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1970 ACTA UNIVERSITATIS CAROLINAE MATHEMATICA ET PHYSICA VOL.11

THE KINEMATIC AND DYNAMIC PROPERTIES OF SEISMIC WAVES
IN THE NEIGHBOURHOOD OF CAUSTICS

J. ZAHRADNIK

Geophysical Institute, Faculty of Mathematics and Physics, Charles
University, Prague

(Received 1 June 1970)

KINEMATICKE A DYNAMICKE VLASTNOSTI SEISMICKYCH VLN V OKOLI KAUSTIK. V préci
byly studovdny teoretické hodochrony a smplitudové kiivky refragovené viny P v o-

Byly politdny amplitudy v bodech, leficich na povrchu vertik4lnd nehmmogenni-
ho elastického prostiedi, ve kterém pisobi bodovy harmomicky zdroj. Bylo poufito
nejen paprskovych, ale i tzv. modifikovanjch asymptotickych vzorcd, dévajicich na
kaustice koneénou amplitudu. Byla provedena fada numerickjch vypoitd a porovnédny
vysledky, ziskané poufitim paprskovjch a modifikovenych vzored (obr. 4).

V prédci je diskutovdno, jJaky vliv mé na amplitudové kiivky v okoli keustik
frekvence zdroje a zména parametrt prostfedi. Bylo zjiZtdno, 3e s rostouci frek-
venci nebyvéd amplitudovd kiivke vyraznéjSiho maxima bli¥e u kaustiky (obr. 6).
Znany vliv malych zmin parametrd prost¥edi na tvar amplitudové kfivky demonstru-
Je obr. 5.

1. Introduction

Very strong waves, similar to those in the region of the criti-
cal point, are recorded in the neighbourhood of a caustic (deep
seismic sounding, seismic prospection etc.), but the physical cha-
racter of each of the two types of waves is rather different. Un-
like the criticel point caustics are not connected with any refle-
cting boundaries in the medium.

To avoid mistakes in the solution of an inverse problem of
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seismology (due to the false interpretation of the strong waves)
a theoretical study of kinematic and dynamic properties of body
seismic waves is necessary. We must solve the direct problem for
some mathematical models of medium and source. The theoretical
analysis of kinematic properties (e.g. using travel-time curves)
is simpler, but not sufficient. Therefore, the study of dynamic
parameters, such as amplitudes, periods, amplitude and phase spe-
ctra, theoretical seismograms, etc., is very useful.

Very detailed analysis of the neighbourhood of the critical
point has been given, for instance, by V. Cerveny /6/, but, so far
as I know, similar analysis for the caustic has not been carried
out up to this time. Only R. Sato /16/ studied special case of SH
waves in the inhomogeneous sphere and H. Bremmer /4/ dealt with an
electromagnetic case.

So-called formal solutions for components of the displacement
vector are unsuitable for further physical discussion. Therefore,
asymptotic solutions for high frequencies of harmonic source are
usually looked for. According to the asymptotic formulas, the am-
plitudes of displacement components reach infinite values at a
caustic. This result following from the ray theory is obviously
incorrect, but it is approximately in agreement with high recorded
amplitudes. :

There are some so=-called modified asymptotic methods giving a
finite value for the amplitude at a caustic. We shall deal with
these methods (geometrical method, method of uniform asymptotic
expansion, integral approximation of the third order) in Chapter 2.

I have not yet seen any numerical calculations and physical
discussions materialized on the basis of modified asymptotic me-
thods in literature.

The aim of the present paper is to perform (Chapter 3) a physi-
cal discussion of amplitude curves in the neighbourtood of a cau-
stic. We shall apply one of the modified asymptotic methods and
compute the amplitudes of displacement component in the region of
caustic for many different models of medium and frequencies of
source. We shall also compare these results with those obtained on
the basis of asymptotic ray methods.

The influence of changes of paremeters of the medium as well as
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of the frequencies of the source upon the amplitude curve will be
investigated. At the end of Chapter 3 we shall consider briefly
the more complicated models with several caustics.

2. Formulation and analysig of the problem

The first part of the Chapter will deal with the relation be-
tween the equation of motion and the wave equation in the inhomo-
geneous medium. Further, an analysis will be given of the asympto-
tic solution of the wave equation for a given medium, source and
type of waves. Relations between several asymptotic solutions, re-
striction of their validity and accurate definition of the caustic
will be discussed. Solutions which are valid in the neighbourhood
of caustics will be presented.

Let us start from the equatioh of motion for inhomogeneous,per-
fectly elastic and isotropic medium, which is derived in the infi-
nitesimal theory of elasticity. S

The medium is characterised by Lame ‘s parameters A, a and
the density ¢ . In general, these quantities are dependent on co-
ordinatés. Let us suppose that body forces are negligible. Let
there be a source of harmonic elastic waves in the medium. The mo-
del of the medium and the source will be defined precisely in sec-

tion 2.2.

In the special case of a homogeneous medium ( A, n, § are con-
stant) the equation of motion describes the motion of two types of
wave fronts. Let us denote velocities of these fronte 8p , &g .
With the wave front moving with the velocity ap (P waves) the
purely longitudinal motion is connected. The so-called S-waves are
purely transversal. Therefore, the equation of motion can be sub-
stituted by an equivalent system of two wave equations for scalar
and vector potentials ¢, Ty’ . We obtain: '

8y = (1/a2)@2¢9/0t2) , AT = (1/a2)(2F/0t?) (1)
ap= ((Av20/7¢ ,  sg= (@R (1a)
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T = grady + rotfy’ , (1b)

where "A" 1is the Laplace operator, t the time, U the vector
of displacement.

In the case of inhomogeneous medium, the situation is more com-
plicated. It becomes simpler for high frequencies of harmonic
source. Then two types of wave fronts are propagated with the ve-
locities ap , ag , given by formulas (la), in which A, &,¢@
are the functions of coordinates. We say that P-waves and S-waves
are propagated in the medium, But, the P-waves are not purely lon-
gitudinal (the vector d has also transversal component, i.e. the
component tangent to the wave front) and the S-waves are not pure-
ly transversal /7/. Thus, for an inhomogeneous medium we can con-
clude: The system (1) of wave equations is not equivalent to the
equation of motion, not even for high frequencies.

It can be shown that with some additional pre=requisites ful-
filled the P-waves can be described by the wave equation only.
What these "additional pre-requisites*® are will be explained in
section 2.5.1.

In all the paper, we shall deal with the P-waves only. Let the
P-waves be fully described by the wave equation for scalar poten-
tial. The time dependence will be given by factor exp(-iwt). Let
us introduce the potential  , which is not dependent on the time,
bv the formulas: ’

A‘f‘*kz}P =0 , (2)
¥ = (grad ¢) exp(-iwt) (3)

where wr= 2T f 1is the angular frequency of the source, f the
frequency, k = w/a the wave number. The velocity ap » which is
denoted by a as well as the potential y are functions of coor-
dinates.

To use the equation (2) for the study of P-waves in the case of
a given medium means to find a solution which would satisfy the
equation (2), the source conditions, the conditions at infinity or
some other conditions., The solution, we are looking for, can be
written in two different forms: a) Integral solution (the so-cal-
led formal solution /3, § 24/, /15, Chapter 3/, which is inconve-
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nient for physical discussion and, therefore,. its asymptotic ex-
pression must be found; b) Asymptotic solution in the form of ray

series /1/, /2/.

2.2._Model of medium and_source; type of waves_

We shall define the model of the medium similarly as in /13/.
The isotropic perfectly elastic medium is composed of a system of
inhomogeneous planparallel layers located on a homogeneous half-
space. (The system of the layers and the homogeneous half-space
will be often called inhomogeneous half-space.)

This model is applicable for the Earth’s crust studies at small
epicentral distances at which the curvature of the Earth is negli-
gible.

Let us assume that the velocity a ,(a = aP),-of compressional
waves is the function of the depth only. The derivative of the ve-
locity is continuous or discontinuous (discontinuity of second or-
der) on the boundaries of layers but the velocity is always conti-
nuous. There are not any reflecting boundaries (except the surface
of the inhomogeneous half-space) in the medium. We suppose that
the chariges of velocity are small in the whole medium except the
surface (discontinuity of first order) and those boundaries which
are discontinuities of second order.

We introduce the cylindrical coordinates r , z ,nA by putting
the surface of the inhomogeneous half-space in the plane 2z = 0
and orientating the axis 2 towards the medium; so the depth is
given by the z-coordinate. The origin of the coordinate system can
be chosen at an arbitrary point of the surface.

?:?:?: !odel of source

e00es 0000000000

The point source is located on the z-axis in a thin homogeneous
layer. The depth of the source and the thickness ho of the homo-
geneous layer are assumed to be small. Only a spherical harmonie
P-wave is emitted from the source. For the potential in the thin
homogeneocus layer we can write:
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where kg = w/ay , w 1s the angular frequency (wr—>c0; see sec-

tion 2.3), a; the velocity of P-waves near the surface of the me-
dium, Ro the distance between the source and the receiver located
in the homogeneous layer.

In this paper we shall often use the ray conceptions valid only
for high frequencies, Let 'Vl represent the angle between the z-
axis and an arbitrary ray at the source. Not only ‘Pl » but also
the quantities u = ain‘yl y Or f = koeinlfl will be called pa-
rameters of the ray. Unlike 9/1 and u the parameter f is also
dependent on frequency.

Neither kinematic nor dynamic quantities are dependent on the

coordinate n%. The source lies on the z-axis, therefore the coor-
dinate r of the receiver (point of observation) represent the

epicentral distance.

2.2,3. Type of waves

. eeecsvesoe

In the model described above the refracted P-wave can exist.Any
ray of this wave reaches the depth in which the velocity is such
as to make the ray form an angle 7[/2 with the vertical,The de-
scending and ascending parts of the ray are symmetric with each
other.

approximation

000000000

For the potential of spherical waves in the neighbourhood of
the source we have

$(r,z) = exp (1 kgRyI/R, .

Let us express the spherical wave as a superposition of plane wa-
ves /3, §§ 18, 19/. When we use the Hankel function of zero order
we obtain for the potential of the spherical wave in the homogene=

ous neighbourhood of source
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m/2=-i00
Y(z,r) = (iky/2) j Hél)(kor 8in y,)exp(ikycos y;.2z)siny, dy, .
<T/2+1ic0

After substitution § = kysiny, we have
+00

@(r,z) = (i/Z)J HED (¢ mexp(1 foa).( f/800af, (5

- 00

where (80 = ng - §2 . The potential of the spherical wave on the
lower boundary of the thin layer is given by the formula (5), in

which 2z = ho——+0 .
The potential at any point of the inhomogeneous medium may be
expressed by
+00

glr,2) = (1/2) S B § ) £0a,f) (f/Bo)af (6)

-0

The expression for the f(z,g ) was found by L.M. Brekhovskikh
/3, §§ 16, 38/. For the case of 2z = O the expression yields:

zm‘

£(0,§) = 1 + exp {1(- T2 + 2 3 A(z) dz)} , (7
0

where /A(z) = \i%(z) - § 2 | k(z) = w/a(z) , z, 1s the depth
for which ,6(zm) = 0 . In the ray conception, it is a depth at
which the mininum of the ray lies. The first term of (7) gives the
direct wave propagating inside the homogeneous layer. Here we are
not interested in this wave. The second term gives, after a sub-
stitution into (6), the refracted wave, For the potential of the
refracted P-wave, at the point lying on the surface, we obtain the

formal solution
+00 Zm

P(r) = (i/2) J Hél)(gr)exp {1(-7I/2 + 2J ﬂ(z)dz)}(f/po)dg. (8)

-0

Note 1: In our simplification we shall study neither waves refle-
cted from the surface in proximity of a source (pP-wave) nor the
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multiple reflections (PP, PPP, ...).

Let us pass from the formal solution (8) to the asymptotic so-
lution. For 5 r> 1 1i.e. in the so-called wave zone we can re-
place the Hankel function Hél) by its asymptotic expression.The-
refore

400
g(r) ~ (1/2Tr) exp(i T/4) J exp{iw(r,S)} (f?/ﬂo) d§ , (9)
-0
Zm
w(r,§)=-'ﬂ'/2+2x p(z) dz + gr. (9a)
0

It 1s~poss'ib1e to write the phase function w in the form w(x‘,f)
= wT(r, {) , where w is the angular frequency, ¥ 1is some time
function (section 2.3.3.). Asymptotic relations for the potential
(9) may be simply written for high frequencies. The integration
path of the steepest descent will pass through the saddle point
§01 , for which

(9w/8§ ) f01 =0 . (10)

Note 2: Generally more than one root can satisfy the equation
(10). In the case of two saddle points fOl’ §02 the integra-
tion path consists of two branches passing through §01 and

§o2°

For a high frequency and for one saddle point ;01 the method
of the steepest descent (integral approximation of second order)
yields

Y(r,0) = Y(r) ~(1/ molwsllcotg y,cos \V;) exp(i'OI) , (11)

where the partial derivative with respect to f is denoted by the
prime and where Woy = w(r, §01). By rearrangement we obtain:

ar/gxyj ) exp(iwg,) =

¢(r) = (1/ Vr cotg ;.
(12)

= (1/L) exp (L w?T) .
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2.3.2. Ray approximation

.
LI R ) eee0soscoe

By the ray theory /1-2/, the solution of the equation (2) is
given in the form of a ray series.

Let us deal with the so-celled zeroth approximation only. For-
mulas for the potential ¢ in our model of medium have been deri-
ved by J. Jansky /13/. The potential at the point lying on the
surface (i.e. for 2z = 0) should be written:

P(r,0,w)x ¥ =Kexp (10), (13)
A=1/L, VL= Vr cotgy, |ar/9«y1|1 , (13a)
6= we. (13b)

The quantity L is the spreading function. Its square is defined
as the ratio of the cross-sectional area of the ray tube at the
point under study and the cross-sectional area of the same ray
tube on the surface of the unit sphere around the source. The wa-
ve motion, propagating along the ray, passes from the source to
the point of observations at the time T . In other words, T is
the "arrival time".

Note 1: The ray method may be applied for the equation of motion
as well as for the equation (2), But, in the inhomogeneous medium,
the P-waves are purely longitudinal in the zeroth approximation
only.

2.3.3. Comparison between integral and ray approximation

. 90 02000000000 00000000000000000000000000c0000e00s0s00

We obtain the same formulas for the amplitude at the point of
the surface as from (12) and (13), There is a little difference
between the phases of (12) and those of (13). Using /3, § 38.3/
we can write ¥ = T - T /2w . Here we are interested only in
high frequencies and therefore T = T .

Let us give the geometrical interpretation of the derivatives
of the phase function w .

wy = w'(r,f o) =0 , l.e. r= r(§ o) > (34)
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Zn
where r(§) is given by: r(f) = =0(-T/2 + 2j (J(Z)dz)/af .
0

The equation (14" can serve us for the determination of the epi-
central distance, when the parameter fo of the ray is known.

For z # 0 :

wé = w'(r,z,§o) =0 i.e. r = r(z,§o) . (14a)

(14a) is the equation of the ray. Similarly:

wg = w"(fo)

and for z ¥ 0 :

0 i.e. -(d r(§)/9§)§0 =0, (15)

”
wy = wo(z,{)
For the third derivative:

oW (zafO) = -(azr(z,§ )/9§2)§0 .

0 i.e. —(91%2,5)/95)60 =0 . (15a)

Yo

We can conclude that for one or more saddle points the inte-
gral approximation of the second order is equivalent to the ze-
roth ray approximation for one or more rays. We say that ®"the

fields of individual rays" are given by asymptotic formulas. The
quantity 7 ,(? = ¥ ) represents the time required by the wave

motion to pass along the ray from the source to the point of ob-
servation, "the arrival time".

It is clear from (11), (12) that the asymptotic formulas lose
their physical sense for

"61 = w"(§01) £0 orfor L2O0O. (16)

In the case of wg, = 0 , the equation (10) has two roots £o1 »
o + for which woy = w62 = 0 . Using (14) we can write r =

= rf5)) = r{gp).
The first and the second derivatives of w equal to zero si-
multaneously provided § o1° § 02 ° Let us denote this singular
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point by §, . We can write for this point wy = wy =0, i.e.
(14) and (15), when §01 = 502 . From (14) we obtain

r=r(fy) = r*. (17)

Note 1: The prime denotes the partial derivative with respect to
£ (w 1is also a function of r ), and therefore both wé # 0 and

'6 = 0 hold ) when r # r* (i.e. §01 # § 02).

What is the meaning of the point r = r*? Let us deal with mo-
re general formulas (14a), (15a). Eliminating EO from both
equations we obtain the implicit equation of the plane curve:

F(r,z) = 0, (18)

Since (14a) is the equation of the ray, (18) is the equation of
the envelope of the ray, so-called caustic. The quantity r = r*
is the coordinate of the point 1lying on the caustic and on the
surface simultaneously. We can say that r* denotes the epicen-
tral distance, in which the caustic intersects the surface.

A caustic separates the shadow and the illuminated zone. In
the ray conception there is no ray penetrating into the shadow.
In any point of the illuminated region, there are two rays cor-
responding to two saddle points 501 , §02 . If the point of
observation lies near the caustic, the parametexfa 501 » 602 of
rays passing through this point approach the mean value fO‘ Then
for = {oz =fy for r = r* . Only one ray passes through r = r*
and is the tangent to the caustic there.

Another definition of a caustic may be introduced: The caustic
points are those in which L = O ., Both definitions of a caustic
are equivalent in our case of a vertically inhomogeneous medium.

We can conclude that in the neighbourhood of a caustic, the
asymptotic (ray or integral) formulas give an infinite value of
the potential. As regards the ray formulas, we have proved it for
the zeroth approximation only, but it is a common property for
all the terms of the ray series, as shown in /11/,

We shall describe three methods giving the so-called modified
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asymptotic solutions of the wave equation, which are finite at a
caustic, For individual methods see more details in /3-4/, /10-
=12/, /14/.

2.5.1. Geometrical method

This method is a modification of the ray theory for the neigh-
bourhood of a caustic. The method has been used not only for a
wave equation /10/, but also for an equation of motion /11/. The
assumption of a high frequency is necessary. Many quantities used
in the method can be interpreted geometrically (radii of curvatu-
re of the ray and of the caustic, etc.). The solution is valid in
the neighbourhood of a caustic only. For an increasing frequency
it can be 1identified with the ray solution, However, increasing
the distance from the caustic, the solution cannot be transformed
into a ray one. The solution can be expressed in two different
forms: in the form of Airy function or in the form of the field
of two rays (one ray approaching and the other leaving the cau-
stic).

It has been shown by T.B. Yanovskaya /12/ that: "if the phase
of the approaching wave at a large distance from the caustic is
0, then in the vicinity of the caustic it changes, becoming J7/12
on the caustic, At the point where the ray is a tangent to the
caustic the phase Jjumps to - /12 and at large distances from
the caustic it becomes -J/2."

Let us deal with the geometrical method applied to the equa-
tion of motion. As was shown in /11/, the displacement vector U
of the P-wave has not only the longitudinal component, parallel
to the caustic and proportional to UJ1/6 , but also a transver-
sal component, perpendicular to the caustic and proportional to
03’1/6. We can say that in the neighbourhood of a caustic the P-
wave is not purely longitudinal in general. In this paper we are
interested in high frequencies only. Therefore, in the neighbour-
hood of a caustic the transversal component of the P-wave is ne-
gligible in comparison with a longitudinal one (if we are not in-
terested especially in the displacement component, perpendicular
to the caustic).

We have also another reason for not considering the transver-
sal component: The same expressions for longitudinal part of the
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P-wave field (in the vicinity of the caustic) has been derived
not only from the equation of motion, but also from the wave
equation using the geometrical method (acoustical case /10/).

Therefore, for high frequencies we can study the neighbour-
hood of a caustic with sufficient accuracy when using the wave
equation (2).

The remaining part of this paper is devoted to the integral
methods.
2.5.2. Integral

pproximation of the third order

. oo S0 0000000000000 000000000 00000

For the potential of the refracted P-wave in the wave zone, we
have found the integral expression (9). In the neighbourhood of a
caustic (in the illuminated zone) the phase function w has two
saddle points f o1 ¢ §'02 . A eplitting of the integration con-
tour into two branches passing through the saddle points is possi-
ble. But those two contributions (fields of both rays) are no
longer independent, when the saddle points are very close to one
another /4/. The method which can be used in that case will be
described below.

The point f(),(wa = 0) is the saddle point (wé = 0) only when
r = r* (see Note 1, section 2.4.). For the points lying near the
caustic, the phase function w can be expressed by the first
terms of Taylor series:

wir, £) = wo +wg (€ - E) ¢ (' /6) (§- £)° . 9
Particularly for r = r* , it holds that wy = O , therefore:

wr,g) = wy + (Wl /6)CE - §)3 . (20)

Note 1: Such an approximation in which the exponent is expanded
in a Taylor series up to the third-order term will be called in-
tegral approximation of the third order. It is permitted only
when ‘wé"l is not very small. The case of small |wd"| is typi-
cal of a contact of two caustics. It will be briefly discussed in
the section 3.3.6.

Let us substitute the e xpansion into (9). The function V?j’ﬂo
varies only slightly in the neighbourhvod of a caustic, when the
rays are passing through a medium in which the changes of veloci-
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ty are small as compared with the wave-=length. Then the function
Vgﬁ//3o will be replaced by the constant value (V_ﬂ/{3°)f .
The new integration path will pass through f o+ We put
" - 3 2 3
wo(§ - §03 + (wy /6) pg §O) st+ s’/3
s = 2_1/3‘ w3‘|1/3(§ - éo) is the new integration vari-
abls, and t 1is given by:

where

t=t2M3 (r o) ) [wg' |3 (21)

We choose the signs "+" or "-" for w8'> 0 or wgl< 0O re-
spectively.

If we take into account that u = siny, , u* = §°/k° and
introduce the Airy function:

v(t) = QNT) X cos (st + 83/3) as , (22)

- 0

we obtsin /3, § 38.4/:

¢(r) = A(r) exp (18) , (23)
E(r) = X(r*) v(t)/v(0) , (23a)
R(er) = 25/8[ e+ (1 - vy ] -l/zk 1/8 [-32c/3 w2 I-l*/3v(0),(23b)
t=t23 oo 33 |-3%/00° ,'1:3 (23¢)
P = wir*g)) + T4 = wT¥- T/ (23d)
In the above expressions kj = 60781 is the wave number in the

neighbourhood of a surface of the medium; the choice of the sign
in (23¢) is the same as in (21), T%* is the "arrival time" at the
epicentral distance r* ,

The formulas (23) give the so-called modified asymptotic solu-
tion which was looked for. It holds not only for r = r¥ but al-
so in some neighbourhood of a caustic. It remains finite at a
caustic as well. Neither for high frequencies nor for larger di-
stances from the caustic can the expressions (23) be transformed
into the ray ones. The formulas (23) are not valid for larger di-
stances from the caustic.
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The solution (23) is qualitatively similar to that given by
geometrical method, but the formulas (23) are more suitable for
numerical calculations.

2.5.3. Method of uniform asymptotic expansion

0000000000000 0000000000000 000000000000

The method of uniform asymptotic expansion is an integral me-
thod, based on the asymptotic expansicn of an integral similar to
(9). It looks for a solution valid not only at a caustic and in
the neighbourhood of it, but also at larger distances from it. At
larger distances the method gives the same result as the ray the-
ory for the fixed frequency.

Such a solution /5/, /14/ has the form of the sum of two terms
containing the Airy function and its derivative. In the vicinity
of a caustic, the term with the derivative is negligible; we ob-
tain the formulas (23). It is important that the coefficients at
Airy function and at its derivative depend on the position of the
point of observation. This is an advantage of this method in com-
parison with the integral approximation of the third order where
the coefficient was constant.

J. Kinematic andd dynamic properties of refracted wave in the

neighbourhood of a caustic

In this chapter the kinematic and dynamic quantities which are
necessary for the construction of the travel-time and amplitude-
distance curve, as well as the method of numerical computations
will be described. The formulas and the results of numerical com-
putations will be discussed from a physical point of view in the
second part of the chapter. The properties of the travel-time and
amplitude-distance curves in the vicinity of a caustic will be
investigated in detail., We shall compare the amplitude curves
computed on the basis of the asymptotic and the modified asympto-
tic formulas.
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3.1.1. Kinematic quantities

L]
LX) e 0csecv0000000000

Here we are interested in the computation of the functions
T= T¢), r=r@), or/ , ?r/3E%. (24)

We shall also describe a procedure of finding the quantities g o’
r¥

For the type under study, that of a layered medium, the P-wave
velocity is dependent on the depth only. The dependence of the ve-
locity on the depth will be called velocity section. The two dif-
ferent typés of velocity sections are used:

1) The so-called constant-velocity gradients: The dependence is
linear inside the 1layers there are discontinuities of the second
order on the boundaries.

2) The so-called continuous velocity gradients: Both the velocity
and its derivative are continuous through boundaries. The formulas
for both types of velocity sections and the method of computation
of the first three functions (24) are described in the paper /13/.
Ae regards the second derivative ( 92r/3€2) , we need it only
for g = f’o « To find it, the numerical differentiation can be
used.

The quantity f 0 is the parameter of the ray, tangent to the
caustic in the point r¥* ., Such a ray will be called "the boundary
ray, connected with a caustic®. The §O is given by (15), i.e.

(3r/3§ )50 =0. (25)

In a layered medium, the expression for the derivative has a form

of a sum. In solving the equation (25) the numerical method (e.g.

method of halving an interval) must be used. When the parametergo
is known, the epicentral distance r* can be determined by inser-
ting §0 into (14); (r* = r(€q) ).

Dynamic quantities

The dynamic quantities of our interest are:
a) Amplitude X and phase © of the potential at the zeroth ap-

proximation of the ray theory (see (13) ).
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b) Amplitude X; and phase &; of the potential of an interfe-
rence wave at the zeroth approximation of the ray theory (see

belo‘)o )
¢) Amplitude X and phase 8 of the potential given by modified

asymptotic formulas (23).
The zeroth approximation for the potential ?i of an interfe-
rence wave 1is given by:

T4(r) = K, (r) exp (15 ,(r) ), (26)

I:I. = \/I"{ + Ig + lexzcoa (Fl - '9'2)' , (26a)
Fi = tan~! (Klain?I + Izain'é'z)/(xlcpa'é'l + Izcoa?'z),QGb)

where X, , Iz , ?'1 y Up are the amplitudes and the phases of
the potential of individual rays, arriving at an epicentral di-
stance r . The amplitudes . Il ’ Iz are given by (13). However,
the formula (13) cannot be used for phases, because there is a
caustic in the medium. In the vicinity of a caustic the phase is
oscillating (section 2.5,1.). At greater distances from a caustic
there is the phase shift (- /2) between the “approaching”™ and the
"leaving” rays. Therefore, the phasea are given by

?1 = w’c‘l , 'g'z = ay’t’z - tre, (26¢)

where the arrival times are denoted by T, , T, for the ap-
proaching and the leaving rays respectively. (By "leaving ray” we
mean the ray which has touched the caustic.)

It is also possible to use the formulas (26) in the immediate
neighbourhood of a caustic, but expressions for X, , X, , ¥, ,
'9'2 are very inaccurate there.

The values of v(t) have been found by numerical interpolation
(gee Tables of v(t) 1in /3/, /17/).

The conversion coefficient is given by
5= 2m2(m2.-'2u2)\/1 - /[(nz- 2u?)? + 4uZVm2- uz‘ll - u? ], (27)

where u 1is the parameter of the ray (u = sin \}'1) y m the ratio
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of compressional velocity to the shear velocity near the surface
of the medium.

3.1.3. Short description of programme for numerical calculations

.
. © 00 0000000000900 00000000000000vtcs00000000000CCOILILOIIOROIEOTEOIROOIEOIOTS

Epicentral distance, arrival time, derivative of the distances
and the amplitude A(r) are computed with the constant step in the
parameter u . As soon as the caustic is found, the quantities
corresponding to the so-called "boundary ray connected with a cau-
stic" are calculated (r¥* ,T¥*, (3%r/9 uz)ux- , A(r*) ). Beyond the
caustic not only A(r) but also A(r) (for the fixed frequency)
are computed, Moreover, the amplitude A(r) for the shadow zone

(where the argument t > 0) is computed with a constant step in
the distance.

In the second version of the programme the amplitude Ki(r) of
the interference wave is computed, too.

In the third version the amplitudes Ii(r) ’ A(r) are computed
for the given system of frequencies.

All the numerical calculations have been performed on the MINSK
22 computer (Numerical Centre, Charles University).

3.2._Travel-time_curve_of refracted wave_in the neighbourhood of

caustic

The travel-time curve is given by parametric equations:

T

z¢) , (28)

T r(§) . (29)
Evefy caustic is connected with the turning point (the point of
reversal) of the travel-time curve, but the inverse statement is
not valid generally.

Only in the models with the continuous velocity gradients,every
turning point of the travel-time curve is connected with a caustic.

In Fig. 1 there are three different velocity sections and parts
of corresponding travel-time curves with one (the curve 1) or two
points of reversal (the curves 2 and 3). There are also schematic
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illustrations of the travel-time curves in the same picture. As
can be seen from Fig. 1, the travel-time curve is very sensitive
to small changes in the velocity section, but the position of the
caustic varies only slightly.

Fig. 2 shows the travel-time curve for a more complicated model
of medium with two caustics (at epicentral distances r = 59.058,

r, = 59.173 km).
The travel-time curves given in other figures are only schema-
tic.

T - . wm Gms e s s s e W e WS e e w wm e

caustic

The amplitude curve can be defined as the dependence of the am-
plitude of the vertical displacement component (denoted generally
by V or especially by V, Vi, V ) on the epicentral distance r .
Therefore, in the next section, we shall briefly discuss the rela-
tion between the potential and the displacement components.

3.3.1. Conversion coefficient

000000 evevoecreerceno

When using (3) the expressions for the displacement components
can be derived from the potential. Those expressions are valid on-
ly at internal points of the medium, but not on the surface. The-
refore, the so-called conversion coefficients are used.

By multiplying the amplitude A(r) of potential at any point
of surface by the corresponding conversion coefficient (given by
(27) ) we obtain the amplitude V(r) of the vertical displacement
component. In the vicinity of a caustic the coefficient J(r) is
approximately constant, i.e.

Fr) & J(r¥) . (30)

Amplitude curve by asymptotic ray expressions

The amplitude curves computed on the basis of the asymptotic
(ray) formulas are given in /13/. Neither the amplitude curve
¥ = V(r) , nor the travel-time curve form a one-value functjon in
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the vicinity of a caustic. They have several branches there.

The travel-time and amplitude curves in Fig. 4 have two bran-
ches, because the two rays are passing through any point of illu-
minated region, The two parameters g close to one another cor-
respond to the two rays in the vicinity of a caustic.

The curves in Fig. 3 have three branches (1,2,3). The parame-
ters of three rays passing through any point are denoted by fl ’
fz , §3 . Only two parameters §2 , §3 are close to one an-
other in the vicinity of a caustic,

The amplitude V given by the asymptotic formulas (13) assumes
high values in the vicinity of a caustic (see Fig. 3 and Fig. 4).
It is necessary to investigate in which region the asymptotic for-
mulas are invalid.

Let us discuss the "interference amplitude curve"” at the zeroth
ray approximation 71 . To avoid numerical complications, we shall
compute only the interference of those rays the parameters f of
which are tlose to one another (see above). Pig. 4 gives an exam-
ple of an “interference amplitude curve® Vi(r). The amplitude
curve Vi(r) assumes the high values for r # r* , being infinite
for r = r*¥ ‘exactly. On the descending part it has the point of
inflexion, Beyond the first minimum the curve is 6ac111ating. As
it is seen from Fig. 4, the asymptotic formulas are unsuitable be-
tween the caustic and the point of inflexion,

3.3.3. Amplitude curve by modified asymptotic expressions

000000000000 00000000000000000000000000000000000000ce

An example of such curve is shown in Fig. 4. The amplitudeAV(r)
increases from very small values in the shadow and is finite at
the caustic; it reaches its maximum and then decreases to zero.

We are interested here in the amplitude ¥V, i.e. in the inter-
ference between only such rays the parameters § of which are clo-
se to one another. It is without loss of generality, because the
large value of the amplitude is typical of such rays only (see the
branches 2 and 3 in Fig. 3). The field of the third ray(the branch
1 in Fig. 3) is only additional at any epicentral distance in the
vicinity of a caustic.

It must be pointed out that the calculations performed on the
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Fige 3¢ Ray amplitude curve for a model with a narrow loop of travel-time curve.

Fige 4. Amplitude curves foumd by different methods. For details, see text.

basis of (23) are formal only. The influence of the model on the
amplitude curve is given only by the constant factor connected
with a caustic (see section 3.3.5). Using the formulas (23) we
must bear in mind that some assumptions must be satisfied. In
other words, the formulas (23) become invalid, if:

1. The point of observation does not lie in the wave zone.

2. The frequency is not high.
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3. More than two rays with parameters f clase to one another pass
through a given epicentral distance.

4, Just the two rays with parameters f close to one another pass
through a given epicentral distance, but the variations of ve-
locity (along the rays) are not small.

5. The paremeters f of two rays passing through a given epicen-
tral distance are no longer close to one another. Note that in
this case the ray formulas can be used!

3:3:4; Comparison between the amplitude curves given by asympto-
tic end modified asymptotic formulas

A comparison between Vi = Vi(r) and V = V(r) has been made
for many models of a medium with a constant velocity gradient and
for different frequencies. Let us describe the typical Fig. 4.

The point of inflexion of the curve V (r) 1lies near the maxi-
mum of V(r) . Between the maximum and zero of the curve V » the
curves V "and V are very close to one another. The anplitudo
V (r) decreaeea only to the positive minimum and the V(r) de-
creaeea to zero. The amplitude curve V (r) is intersected by the
curve V(r) . In the vicinity of the point of intersection the
curves V1 ,'7 can be connected without interruption. The zeroth
value of the amplitude V(r) 1is incorrect. It shows that the mo-
dified asymptotic formulas are no longer valid. (The parameters
are not near one another.)

We can conclude: The asymptotic formulas are not suitable be-
tween the caustic and the point of inflexion of vi(r). The modi-
fied asymptotic formulas become invalid in such distances in which
the amplitude V(r) decreases to zero. In the inverval of epicen-
tral distances between the maximum and zero of the V(r) the
asymptotic formulas as well as the modified asymptotic ones can be
used, but they are not absolutely correct. The accuracy has not
been investigated quantitatively, because more exact calculations
(numerical integrations of formal solution) have not been perfor-
med.
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3.3.5. The influence of the parameters of the medium and of the
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frequency of source on the amplitude curve

For the sake of siaplicity the amplitude curve (its parts are
computed with the use of different formulas) will be denoted by V.

The heavy line describes the amplitude V calculated by the
modified asymptotic formulas. (In Fig. 5 this line is full, dashed
and dot-and-dashed for three different velocity sections.) The
thin line describes the amplitude V , calculated by the ray for-
mulas. In those regions where both V and V were calculated, v
is denoted by the dotted 1line.

Let us discuss the influence of the parameters of the medium.
The influence of the parameters on the V 1is given by the con-
stant value |-azr/au2| += D, connected with the caustic. Not on-
ly the value ?(r*), but also the maximum value and the position
of this maximum is determined by D . Small changes of velocity
(see section 3.2 and Fig. 5) in the depth of 15 km (5.6; 5.8 or
6.0 km/sec) yield large changes in the value of D (3750; 6041;
12536) and, consequently, large changes in the position of maxi-
mum of V and its magnitude (see Fig. 5). It must be pointed out
that V represents only the interference of the two rays in any
epicentral distance.

Let us discuss the influence of the frequency on the amplitude
curve V . It is clear from Fig. 6 that when the frequency is in-
creasing, the maximum is shifted to the caustic and becomes higher.
(The region in which the ray formulas are invalid is narrower.)
Let us denote the epicentral distance in which the maximum of v
lies by r, . The dependence of the quantity (ru - r*) on the
frequency f will be discussed quantitatively. When using the
formula (23c) and the fact that the Airy function v(t) has the
maximum for t = -1.02 , we obtain

g - r* = c/n?/3 (31)

1/3

where C = 3 1.02 32/3 I -3%r/3u® /21/3(275)2/3

The quantity C 1is constant for a given model of a medium.The
dependence (31) for a; = 5.6 km/sec and for different values of
D 1is given in Fig. 7. The formula (31) can be written also as
follows:
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Fig. 6. Influence of the frequemcy on the amplitude curve V.

y = r* + C(l/f)z/B', (32)
li.e. similarly as in the case of the critical point /6/:

ry = r*+ E(r'l/’f)l/2 ’ (33)
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where E 1is the constant dependent on the parameters of the me-
dium,

Similarly as in the paper /6/, we can conclude that the posi-
tion of the caustic may be found by the application of (32) on the
experimentally obtained amplitude curves for different frequencies.
This process is schematically illustrated in Fig. 7 (in the small
frame). The difference between the dependences (32), (33) is only
small and therefore it can be hardly used for the distinction be-
tween the caustic and the critical points in the interpretations
of seismic measurements.

25|
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Fig. 7. (rl - r*) versus frequency. For details, see text.

6. Model of medium with several caustics

L] © 0000000000000 00000000000000000

The model with constant velocity gradients given in Fig. 8 is
interesting, because there are two caustics in that medium. The
corresponding epicentral distances differ only very slightly r{ =
e 59.173, rg = 59,058 km. There are "left" -turning points of the
travel-time curve both in rf and rg « The travel-time curve, as

well as the amplitude curve V(r) for f = 10 cps, are given in
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the same picture (Fig. 8). Since the points of reversal of the
travel-time curve (denoted by 1 and 2 ) lie at slightly diffe-
rent epicentral distances, the regions in which we use the modi-
fied asymptotic formulas overlap.

f=10Hz

| , , : r/;/so'»:

0 0 20 "30 n r

Fig. 8, Amplitude curve (with two caustica) for a complicated model with Som-
stant velocity gradients..

Fig. 9, Amplitude curve (with two caustics) for a complicated model with gomtinu-
ous velocity gradients.
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The velocity section with continuous velocity gradients, the
corresponding amplitude curve V(r) for f = 10 cps and the
schematic picture of the travel-time curve are given in Fig. 9.
The illuminated zones of the two caustics overlap. At a decreased
frequency the regions in which we used the modified asymptotic
formulas can also overlap.

We can conclude that the regions mentioned above overlap, when
the frequency is small, and/or when the turning points connected
with the caustics are close to one another. More than two rays
with slightly different parameters f can pass through the point
of observation in these cases; moreover, the quantity I'g l could
be small. In all the cases mentioned above the assumptions of our
theory (see section 3.3.3.) are not fulfilled. The calculations,
if they are performed, are formal only. (Nevertheless, the appro-
ximate information about the position of the amplitude-curve maxi-
ma could be of some importance!) It would be suitable to use some

other method in these special cases.

4, Conclusions

The theoretical travel-time and amplitude curves have been stu-
died in this paper.

The travel-time curves have been calculated by means of geome-
trical optics methods. Every caustic intersecting the surface is
connected with the turning point of the travel-time curve. How-
ever, not every turning point is connected with the caustic gene-

rally.

The amplitude V(r) of the vertical displacement component
reaches large values in the vicinity of a caustic. The dependence
of the amplitude V(r) on the epicentral distance (i.e. the am-
plitude curve) has been investigated for many mathematical models
of media and for many frequehcies of sources. Both the amplitude
curve V(r) and the interference curve Vi(r) given by the asym-
ptotic (ray) formulas are infinite at a caustic. There are some
modified asymptotic formulas (23) for the amplitude V(r).

The physical discussion of ‘V(r) is presented as well as the
comparison between the amplitude curves given by the asymptotic
V;(r) and modified asymptotic V(r) formulas.
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The amplitude V(r) increases from the very small value in the
shadow zone, is finite at a caustic, reaches its maximum beyond
the caustic and then decreases. With the distance from the caustic
increaesing, the modified asymptotic approximation cannot be iden-
tified with the ray one (for a given frequency). But, between the
meximum and the first minimum of V the curves V(r) and Vi(r)
are close to one another. The modified asymptotic formulas can be
used there as well as the asymptotic (ray) ones. The ray formulas
are incorrect between the caustic and the point of inflexion of
Vi(r). In epicentral distances where the amplitude V(r) decrea-
ses to zero the modified asymptotic formulas become invalid.

Fig. 5 shows the differences among the amplitude curves compu-
ted for different models of the medium.

With the frequency increasing the amplitude curve is narrower
and has a higher maximum in a smaller distance from the caustic.
The frequency-dependence of the position of the maximum is similar
to that in the case of a critical point.

The results obtained in this paper could be used in studying
the Earth s crust. But the method is also applicable e.g. to the
seismic modelling. '

The author wishes to thank Dr. V. Cerveny for a number of valu=-
able comments which helped him in writing this paper.
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