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Regular Mappings of Groupoids 
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1 ° We shall usually write the binary operation of a groupoid multiplicatively. 
When using the other symbol of the binary operation, we put this symbol into 
brackets, e. g.: G(*)> H(O) e.t.c 

Let G be a groupoid and x e G. By the symbol Lx (Rx) we shall denote the 
mapping of the set G into G such that for every y e G, Lx (y) = xy (Rx (y) = yx). 

A groupoid G is called a groupoid with left (right) cancellation, if for every 
x € G the mapping Lx (Rx) is one — to — one. 

A groupoid G is called a groupoid with left (right) division, if for every x e G 
the mapping Lx (Rx) is onto G. 

A groupoid G is called a left (right) quasigroup, if for every xe G the mapping 
Lx (Rx) is a permutation of the set G (permutation is a mapping of a set into itself, 
which is one — to — one and onto the set). 

A groupoid, which is simultaneously with left and right cancellation (division), 
is called a groupoid with cancellation (division). 

A groupoid, which is simultaneously a left and right quasigroup, is called 
a quasigroup. 

2° Definition 1: Let G be a groupoid. A mapping A (Q) of the set G into G is 
called left (right) regular, if there is a mapping A* (Q*) such that for every x,y € G, 
Kxy) = r (x) . y (Q(xy) = x . Q*(y)). 

A mapping cp is called central regular, if there is a mapping <p* such that for 
every x, y c G, tp(x) .y= x . (p*(y). By the symbol AGWC shall denote the set of all 
left regular mappings of the groupoid Gand by AG the set of all possible mappings A* 
corresponding to the left regular mappings. Similarly introduce the symbols RG, 
RG, ®G, 01 

Lemma 1: Let G be a groupoid. Then the sets AG> AG> RG> RG> ®G, @G are 
semigroups with unit under the binary operation of composition of mappings. 
Proof: We shall prove the Lemma for AG, A G only. For the other cases the proof is 
similar. 
Let Ai, A2 c AG. Let AJ, A£ € AG be arbitrary mappings corresponding to the 
mappings Ai, A2. For every xy y e G, fafa(xy) -= fa(Xl(x). y) = X[Xl(x) . y. 
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Hence A1A2 e AG and X{X*2 e A*G Evidently 1G c AGy \G e A*G. 

Lemma 2: Let G be a groupoid and A e AG, Q e RGi <p e <PG. Then XLX= Lx*(X), 

XRX= RxX*, Q Rx= RQ*(x), Q LX= LXQ*, Rx<p = IVte), ^ (x ) = £.r<P* for every 
JC€ G . 

Proof: By Definition 1. 

Corollary: 1. Let G be a groupoid with left (right) division. Then all left (right) 
regular mappings of the groupoid G are onto G, 
2. Let G be a groupoid with cancellation. Then all central regular mappings of G 
are one — to — one. 
3. Let G be a quasigroup. Let A e AG, Q e RG, <p e <PG. Then the mappings A,* Q* , <p*. 
are uniquely determined and A, A*, Q, Q*, <p> <p* are permutations. 

Lemma 3: Let G be a groupoid and A € AG, Q e RG, <p€ 0G such that A*, Q*, <p* 
are mappings onto G. Let a, /?,y be arbitrary mappings such that <xA = f}g = <py= \G. 
Then also a € AG, ft * RG, y € &G. 

Proof: 1) Since A* is a mapping onto, there is a mapping 6 so that X*d = \G. For 
every JC, y e G we have A(jcy) = A*(JC) . y. Hence OLX(6(X) . y) = d(x) . y = OL(X* d(x). 
. y) = a(jcy). Thus a € AG. For /? similarly. 

2) There is a mapping e such that <p*e= \G. For every JC, -y € G, ^(JC) . J> = 
= * • <P*(y)- Hence JC . e(y) = y(x) . y. Thus y e <PG. 

Theorem 1: Let G be a quasigroup. Then the semigroups AG, RG, &G are 
groups. 
Proof: By Corollary and Lemma 1, 3. 

Lemma 4: Let G be a groupoid with right (left) unit e. Let A e AG (Q € RG) 
Then the mapping A* (Q*) is uniquely determined and A = A* (Q = Q*). 
Proof.: Let x e G. Then A(JC) = A(jce) = A*(JC) . e = X*(x). Hence A = A*. 
Similarly for Q. 

Lemma 5: Let G be a groupoid with unit e. Let Ac AG, Q € RG, <p € &G. Then 
A = Lx(e), Q = RQ(e), <P = -Rv<«), 9̂ * = Lv(e)- Let ^, -y € G. Then A(e)(xy) = 
= (M*)*)y> (xy)Q(e) = x(y . Q(e))> (x<p(e))y = x(<p(e) .y). 

Proof: By Lemma 4, X = X*. Let xe G. Then A(JC) = A(̂ JC) = A(^)JC = Lx(e) (x). 
Hence Lx(e) = A. For every JC, y e G, X(e) (xy) = X(e . xy) = A(jcy) = A(JC) . y = 
= (X(e)x).y. 
For Q similarly. 
2) Let xyy € G. We have <p(x) = <p(x). e = <p*(e). Hence <p*(e) = e . <p*(e) = <p(e), 
hence, <p = Rq>(e). Further, x(<p(e) . y) = x(e . <p*(y)) = x . <p*(y) = <p(x) . y = 
= (x.<p(e)).y. 

Theorem 2: Let G be a groupoid (quasigroup) with unit e. 
Put AG = E (JC € GI3 X € AG, X = X(e)\ 
BG=E (xl3Q eRG, x= Q(e)), CG = E(xJ3<p € 0G, x = <p(e)). 
Then the sets AG, BG, CG are subsemigroups (subgroups) with unit of the groupoid 
(quasigroup) G. 
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Proof: We shall prove the theorem for AG only. 
1) Let x, y c AG. Then there are fa, fa c AG so that x = fa(e), y = fa (e). Hence 
xy=fa(e).fa(e) = fa(e.fa(e))=fafa(e). But fa fa e AG by Lemma 1. Hence 
xy € AG. We have proved that AG is a subgroupoid of G. By Lemma 5, AG is a semi
group. Evidently £ € ^4G. 
2) Let G be a quasigroup. By 1), AG is a semigroup with unit e. 
Let x c AG. Then there is A c ylG such that x = X(e). 
By Theorem 1, A is a permutation and .A-1 c ylG. Hence A"1^) € AG. 
But x . A-K*) = k(e) . X~\e) = X(e . X~\e)) = U~\e) = e. 
The element X~\e) is a right inverse element to x. Therefore AG is a group. 

Definition 2: Agroupoid G is called / l — transitive if for every x,y c G there is 
A € zlG such that A(*) = >;. Similarly for A*, R, R*, 0, 0* — transitivity. A groupoid 
G is called transitive, if at least one of the cases defined is valid. 

Lemma 6: Every group is transitive in all possible cases. 
Proof: As a group G is a groupoid with unit, we have AG = AG, RG = RG. 
Further for all xc G, Lxe AG, Rx c RG, Rx e 0G, Lx e 0G. Hence G is A, A*, R, 
R*, 0, 0* — transitive. 

Lemma 7: Let G be a A or 0* — transitive groupoid with left unit. Then G is 
a groupoid with right division. Let G be a R or 0 — transitive groupoid with right 
unit. Then G is a groupoid with left division. 
Proof: 1) Let G be A — transitive and e be a left unit of G. 
Let x,ycG. There is A c AG such that X(x) = y. But X(x) = X(ex) = k*(e) . x = y. 
Hence Rx is a mapping onto G. Hence G is with right division. 
2) Let G be 0* — transitive and e be a left unit of G. 
Let x,y e G. There is <p* e 0G such that q>*(x) = y. We have, y = e . <p*(x) = 
= <p(e). x. Hence G is with right division. 
Similarly for the other cases. 

Theorem 3: A groupoid with unit is transitive if and only if it is a group. 
Proof: 1) Let G be a transitive groupoid with unit. Hence AG = AG, RG = RG 

by Lemma 4. Now we can use Lemma 7. Hence G is with left or right division. 
Since G is transitive, we have, by Definition 2, G = AG or G = BG or G = CG. 
Thus by Theorem 2 G is a semigroup with unit. But every semigroup with unit, 
which is with left or right division, is a group. 
2) Let G be a group. By Lemma 6 G is transitive in all possible cases. 

3° Definition 3: Let G be a groupoid. A groupoid G(») is called a homotope of 
the groupoid G, if there are mappings a, /? of the set G into G and a permutation y of 
the set G so that for every x,y € G, y (x*y) = OL(X) . fi(y). We shall write G ( 0 = 
= G<a'0»y>. The groupoid G(«) is called a /i — homotope of the groupoid G, if a, /? are 
onto G. The groupoid G(*) is called an isotope of G, if a, /? are permutations. The 
groupoid G(») is called a principal homotope, if y = 1G?. 
The following Lemma is evident. 

27 



Lemma 8: 1) Let G(.) = G(o)<a>^> and G(o) = G<^*>. Then G(.) = 
= Q(da,e0,xy)m 

2) For every G is G = G(1G'1G-1G>. 

3) A mapping y : G(*) -> G is an isomorphism if and only if G(.) = G<y^^>. 
4) Let G(.) = G<a^»y> and (5, £ be arbitrary mappings such that OL6 = fie = lG. 
Then G is a homotope of G(.) and G = G(.)(<5'^1>. 
5) Let G(.) = G(a>0>v) be an isotope of G. Then G is an isotope of G(.) and 
G = G(.)(a_1^"1^"l>. 
6) Let G(.) = G<a>^). Put G(o) = G(.)(^1^1^-1>. Theny : G(.) -> G(o) is an iso
morphism and G(o) = G^a>y~^>lG\ 

Lemma 9: Every ju — homotope of a groupoid with division is a groupoid with 
division. 
Proof: Let G be a groupoid with division and G(o) be a pi — homotope of G; G(o) = 
= G<a>^>. Denote R*x, L* translations of the groupoid G(o). Let x, y € G. We 
have y(x oy) = OL(X) . fl(y), hence y R*y = R^y) a, and hence, R*y = y ~ 1 Rp(y) a. 
Buty-1, Rp(y), a are mappings onto G, hence R* is a mapping onto G. 
Similarly for L*. 

Lemma 10: Let G be a groupoid with cancellation and G(o) = G^^^. Let 
a, ^ be one — to — one mappings. Then G(o) is also a groupoid with cancellation. 
Proof: Similarly as for Lemma 9. 

Theorem 4: Every groupoid which is an isotope of a quasigroup, is a quasigroup. 
Proof: By Lemma 9, 10. 

Lemma 11: Let G(o) = G<a^^>. Let X e AG(0), QeRG(0), <pe 0G(O) and 6, e be 
arbitrary mappings such that a<5 = /?e = lG. ThenyAy-1 e AG, OLX* d e A&yoy-1 c RG, 
PQ*E € RG, oL<pd € 0G, fi<p*£ e 0G. 
Proof: 1) For every x,ye G,yXy~x(oL(x) . /5(y)) = y X(xoy) = y(X*(x)oy) = OLX*(X) . 
. fi(y). Hence for every u, v € G,yXy~\uv) = yXy-^adfa) . fie(v)) = OLX*6(U) . ($e(v)= 
= OLX*6(U) . v. Thus yXy-1 e AG, OLX*6 e A*G. 
Similarly for Q. 
2) For every x, y e G, o.<p(x) . ft(y) = y(<p(x)oy) = y(x o <p*(y)) = OL(X) O p<p*(y). 
Hence for every u,v € G, 0L<pd(u). v = 0L<pd(u). f}e(v) = OL6(U) . ft<p*e(v) = u . P<p*e(v). 
T h u s 0L<pd € 0G, p<p*E € 0*G. 

Theorem 5: Let G(o) be an isotope of a groupoid G. Then the following iso
morphisms are valid: AG{0) g* AG, A*Gio) ^ A*G, RG{0) ^ RG,R*G(0) ^ RG, 0G{O) ^ 

S* 0G, 0*G(o) ^ 0G-
Proof: Let G(o) = G<a^v>. Then, by Lemma 8, G = G(o)(a~lJ>-l>r~\ By Lemma 
11, X c AcH^oyXy-1 € AG, X* e A*G(0) o aA*a_1€ A*G. The mappings A : AG(0) -> 
-> AG, B : A*G(0) -> A*G such that A(X) = yXy-1, B(X*) = OLX*OL1 for all X c AG(0), 
A. c A*G(0), are evidently isomorphisms. 
Similarly for the other cases. 

Theorem 6: Let G(o) b e a / i - homotope of G. Let G(o) be A — transitive 
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( z l \ R, R\ 0, 0* — transitive). Then G is A — transitive ( z l \ R, R\ 0, 0* — 
transitive). 
Proof: Let G(o) = G(a>P>v). Since the mappings a, fi are onto G, there are mappings 
d, e such that a<5 = pe = \G. Let G(o) be A — transitive and x, -y e G. There is 
A c ./lG(o) such that Xy~x(x) = 7 _1(v). HenceyAy-^x) = y. By Lemma 11, yXy-1 e AG. 
Hence G is A — transitive. 
Similarly for the other cases. 

Theorem 7: Let a transitive groupoid G(o) be a ^ — homotope of a groupoid G, 
which has a unit. Then G is a group. 
Proof: By Theorem 6 and Theorem 3. 

Theorem 8: Let a commutative groupoid G(o) be a jn — homotope of a group G. 
Then G is an Abelian group. 
Proof: Let G(o) = G^a^^K Since the mappings a, /? are onto G, there are mappings 
<5, e such that OLS = (3e = \G. Let e be a unit of the group G and x, y € G. We have 
a(x). /?(y) = y(xoy) = y(yox) = o:(y) . fi(x). Let u e G be such that /?(w) = e. Then 
a(*) = OL(U) . p(x). Hence a(u) . P(x) . 0(y) = OL(X) . p(y) = 0L(y). 0(x) = OL(U) . 0(y) . 
. f$(x), hence f$(x) . fi(y) = fi(y) . p(x). Thus for every v, z € G we have vz = 
= pe(v) . 0e(z) = fc(z) . fie(v) = zv. 

Lemma 12: Let G(o) = G<a'0^> and let G(o) be a groupoid with unit e. Then the 
translations La(e), Rp(e) of the groupoid G are mappings onto G. 
Proof: For every x € G we have y(x) = y(x o e) = OL(X) . ft (e). Hence y = Rp(e)OL. 
Similarlyy = La(e) . /3. Thus La(g), Rpie) are mappings onto G. 

Lemma 13: Let G be a groupoid and x, y e G. Let a, /? be arbitrary mappings 
such that Lx($ = RVOL = \G and a(xy) = JC, /?(:vy) = -y (the mappings a, /? exist if and 
only if the mappings Lx> Ry are onto G). Put G(o) = G(a>^lG>. Then G(o) is a grou
poid with unit e, where e = xy. 
Proof: Let u c G. Then uo e = uo (xy) = OL(U) . fi(xy) = OL(U) . y = RVOL(U) = w, 
e ou = (xy) ou = o.(xy). fi(u) = Lx(i(u) = u. 

Definition 4: Let G be a groupoid and x,yeG. We say that two elements x, y 
satisfy the p — condition if: 
1) The mappings Lx, Ry are onto G. 
2) For every u, v, z e G, 

Ry(u) = Ry(v) implies Rz(u) = Rz(v) 
3) For every u,v,zeG, 

Lx(u) = Lx(v) implies Lz(u) = Lz(v). 
Lemma 14: Let G be a groupoid and x, y e G. Then the following conditions 

are equivalent : 
1) The elements x, y satisfy the fi — condition. 
2) There are mappings a, /? such that RVOL = Lx(i = 1 G and uv = OLRV(U) . ftLx(v) 

for every u,veG. 
3) There are mappings a, /? such that _Rya = Lxfi = \G. For all possible mappings 

d, e such that Ryd = Lxe = 1G and for all u, v e G, uv = dRy(u) . e Lx(v). 
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Proof: 1) Implies 3). Since Ry> Lx are onto G> there are mappings OL> /? such that 
Ryoi = Lxfl = 1G- Let d>e be arbitrary mappings such that Ryd = Lxe = \G- Let 
u>v€ G. Set z = SRy(u)> t = e Lx(v). We have Ry(z) = RydRy(u) = Ry(u). 
Hence zt = ut (by fi — condition). Further, Lx(t) = LxeLx(v) = Lx(v). Hence 
ut = uv. Thus zt = uv. 
Evidently 3) implies 2). 
2) implies 1). Since RyoL = Lxp = \G, the mappings Ry> Lx are onto G. Let u>v e G 
and Ry(u) = Ry(v). Let z e G be arbitrary element. Then Rz(u) = uz = a -R^w). 
. f$Lx(z) = a -R2/(z>) . fiLx(z) = vz = Rz(v). Hence we have proved that: 
Ry(u) = Ry(v) implies Rz(u) = Rz(v). 
Similarly we can prove the last part of the /u — condition. 

Lemma 15: Let G be a groupoid and x> y e G. Then the following conditions 
are equivalent: 
1) The elements x> y satisfy the ft — condition. 
2) There are mappings a, /3 such that RVOL = Lx(i = 1 G and a(ry) = x> fi(xy) = y. 
Let ai, /3i be arbitrary such mappings. Put G(o) = G(a,>^>1>. Then G(o) is a groupoid 
with unit xy and G = G(o)(Ry>Lx>1\ (Ry> Lx are taken in G). 

Proof: 1) implies 2). The mappings Ry> Lx are onto. Hence there are mappings a, /? 
such that R^a = Lxp = \G, 0L(xy) = x> fi(xy) = y. Let ai, /?i be arbitrary such 
mappings. For every u> v e G by Lemma 14, we have uv = OL\RV(U) . fiiLx(v). 
Hence Ry(u) o Lx(v) = 0LXRy(u) . faLx(v) = uv. Thus G = G^y*^*'1) . 
2) implies 1). The mappings Ry> Lx are evidently onto G. Let be u> v e G such that 
^i/(w) = Ry(v)' Let 2: e G be an arbitrary element. We have Rz(u) = uz = 
= Ry (u) o Lx(z) = Ry(v) o Lx(z) = vz = Rz(v). 
Similarly we can prove the last part of the jn — condition 

Definition 5: A groupoid G is called ju — groupoid if there is a groupoid with 
unit, G(o)> such that the groupoid G is a ju — homotope of the groupoid G(o). 

Lemma 16: Let G be a // — groupoid. Then there is a groupoid with unit, 
G(o)> such that G is a principal [i — homotope of G(o). 

Proof: By Lemma 8. 

Theorem 9: Every groupoid G is a ju — groupoid if and only if there are two 
elements x,yeG such that x> y satisfy the ju — condition. 
Proof: 1) Let G be a ju - groupoid. By Lemma 16 there is a groupoid G(o)> which 
has a unit e> such that G = G(O)(<5'£sl). Moreover, the mappings d> e are onto G. 
Hence there are mappings a, /? such that 6OL = e f$ = \G. Set x = o:(e)>y = fi(e). 
For every u e G, -f?.y(w) = uy = d(u) o e(y) = d(u) o efi(e) = b(u) o e = d(u)> Lx(u) = 
(5a(£) o e(u) = e(u). Thus 6 = Ry> e = Lx. Further, a(ry) = a(a(e) . /3(e)) = 
= oL(Soi(e) o e(l(e)) = o:(e) = x. Similarly fi(xy) = y. Finally, OL(U) . p(v) = 
= SOL(U) oefi(v) = uov. Now we can use Lemma 15. Therefore x> y satisfy the 
[A - condition. 
2) Let x> y e G be two elements satisfying the jbt - condition. By Lemma 15 there is 
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a groupoid with unit, G(o), such that G = G(o)(Ry>Lx> *\ Since Ry, Lx are mappings 
onto G, G is a /̂  - groupoid. 

Theorem 10: Let G be a transitive JLI - groupoid. Then G is a principal /a - ho-
motope of a group. Hence G is with division. 
Proof: There is a groupoid with unit, G(0), and there are mappings a, /?, which are 
onto G, such that G = G(oya>^>xK By Theorem 6, G(o) is transitive and hence, by 
Theorem 3, G(o) is a group. By Lemma 9, G is a groupoid with division. 

Theorem 11: Let G be a transitive groupoid. Let there be two elements of G 
which satisfy the ju - condition. Then arbitrary two elements of G satisfy the ju - con
dition. 
Proof: The groupoid G is a /JL - groupoid. Then, by Theorems 9, 10, there is a group 
G(o) and there are mappings a, /3 (which are onto G) such that G = G(0)^a^*1). 
Let x, y be arbitrary elements of G. By Theorem 10, G is a groupoid with division, 
hence Lx, Ry are mappings onto G. Let u, z; e G be such that -Ry(w) = -Ry(a) and 
s € G be arbitrary element. We have Ry(u) = uy = OL(U) O ($(y) = vy = OL(V) O P(y). 
Hence OL(U) = OL(V\ and hence, Rz(u) = uz = OL(U) O ($(Z) = OL(V) O fl(z) = vz = 
= Rz(v). Similarly we can prove the last part of the JU - condition. Thus x, y satisfy 
the fx - condition. 

Lemma 17: Let G be a group and a, /?, y be three mappings of G into G such 
that for every x,y e G is y(xy) = OL(X) . (i(y). Then there are elements a, b, c of the 
group G such that the mappings Laa, a Ra, L&/?, /JL&, Lcy, yRc are endomorphisms 
of the group G. 
Proof: Let 1 be the unit of G. For every xc G,y(x) = a(l) . ft(x),y(x) = OL(X) . (3(1). 
Therefore OL(X) . fi(l) = a ( l ) . p(x). Hence OL(X) = a(l) . fi(x) . (/81)-1. Further, for 
every x, y e G, y(xy) = OL(X) . $(y) = a(l) . flxy) = a(l) . /*(*) . (^ l )" 1 . p(y). 
Hence f$(xy) = fi(x)b(}(y), where b = (^(l)) -1 . Thus the mappings L&/?, R^ are 
endomorphisms of G. 
Similarly, there exist a € G such that Laa, RaoL are endomorphisms of G. 
Now for y. We have /?(*) = (a l ) - 1 .y(x), OL(X) = y(x) . (/Jl) -1 for every x, y € G. 
SinceyfoO = a(*). fi(y\ we havey(xy) = y(x). (pi)-1 . (al)"1 .y(y) = y(x) . c .y(.y), 
where c = (/SI)-1 . (a l ) - 1 . Thus Lcy,yRc are endomorphisms of the group G. 

4° Definition 6: A groupoid G is called Bi (B2) - groupoid if x(yz) = y(xz) 
(xy . z = xz .y) for all x, y, z e G. 

Lemma 18: Let G be a .81 - groupoid. Let x e G be such that Rx is onto G. 
Then G has a left unit e. Moreover, the elements e, x satisfy the ju - condition. 
Proof: Let ycG. There are e, z e G such that zx = y and $# = #. We have y = zx = 
= ^(ex) = £(##) = ey. Therefore, e is a left unit of G. The mappings L«, -R.* are 
onto G. Further, let w, v be elements of G such that Rx(u) = Rx(v). Let # e G. There 
is r € G such that tx = z. Then uz = u (tx) = t(ux) = t(vx) = v(tx) = vz. The last 
part of the ju - condition (for e) is evident (as Le = 1G). 

Lemma 19: Every Bi - groupoid with right division is R - transitive. 
Proof: For all x,y, z e G, x . yz = y . xz. Hence Lx(yz) = y . Lx(z). Thus Lx c RG. 
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Let w, v e G be arbitrary elements. There is z e G such that zu = Lz(u) = v. Hence 
G is R - transitive. 

Theorem 12: Let G be a Bi - groupoid. Then the following conditions are 
equivalent: 
1) There exists x e G such that Rx is onto G. 
2) There is a commutative semigroup with unit, G(O), and a mapping a which is 
onto G such that uv = a(w) o v for every w, v € G. 
Proof: 1) implies 2). By Lemma 18, G has a left unit <?. Since Rx is onto G, there is 
a mapping /S such that Rx(i = lG and /?(*) = /8(«t) = *. Put G(O) = G^-1-1*. Since 
e, x satisfy the /i - condition, hence, by Lemma 15, G(o) is a groupoid with unit x 
and G = Gfa)**-*1'1). Let u, v, z * G. We have i*(ro) = Rx(u) o (Rx(v) o z) = 
v(uz) = Rx(v) o (Rx(u) o z). From this we deduce that G(o) is B\ - groupoid. But 
every B\ - groupoid with unit is a commutative semigroup. 
2) implies 1). This part of the proof is evident 

Theorem 13: Let G be a groupoid. Then the following conditions are equi
valent : 
1) G is a Hi - groupoid with right division. 
2) G is a Hi - groupoid with division and simultaneously a left quasigroup. 
3) There is an Abelian group G(+) and a mapping a which is onto G such that 
xy = OL(X) + y for every x,y e G. 
Proof: 3) implies 2) and 2) implies 1) evidently. 
1) implies 3). By Theorem 12, there is a commutative semigroup with unit, G(+) , 
and a mapping a which is onto G such that G = G(+Ya>l*l\ Therefore, G is 
a pi - homotope of G(+) . Since, by Lemma 19, G is transitive, the semigroup G(+) 
is, by Theorem 7, a (Abelian) group. 

Theorem 14: Let G be a Hi-groupoid with left cencellation. Let there be x € G 
such that Rx is onto G (a permutation). Then the groupoid G can be imbedded in 
a .Si - groupoid Gi which is with division (which is a quasigroup). 
Proof: By Theorem 12, there is a commutative semigroup G(o) and a mapping a 
which is onto G such that G = G^)*0*1'1*. Let /} be a mapping such that a /? = 1G. 
Then, by Lemma 18, G^*1*1* = G(o). Therefore, for every w, z> e G we have, 
(1) uov = /?(w) . z;. 
Since G is with left cancellation, we get, applying (1), that G(o) is with left cancella
tion, too. As G(o) is commutative, G(o) is with cancellation. It is well known that 
every commutative semigroup with cancellation can be imbedded in an Abelian 
group. Let Gi(+) be any such Abelian group and <p : G(o) -> Gi(+) be a mono-
morphism. Define the mapping x of Gi into Gi as follows: x(y) = <pRx<p~l(y) for 
y e <p(G), x(y) = y for y e Gi, y $ (p(G). The mapping x is, evidently, onto Gi. When 
Rx is moreover one - to - one, then x is a permutation. Put Gi(*) = Gi**'1'1*. 
Gi(*) is a Hi - groupoid with division. If x is one - to - one, Gi(*) is a B\ - quasi
group. The mapping <p is also monomorphism of G into Gi(*). This completes the 
proof. 
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For B2 - groupoids we can prove Theorems dual to Theorems 12—14 
Definition 7: A groupoid G is called an A\ - groupoid (Az - groupoid) if 

xy . uv = xu . yv (xy .uv = vy. ux), for all x, y, u, v e G. 
Lemma 19: Let G be a groupoid with left (right) division. Let there be x e G 

such that the mapping Rx (Lx) is onto G and for y, u, v c G, yx . uv= yu . xv. Then 
the groupoid G is 0 (0*) - transitive. 
Proof: For every y, u, v e G we have Ru(y) • Lx(v) = Rx(y). Lu(v). Let a, /8 be any 
mappings such that Rx<x. = Lx(i = IG. Then Ru<x.(y). v = y . Lufi(v). Hence 
Rucn € 0G for every U€ G. From this we see that G is a 0 - transitive groupoid. 
Similarly for the remaining case. 
Corollary: Every A\ - groupoid with division is 0 and 0* - transitive. 

Theorem 15: Let G be a groupoid. Then the following conditions are equi
valent : 
1) G is a fi - groupoid with division and there is x c G such that for every u, y, 
v e G, yx . uv = yu . xv. 
2) There is a group G(o), its endomorphisms <p,y> which are onto G(o) andg, h e G(o) 
such that for every u, v € G, uv = <p(u) og o y>(v), <py>(u) oh= ho yxp(u). 
Proof: 1) implies 2). Since G, by Lemma 19, is 0 - transitive, there is a group G(o) 
and mappings a, /3 such that G = G(o)la>0>lK The mappings a, /S are onto G. For 
al ly , u, v e G we have ux .yv = en (<x(u) o /?(*)) o P(cn(y) 0 fi(v)) = uy . xv = 

= OL(OL(U) 0 fi(y)) o (P((x.(x) o fi(v)). Hence <x(u oy) = cci(u) o /5i(y), f}(y ov) = 

= ct2(y) 0 fe(v), where an, /?< are convenient mappings. Thus, by Lemma 17, there 
exist endomorphisms <p, y> of the group G(o) and elements a, b in G such that CL(U) = 
= <p(u) o a, (}(u) = b o y>(u) for every u € G. Therefore, uv = <p(u) og o y>(v), where 
g = aob. Now we can write, 
ux .yv = <f^(u) o<p(g) o<py>(x) og 0 yxp(y) o y>(g) o y>2(v) = 
= uy . xv = <pP(u) o<p(g) o <py>(y) og 0 yxp(x) o y>(g) o yP(v). 

From this we get <py>(y) og o yxp(x) = <py>(x) og o yxp(y). 

Put y = I, where 1 is the unit of the group G(o). Then g o yxp(x) = <py>(x) og = h. 
Hence <py>(y) 0 h = h o yxp (y) for every y c G. 
2) implies 1). The groupoid G is, evidently, a /*, - homotope of the group G(o). 
Hence G is a p - groupoid with division. Put x = tp-1^1 (hog'1). Then 
h = <py>(x) og = <py>(x) oho h'1 og = ho yxp(x) o h~l o g. 
Henceg- 1 = yxp(x) b h~l, and hence, h = go yxp(x). 
For every u, y, v e G we have, 
yx . uv = <p2(y) o<p(g) 0 <py>(x) ogo yxp(u) o y>(g) 0 y?(v) = 

= <f>*(y) ° <p(g) °hoyxp(u) o y>(g) o yp(v) = 
= <P*(y) o<p(g) 0<py>(u) oho y>(g) o yfi(v) = 

= 9>*(y) o <p(g) 0 <py>(u)ogo yxp(x) 0 y>(g) o yP(v) = yu . xv. 
This completes the proof. 

Theorem 16: Let G be a groupoid. Then the following conditions are equi
valent: 
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1) G is a [i - groupoid with division and there exist elements x, a, b of G such that 
ux . vt = uv . xt, au . vb = av . «b for all u, v, t e G. 
2) G is a // - groupoid with division and G is an A\ - groupoid. 
3) There is an Abelian group G(+) , its endomorphisms <p, \p which are onto G and 
g e G such that uv = <p(u) + ip(v) + g for all u,v e G and 9?^ = ^ -

Proof: 1) implies 3). By Theorem 15, there is a group G(+) , its endomorphisms 
<p, rp which are onto G and g, he G such that wz; = <p(u) + g + tp(v)> h + yxp(u) = 
<pip(u) + h for all u,ve G. 
Put G(*) = G^LayRbtl\ For every w, ^ e G we have u»v = au . vb = av . ub = 
= z>* w. Thus G(«) is a commutative /J - homotope of G. Hence G(») is a commuta
tive /i - homotope of the group G(+). Therefore, by Theorem 8, G(+) is an Abelian 
group. Hence h + y><p(u) = yxp(u) + h = <pip(u) + h, and /ience, <pip = yxp. 
3) implies 2) and 2) implies 1) evidently. 

5° Definition 8: Let G be a non-empty set, n > 2 be a positive integer a n d / 
be an n - ary operation completely defined on G. The algebra (G,/) is called « - grou
poid. Instead of (G,/) and/(*i , . . . ., xn) we shall usually write G and (x\ . . . ., *„) 
only. 

Definition 9: Let G be a « - groupoid. A mapping X of the set G into G is 
called i - regular, where 1 <i <n if there exists a mapping X* such that for every 
x\,. . ., xn e G, A(*i,. . . ., xn) = (*i, . . ., *f-i, A*(*{), xf+i,. . ., xn). 
Denote by symbol AG the set of all i - regular mappings of the n - groupoid G. 

Lemma 20: Let G be a n - groupoid. Then for every t, 1 < i < n, the set yl*G 

is a semigroup with unit under the operation of composition of mappings. 
Proof: Proof is the same as for Lemma 1. 

Definition 10: Let G be a n - groupoid. Let 1 be a positive integer, 1 <i< n. 
An element e of G is called an i - unit if for every x e G, 

1, . . . . , i—1, i, i + l , . . ., n 

(e,. . . ., e, x, e, . . ., e) = x. An element e is called a unit if e is a / - unit for 
every, / , 1 <j < n. 

Lemma 21: Let G be a w - groupoid with 1 - unit e, 1 < i < n. Let A e AG. 
Then A = A\ 

1, . . ., i—1, i, i + l , . . . , w 
Proof: For every JceGwe have X(x) = X (e,. . ., £, #, £, . . ., e) = 

1, . . . ., i—1, i, i + l , • . • ., n 
= (e, . . . ., e, X*(x), e, . . . ., e) = X*(x). Thus X = X*. 

Definition 11: Let G be a n -groupoid and a be an element of G. We say that a 
satisfies the v - condition if for every j , 1 <j<n, and for every x\> . . . ., xn e G, 

1, . . . ., ;—1, j , j + 1, . . . . , « 1, . . . . , ;—1 , j , .i+1,.7+2, . . . ., n 

(x\, . . . ., Xj-\, a> Xj, . . . ., .xrn-i) = ( * i , . . . ., x/_i, x/, a, xj+i, . . . ., xn-i) 

Lemma 22: Let G be a n - groupoid with z - unit e, 1 < i < n. Let ^ satisfy the 

v - condition. Then e is a unit of G. 

Proof: This Lemma follows directly from Definition 11. 
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Definition 12: Let G be a n - groupoid and i be a positive integer, 1 < i < n. 
The n - groupoid G is called A* - transitive if for every x,y c G there is A € ./lfc such 
that X(x) = y. 

Definition 13: Let G be a n - groupoid with 1,7-unit e, where 1 < i , / < n, i =fij. 
Define the binary operation fij on G as follows: 

t j 

For every x, y e G, fij(x,y) = (e, . . ., e, x, e, , . ., e, -y, *, . . ., e)ifi < j 
J i 

andftj(x, y) = (e, , e, y, e, , e, x e,. . ., e) if/ < i. 
Just denned groupoid (G,/cj) we shall denote by symbol G(oy>K 

Theorem 17: Let G be a A1 - transitive n - groupoid with i, j - unit e, where 
1 < i,j <n,i -?-- / . Then G(o)1^ is a group. 
Proof: Suppose i < / The element e is a unit of the groupoid G(oy*l. Indeed, for 

i j i J 

every x e G we have x o e = (e, ...., e, x, e, ..., e,... e) = (e,..., e,.... e, x, 
e,. . . ., e) = e 0 x. Further, let X € AG. For every x, y c G we have, 

/ i ) 

X(xoy) = X(e,. . ., e, x, e,. . . e,y, e,. . ., e) = (e,. ., e, X(x), e, . ., e,y, e, . ., e) = 
= X(x) oy. 
Hence A is a left regular mapping of G(oy>K Since G is A{ - transitive, G(oy>* isA-
transitive. Therefore, by Theorem 3, G(O){>1 is a group. 
Iff < i the proof is similar. 

Definition 13: Let G be a n - groupoid and or be a permutation of elements 
1,2, . . ., n. The n - groupoid G is called a o* -n -groupoid if there exists a group G(o) 
such that for every x\,. . ., xne G, 

(X\, X%, . . . , Xn) = Xa(\) O Xa(2) 0 . . . O Xa(n). 

Lemma 23: Let G b e a a - « - groupoid. Then G is Aa <x> - transitive and Aa <n> -
transitive. 
Proof: There exists a group G(o) such that for every x\,. . ., xn c G, 

(x\, . . ., Xn) = Xa(\) O . . .0 Xa(n). 

Let u € G. The translation Ru of the group G(o) is a o(n) - regular mapping of the 
n - groupoid G. Indeed, 
Ru (x\, . . ., Xn) = Xa(\) O Xa(2) O . . .0 Xa(n) OU = 

= Xa(\) O ... .0 Xa(n-l) O (x0(n) O u) = (x\, . . ., X0(n)-1> Ru (Xa(n)), Xa(n)+U • • •> Xn). 

Since the group G(o) is a groupoid with division, G is Aa<n) - transitive. Similarly, 
G is ./lff<1> - transitive. 

Lemma 24: Let G be a./l* - transitive « - groupoid with i - unit e, 1 <i<n. 
Let £ satisfy the i> - condition. Then G is a a - « - groupoid for 

1, 2, , « 
a = ( i 3 1 + 1 , . . . , «, f — I, *" — 2 , . . ., I). 

Proof: There i s / 1 <j <n, such that i" -^ / Suppose i < / . 
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By Lemma 22, the element e is an unit of G. Therefore, by Theorem 17, the groupoid 
G(o)i^ is a group. 
Let xi,. . ., xn € G be arbitrary elements. Since G is A* - transitive, there are mapp
ings Ai,. . ., Xn € _1_. such that xi = X\(e), x2 = X2(e), . . . , * » = Aw(e). Since e 
satisfies the v - condition and A* are i - regular, we have (xi, . . ., xn) = 
= (Ai(_),. . ., An(e)) = Xi (Xi(e), . . ., Xt-i(e), e, Xt+i(e), . . ., Xn(e)) = 

= Xi (Xi(e), , Xi-i(e), Xi+i(e)e, Xi+2(e), . . ., Xn(e)) = = 

= AiA<+i. . . XnXi-i Xi-2 . . . X\(e, . . . , - ) = Xi. . .Xn A*_i. . . X\(e). 

Conversely,xto . . . o xn o xt-i o . . . o xi = Xi(e) o . . . o Xn(e) o Xi-\(e)o. . . o Xi(e) = 
1, . . .,i—l, i, i + l . • .,;—l, ; 1+1,. . ., n 

= (_ , . . ., e, Xi(e), e, . . ., e, (e, . . ., e, Xi+i(e), e, ) , e, . . ., e) = 

= Xt(e, . . . , - , Xi+i(e), - , . . . , e, (e, . . ., e, Xi+2(e), e, . . .), e, . . ., e) = 

= A*A*+i. . . Xn A{_i A*_2 . . . X\(e). 
1» y n 

Thus G is a a - n groupoid for a = (/,. . ., n, i — I, . . ., I) 
If y < i the proof is similar. 

Theorem 18: Let G be a n - groupoid. Then the following conditions are 
equivalent: 
1) There exists i, 1 < i <n, that G is A{ - transitive and G has an i - unit e which 
satisfies the v - condition. 
2) G is A1 and An - transitive and G has a unitg which satisfies thev -condition. 
3) There is a group G(o) such that for every x\, . . ., xn€ G, (xi,. . ., xn) = 
= Xl O X2 o . . . o xn. 

1 , n 

Proof: 1) implies 3). By Lemma 24, G is a-n- groupoid for a=(i, . . .,n,i— I,...,l). 
Hence, by Lemma 23, G is __*<"> - transitive. But a(n) = I. Hence G is A1 - transi
tive. The element e is, by Lemma 22, a unit of G. Hence, by Lemma 24, G is 

1, 2, . . . ., n 
e-n-groupoid for e = (1, 2,. . . ., n). 
Since e is the identity permutation, there is a group G(o) such that for every 
xi, . . .,xn€ G, 

(X\, . . ., Xn) = Xi O X2 o . . . o xn 

3) implies 2) and 2) implies 1) evidently. 
Theorem 19: Let G be a n - groupoid. Then the following conditions are 

equivalent: 
1) There exists i, 1 < i < n, such that G is A* - transitive and G has an i - unit e, 
which satisfies the v - condition. 
2) GisA*- transitive for all J, 1 < j <n. G has a unit g and an arbitrary element 
of G satisfies the v - condition. 
3) There is an Abelian group G(+) such that for every xi, . . ., xn e G, 

(Xi, . . ., Xn) = Xi + X2 + . . • + Xn. 

Proof: 1) implies 3). By Theorem 18, there is a group G(+) such that for every 
Xi, . . . , Xn € Cr, 

(Xi, . . ., Xn) = Xi + X2 + . . . + Xn. 
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-3 > • ' — 1 , l» « + l - . . •> » 

Let A c yl^. Then A(x) = A(x, e,. . ., e) = (x, e,. . ., e, A(e), e, . . . , _ ) = 
= * + e + . . . + X(e) + e+ . . + e= x+ X(e). Hence for every *i, . . . , x » c C 
we have A(*i,. . ., xn) = *i + *2 + . . . + xn + Me) = 
= (*1, . . ., Xi-i, A(*<), Xt+u • - o Xn) = Xi + . . . + Xi-i + Xi + A(*) + Xi+1 + 
+ . . . +Xn. 
Since l<i<n,i+l<n. Hence *i+i + . . . + xn + Ke) == Ke) + *«+i + • • • 
+ xn, and hence, A (e) + x = x + X(e) for all x € G. Using the A* - transitivity, 
we get that G(+) is commutative. 
3) implies 2) and 2) implies 1) evidently. 
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