated by means of geome­

trical optics methods. Every caustic intersecting the surface is 

connected with the turning point of the travel-time curve. How­

ever, not every turning point is connected with the caustic gene­

rally. 

The amplitude V(r) of the vertical displacement component 

reaches large values in the vicinity of a caustic. The dependence 

of the amplitude V(r) on the epicentral distance (i.e. the am­

plitude curve) has been investigated for many mathematical models 

of media and for many frequencies of sources. Both the amplitude 

curve V(r) and the interference curve V*(r) given by the asym­

ptotic (ray) formulas are infinite at a caustic. There are some 

modified asymptotic formulas (23) for the amplitude V(r). 

The physical discussion of V(r) is presented as well as the 

comparison between the amplitude curves given by the asymptotic 

7i(r) and modified asymptotic V(r) formulas. 
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The amplitude 'V(r) increases from the very small value in the 

shadow zone, is finite at a caustic, reaches its maximum beyond 

the caustic and then decreases. With the distance from the caustic 

increasing, the modified asymptotic approximation cannot be iden­

tified with the ray one (for a given frequency). But, between the 

maximum and the first minimum of v the curves 'V(r) and V,(r) 

are close to one another. The modified asymptotic formulas can be 

used there as well as the asymptotic (ray) ones. The ray formulas 

are incorrect between the caustic and the point of inflexion of 

V,(r). In epicentral distances where the amplitude V(r) decrea­

ses to zero the modified asymptotic formulas become invalid. 

Fig. 5 shows the differences among the amplitude curves compu­

ted for different models of the medium. 

With the frequency increasing the amplitude curve is narrower 

and has a higher maximum in a smaller distance from the caustic. 

The frequency-dependence of the position of the maximum is similar 

to that in the case of a critical point. 

The results obtained in this paper could be used in studying 

the Earth's crust. But the method is also applicable e.g. to the 

seismic modelling. 

The author wishes to thank Dr. V. Cervertf for a number of valu­

able comments which helped him in writing this paper. 
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