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Interaction of Tr iplet Excitons with Neutral and Charged 
Electron Excitations in Organic Crystals 

M. TRLIFAJ 
Institute of Physics, Czechoslovak Academy of Sciences, Prague 

Theory of nonradiative decay processes of triplet and singlet excitons and theory of new com­
bined excited electron states in organic crystals connected with the triplet exciton-charged and 
uncharged electron excitations interactions is reviewed, discussed and developed. Theoretical 
results are compared with experimental results for anthracene crystal. 

I . Introduction 

The study of the interaction of the triplet excitons with neutral and charged 
electron excitations i.e. with excitons and excess electrons and holes has been inten­
sively pursued in recent years. This has been due to the fact, that the triplet excitons 
can undergo different triplet — charged or uncharged electron excitation processes 
resulting in observable effects in organic crystals. 

It is well known, that the production of charge carriers in organic crystals can 
be a result of the interaction of the triplet excitons with singlet excitons [1]. The 
collision of two triplet excitons due to their interaction gives rise to a singlet exciton 
state, which decay radiatively in the form of the observable delayed fluorescence 
from the singlet exciton state in crystal [2], [3], [4], [5], [6]. The fluorescence quench­
ing of the singlet exciton states under high intensities and longer illumination was 
discovered and ascribed to the nonradiative annihilation of the singlet excitons 
through their interaction with triplet excitons [7]. The excess electrons introduced 
into the crystal by means of space-charged-limited (SCL) currents causes a decrease 
of the triplet exciton lifetime [8]. This decrease is interpreted as the result of the 
nonradiative destruction of the triplet exciton by interaction with excess electrons. 

The production of charge carriers through triplet — singlet exciton interaction 
was examined theoretically by Kearns [1]. He considered the following reaction: 
an anitial state in which the crystal contains one triplet and one singlet exciton; 
a final state in which the excitons have annihilated one another to yield a hole in the 
lowest hole band and electron in a highly excited, essentially plane wave level. The 
rate of this auto-ionization process of the double singlet-triplet exciton state was 
calculated from first — order time-dependent perturbation theory. Using the results 
of this calculation Kearns concluded, that the triplet — singlet process can pre­
dominate over the singlet-singlet process for steady photocurrents proposed some 



years ago by Northrop and Simpson [9] to explain their data on surface photocon-
duction in anthracene. But Silver et al. [10] in an ingenious double lightpulse ex­
periment found in the anthracene crystal the singlet — singlet process only. 

The process of the collision of two triplet excitons resulting in a higher singlet 
exciton state was investigated theoretically by Jortner et al. [11]. The theoretical 
and experimental studies of the diffusion coefficient of triplet exciton states in organic 
crystals yield strong support for the proposal that the rate — determining step in the 
above triplet-triplet annihilation process involves the production of two adjacent 
excited molecules. Therefore Jortner et al. considered the mentioned triplet-triplet 
annihilation as a bimolecular annihilation reaction, which is diffusion controlled. 
The rate constant is then given by the rate for the encounter of two triplet excitons 

ytheor = %7inDT<R>. (1) 

Here DT is the diffusion coeficient of the triplet exciton, r\ = 1/9 represents the prob­
ability for the formation of a singlet state from two triplet states and <_R> is an average 
crystal spacing. Setting D T — 2 . 10 -4 cm2 sec -1 and <I?> = 6 A we get ytheot- = 
= 2 . 10 -11 cm3 sec -1 which is in good agreement with the experimental observ­
ations in the anthracene crystal (yexp -= 2 . 10 -11 cm3 sec-1). 

In the following I report on theoretical studies of the non-radiative annihilation 
of the singlet excitons on the triplet excitons and of the nonradiative destruction 
of the triplet excitons by excess electrons made by me in the last years. For simplic­
ity I focus attention on organic molecular crystals with one molecule per unit cell 
and assume that each molecule of the crystal may be divided into jr-electrons and 
the rest. 

2. Basic Model of Electron Excitations of the Crystal 

In the following considerations we have need of characterize the excited states 
of the excess electrons i.e. charged electron excited states and the excited states 
of the molecules remaining airways neutral i.e. neutral electron excitations. 

We describe the neutral excited electron states of the molecule in one-electron 
approximation and characterize the one-electron states by the quantum index / 
We denote the corresponding wave functions and energies of the p -thmolecule of the 
crystal by xpvi (f) and su where f is the position vector of the jz-electron and p is the 
lattice vector denoting the position of the molecule in the crystal. In this one-electron 
approximation, we consider the neutral electron excitations of the molecule generated 
through the transitions of one jr-electron from the one-electron state with the high­
est energy occupied by ^-electrons in the electron ground state of the molecule, 
which we denote by the quantum index / == O into all possible one-electron states 
with higher energy et > e0 (with / > O briefly). We characterize these electron 
excitations by the quantum index / and we denote their quasiboson creation and 
annihilation operators with regard to the spin states at the p—th molecule of the 
crystal by £PXS, Afs), B£ (S, Ms), where S = O, 1; M s = - S , . . . , + S are the 



spin quantum numbers. These neutral electron excitations have the same excitation 
energy Et(S) independent of the location in the crystal and in the presence of the 
intermolecular interaction migrate as a coherent or incoherent exciton through the 
crystal [11]. In this description of the excited states of the inner electrons of the 
crystal we consider the triplet exciton in incoherent random walk model as a neutral 
triplet electron excitation (S = 1; Ms = —1, O, 1) hopping randomly from one 
molecule to another [11]. On the other hand in the following we consider the singlet 
exciton in the coherent model as a singlet electron excitation moving through the 
crystal in the form of the coherent excitation wave, the travelling time of which be­
tween two adjacent molecules of the crystal is much shorter than that one of the 
triplet exciton. 

We describe the excited states of the excess electrons in one-electron approxim­
ation under the assumption, that the inner electrons of the crystal in the neutral 
excited states of the molecules follow the motion of the excess electron adiabatically. 
This approximation allows us to express the interaction of the excess electrons with 
the inner electrons of the crystal in the form of the appropriate elected potential 
field depending on the excited states of the inner electrons of the crystal. When we 
denote by v the set of the quantum numbers characterizing the excited states of the 
inner electrons of the crystal given by the number of the neutral electron excitations 
situated at the individual molecules of the crystal, we obtain the following equation 
for the wave function cpx^r) and energy EM of the excess electron under the above 
assumptions 

I"- A z l + Uo(r)+ tf,(ř)j <pxy(r) = Elv ny(7). (2) 

Here m is the mass of the excess electron and U0(r) is the potential energy of the 
excess electron in the periodic field of all molecules of the crystal in their electron 
ground state. The source of the additional potential energy Uv(r) of the excess elec­
tron is the change of the charge distribution of the inner electrons of the crystal 
caused by the excitation of the crystal from the electron ground state to the excited 
electron state v. The A in (2) are the quantum numbers characterizing the stacionary 
states of the excess electron. We denote the fermion creation and annihilation oper­
ators of the excess electrons in the quantum state Xyv by aAV(s), at (s) where s = ± 1 / 2 
(in units h) are the spin quantum numbers of the excess electron. 



A. Nonradiative annihilation of the singlet exciton 
on triplet exciton 

3. Model of the Nonradiative Annihi lat ion of the Singlet 
Exciton on the Triplet Exciton 

According to [12], the encounter rate of the singlet and triplet exciton is given by 

ynif = 4J* ( D S + DT) PsT (3) 

where Ds and D T are the diffusion coefficients of the singlet and triplet exciton and 
where RST denote the distance to which singlet and triplet exciton must approach 
in order that the annihilation process of singlet exciton takes place. Taking for 
anthracene crystal Ds ^ 1 cm2 sec -1 [11], D T ^ 2 . 10 -4 cm2 sec"1 and the minimum 
value .RsT ^ 6 . 10-8 cm we get 

ym = 7,5 . 10~7 cm3 sec-1. (4) 

This value of the encounter rate of the singlet and triplet exciton in anthracene 
crystal is two orders of magnitude larger than the observed value yexp X (7 ± 4) . 
. 10~9 cm3 sec -1. Therefore the annihilation process of the singlet exciton on the 
triplet exciton cannot be considered as a diffusion controlled process and we must 
to determine the annihilation rate by the transition probability of the crystal from 
the initial state with one singlet exciton and one triplet exciton in dynamical inter­
action to the final state with one triplet exciton with higher excitation energy. 

Our model of the triplet and singlet exciton and the fact that D T < Ds allows 
us to treat the stationary states of the singlet and the triplet exciton in dynamical 
interaction in the initial state of the crystal as the stationary sates of the singlet electron 
excitation moving in the potential field of the triplet electron excitation fixed on some 
molecule of the crystal. These stacionary states are determined by the Schrodinger 
equation 

tf|>=R7|>, (5) 

where W is the energy and | > is the state vector of the stationary states and H is 
the operator energy of our system. This operator can be written in the form: 

H - = W 7 o + 2 2 2 2 Et(S)BJ(S, MS)^(S, Ms) + 
5 M - * / > 0 

P 

+ 2 2 2 2 L<(P' ~ P)B*(S, MS)BJ(S, MS) + (6) 
5 Ms -+-+/> 0 

P*P 

+ 2 2 2 2W-rtV(°Wf(ow 
]/*-pf>Of'>0 M 

On the right side of (6), the first term is the energy of the quasivacuum of the 
electron excitations of the crystal, the second term is the operator energy of the 
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electron excitations without interaction and the thirth term describes the migration 
of singlet electron excitations from one molecule to another with the help of the 
virtual emission and reabsorption of the quantum of the coulombic and exchange 
interaction. This process of the migration is characterized in one-electron approxim­
ation by the matrix element 

-> -> C * * e2 

Lt(p> - p) = 2 I v£f (ri) y£ (r2) — — x 
J |ri — ra| 

X Vpffa) V&o(ri)cPri<Pr2 — J YyKn) VpSfa) — — + (7) 
J |ri — rl\ 

—> — • — > _ > 

+ ^ o W ^pf(rl)d3rld3r2 • 

The third term on the right side of (6), is the operator energy of the dynamical 
interaction between singlet and triplet electron excitation where Uvt(p' — ~p) is the 
potencial energy of the dynamical interaction between the / ' — th singlet electron 
excitation localized at the p — th molecule of the crystal and the/, M triplet electron 
excitation localized at the p-th molecule of the crystal. The potential energy Uvt(pr — 
— p) is determined by the change of the electrostatic and exchange or dispersive 
forces between the p>-th and p-th molecule of the crystal caused by its excitation 
from the electron ground state to the excited state with one singlet electron excitation 
/ ' and one triplet electron excitation/ localized at the p'-th and p-th molecule. 

Now suppose, that we have one singlet electron excitation / i in the dynamical 
interaction with the triplet electron excitation f2, M fixed at the p2-th molecule of the 
crystal. Then the state vectors |/i,/2-Vf> describing the stationary states of the singlet 
electron excitation in the potential field of the fixed triplet electron excitation can be 
written in the form: 

| / i , / 2 My = 2C(fuf2 M;~Q)Bg;fl (0,0)2% (1, M)\ vac>ei. (8) 
Q =t- 0 

Here |vac > e i is the normalized state vector of the quasivacuum of the electron 
excitations, pi is the position vector of the singlet electron excitation in the crystal 
and £*= pi — ^p2 is the vector of the singlet-triplet electron excitation separation. 
The set of coefficient C(/i, /2M ;~Q) for all"^ -?-- 0 is the wave function of the singlet 
electron excitation in the field of the fixed triplet electron excitation in the ̂ -repre­
sentation. 

Inserting (8) in (5) and using (6), we obtain for the wave function C(fi>f2M;~Q) 
the set of difference equations: 

EfXo) + UVXQ) -WC(fiJ2M;^)+^LuQ - Q) C(fuf2M;^) = 0. (9) 
Q' =1- Q *0 



The solutions of this set of difference equations with corresponding bound 
conditions determine the stationary states of the singlet and triplet exciton in dyna­
mical interaction in the initial state of the crystal. 

4. Incoherent Singlet — Triplet Biexciton 

Before we calculate the nonradiative annihilation rate of the singlet exciton on the 
triplet exciton in our model, we discuss the solutions of the set difference equations 
(9) determining the behaviour of a pair of singlet and triplet exciton in dynamical 
interaction. 

If we use the Fourier transformation, we can rewrite the set of difference 
equation (9) in the form: 

C(fuhM; 1) = 2 G(W; 7 - ?) t7flfi(g) C(f1f2M;^f); Q, ? H . (10) 
Q 

Here G(IF;? - ot) = » V « P [ « * • ? - ? ) ] , ( 1 1 ) 
N Z^ W-EiXk) 

where N is the number of the unit cells in the crystal and Eu(k) is the excitation 
—>• 

energy of the free coherent singlet exciton/i with the wave vector k. 
The set of equations (10) is similar in form to that derived by Takenti [13] 

for the stationary states of a pair of electron and hole in the crystal. Therefore we can 
apply the results of Takenti's mathematical analysis to the discussion our set of the 
difference equation (10). 

As has been shown by Takenti, the set of the difference equations (10) has so­
lutions with continous spectrum of energies io the range of the energies 

0< W - £flmin < AEU , (12) 

where i^min is the minimum energy of the coherent singlet exciton f\ and AEtt 

is the bandwith of its band of energies. These solutions correspond to the scattering 
states of the singlet electron excitation in the potential field of the fixed triplet electron 
excitation. In this case for vanishing interaction between singlet and triplet electron 
excitation, the wave function C(fuf2M ;~Q) of the singlet electron excitation passes 
over into the wave function of a coherent singlet exciton f\ with wave vector k and 
with energy Etl (k) i.e. 

C(fi,f2M; ? ) = - 1 - - exp [i(k . ? ) ] . (13) 
]/ N 

Now suppose, that the condition 

2\U!!(p)\>\AEtí (14) 
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is fulfilled. Here the sum is taken over all separations of the singlet and triplet excit­
ation for which Utxtt < O i.e. for which the forces of the interaction between singlet 
and triplet electron excitation are attractive. Then the set of difference equations 
(10) has solutions with discrete spectrum energies in the range 

W<Ettwm. (15) 

Because the dynamic interaction between singlet and triplet electron excitation is 
short — ranged always, the number of the solutions with the discrete spectrum of 
energies is at most finite. 

The solutions with discrete spectrum of energies correspond to the bound states 
of the singlet electron excitation in the potential field of the fixed triplet electron 
excitation. In this case we have a bound pair of singlet and triplet exciton — singlet-
-triplet biexciton, whose localization determines the localization of the triplet electron 
excitation. 

The transition probability a>a; f.f/t?) of the triplet electron excitation with bound 
singlet electron excitation from one molecule to another is given approximately by 

a>a',txtt(Q) = COU(Q) | Q f l(o) |2 . (16) 

Here mt (Q) is the probability of the nonradiative transition of the triplet electron 
excitation from the reference molecule to the molecule separated by lattice vector 
^Tand Qatjto) is the corresponding overlap integral of the wave functions of the singlet 
electron excitation f± in the bound state a in the field of the triplet electron excitation. 
Because | QatJio) | < 1 for all <o =j= 0, the transition probability of the triplet electron 
excitation with bound singlet electron excitation from one molecule to another is 
always smaller than that one of the triplet incoherent exciton. Therefore in our model 
the motion of the singlet-triplet biexciton as a whole must be analyzed in terms 
of a incoherent random walk model and we can call this type of the singlet-triplet 
biexciton — incoherent singlet-triplet biexciton. In diffusion approximation the 
behaviour of the incoherent singlet-triplet biexcitons in the crystal is described by 
the diffusion coefficient tensor, whose components Ds i fe ; ) (j,j = 1, 2, 3) in analogy 
with the diffusion theory of the triplet exciton can be written in the form: 

-Dsift j) = y j ^ a ; -if. (Q)(Q •"*)(?•"«) (17) 
Q =t- 5 

Here^i(z = 1, 2, 3) are the unit vectors of the Cartesian axies. 

5. Nonradiative Annihi lat ion Rate of the Singlet 
Exciton on the Triplet Exciton 

Now we calculate the nonradiative annihilation rate of the singlet exciton on the 
triplet exciton in our model described in Ch.3. 

As the initial state of the crystal, we take the state described by the state vec­
tor (8). 

11 



As the final state of the crystal, we take in agreement with our model of triplet 
exciton, the state with one triplet electron excitation f2, M localized on the p2 th 
molecule of the crystal. The corresponding state vector of the crystal \f2M' ;p2 > 
is given by the expression: 

|/JM';/>J> = B£ f i . ( l ,Af ') I vac>ei. (18) 

As perturbation operator H' causing the nonradiative annihilation of the singlet 
exciton on the triplet exciton, we take in our model of neutral electron excitations 
the operator of the nonradiative conversion of a pair of singlet and triplet electron 
excitation into one triplet electron excitation. The operator H' can be expressed 
in the form: 

H' = I II I I{Vihvv'(p-p')m\,M)B^..(\,M)B^..(0,0)^ 
-> -> M /> o /' > o f > o 
P * P 

+ VwrTp - " p O i f e (1, M)HpH0,0)J^>(l, M)} (19) 
with 

~> -> ,—< r * -> * -> el -> _ * - - > _ » 
Vififp (P - P') = ]/ 2 I ip£ (ri) w7o (r*) -=> — Vi?f' fa) VP> (ri)d3rid3r2 -

U | r i - r 2 | ( 2 0 ) 

/

# . - > • * - > e 2 _ > _ > _ > _ > \ -> ->• 

Vi^fa) Y^ofa) — — y ? f ' ( ^ ^ ( r O ^ r i d 3 ^ + V2fifr(/> — p) 
I ri — r2 I > 

_ * - ^ 1 / / • * _ > * _ * ^ 2 _ * _ > _ > _ * 

V2tit'r(p -P')= - T r = { I V>p?fa) Y>p̂ ofa) — — ^pf(r2)^f'(ri)d3rid3r2 -
V 2 U I n — ra I 

/

* * el -* _ > _ > _ > \ 

VpS(ri)Vpofa) — ---— ^pS(r2)t/jpT-(ri)d3rid3r2 . (21) 
I r i — ra I ' 

—> —> 
From (20), (21) we see, that Vu^r (p ~ P') (i = 1> 2) are the matrix elements 

of the nonradiative conversion of the pair of fr-th singlet and f"-th triplet electron 
excitation localized on the p - th and p'-th molecule of the crystal into one triplet 
electron excitation f, M localized on the p-th molecule of the crystal th rough electro­
static and exchange interaction (i = 1) or through exchange interaction only (i = 2). 
Therefore on the right side of (19) the first te rm describes the nonradiative annihil­
ation of the singlet exciton on the triplet exciton as nonradiative transfer of excitation 
energy from singlet exciton to the triplet exciton through electrostatic and exchange 
interaction i.e. as absorption of the singlet exciton by triplet exciton. T h e second 
term on the same side of the equation describes the nonradiative annihilation of the 
singlet exciton on the triplet exciton as nonradiative transfer of the excitation energy 
from the triplet exciton to the singlet exciton i. e. as the absorption of the triplet 
excion by the singlet exciton. Th i s second process of nonradiative annihilation takes 
place through exchange interaction only. 
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Let us use the state vectors (8) and (18) of the initial and final state of the crystal 
and the perturbation operator (19) and let us take into consideration the broadening 
of the emission and absorption lines of the incoherent triplet exciton in the crystal. 
Then we derive for the transition probability of the crystal from the initial state to 
the final state with all possible localizations of the triplet electron excitation f2.M' 
and with all possible triplet electron excited states f'2M' the following expression : 

COST = <o$ + <»$ . (22) 

Here 

4V = % I 2 2 I 2 Ca(flf'2M^)Vu;uuQ) I 2 0$AWa) (23) Зft M V a - a Є-ł=0 

is the probability of the absorption of the singlet exciton by the triplet exciton and 

»& = = 2 2 2 2 I Ca(flfiM;-&* I VV;tA(Q) I2 x 
J n M f,' a e % 0 

X J a&(Wa + E)aft(E)dE (24) 

is the probability of the absorption of the triplet exciton by the singlet exciton. 
In these formulae, S means to take average over all initial states a with COmi-

nuous and discrete spectrum of energies of the singlet electron excitation in the 
field of the triplet electron excitation, a$(E) is the absorption line shape factor of 
incoherent triplet exciton f2, o£ (E) is the emission line shape factor of the inco­
herent triplet exciton f2 and afy (E) is the absorption line shape factor belonging to 
the optical transition of the molecule in the crystal from triplet excited state f2 to the 
triplet excited state fg. We suppose, that all mentioned line shape factors are nor­
malized to unity. 

Suppose first, that there are not bound states of the singlet electron excitation 
in the field of the fixed triplet electron excitation, i.e. that the average in (23), (24) 
is taken over initial scattering states of the coherent singlet exciton in the field of the 
fixed triplet exciton. Then neglecting the interaction between singlet and triplet 
electron excitat;on and using (13) and (22), (23), (24) we can derive for the nonradi-
ative annihilation rate /ST of the singlet exciton on the triplet exciton the expression 

COST = 0>$ + <*>ST (25) 
Here 

^ = ^ - 1 . 2 ^ i f/ j fAWlMl^C*)], (26) 
f/ IT 

^ = - ; - 2 l 2 I VzUiU{,G)\2f<>fhES) +E)a<tXE)dE, (27) 
u' k T * o •' 
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where v0 is the volume of the unit cell of the crystal and 

Viw.t&$) = 2 VW.fA(?) exp [i(k . e)] . (28) 
Q * 0 

For the estimate of the order of the magnitude of the nonradiative annihilation 
rate given by (25), (26), (27), we use the dipole-dipole approximation for the coherent 
singlet exciton/i and for the matrix elements Vitt>; txtt(Q) and neglect all exchange 
term in Viv; txtt(Q) (i= 1> 2). Then we obtain for the nonradiative annihilation rate 
of the singlet exciton on the triplet excitons at low temperatures the approximate 
formula: 

Here R0 is given by 

|C?of..?f.f.O M l (I^ min). (29) 

™Rl = Vo (30) 

and ~fitr are the transition dipole moments corresponding to the optical transitions 
f ->f of the molecule in crystal. 

Assume that fi0tx |1 fitttt, and that the energy Etx min of the coherent singlet exciton 
is in the resonance with the energy of the maximum of the absorption band f2 -> f2 

with bandwith AEtttt'. Then taking for anthracene crystal | fi0tx \ ^ | fitttt \ ^ 
™ 10-1 e.Ro [14], o(ul> (Etxmin) ^ \IAEtttt> with AEW ^ 10"1 e Volt and R0 = 
= 6 , 10~8 cm we get COST = 5 . 10~8 cm3 sec-1. This overestimated value of the 
nonradiative annihilation rate of the singlet exciton on the triplet exciton is not too 
far from the experimental value ysT exp = (7 ± 4) . 10~8 cm3 sec -1 mentioned in § 2. 

When the bound states of a pair of singlet and triplet exciton existe, then the 
nonradiative annihilation of the singlet exciton on the triplet exciton can go through 
formation of the incoherent singlet-triplet biexciton also i.e. triplet exciton can act 
as a trap for the singlet exciton. Thus the proper nonradiative annihilation process 
takes place in the second step after the trapping of the singlet exciton by the triplet 
exciton as a monomolecular nonradiative decay of the singlet-triplet biexciton with 
probability given by (22), (23) and (24). In this case we must add to the general 
cinetic schema of the fluorescence of the singlet excitons given in [7], the singlet — 
triplet biexcitons rate equations of the following form: 

dnsT(r, t) ~ . d2wST (r, t) COST nsT(ry t) — /3ST nT(r, t) «s(r, 0 . (31) 
— ^ — = g D S T ( M ) dxidxi -

Here «ST(^ t), ns(r, t) nT(r, t) are the concentrations of the singlet-triplet 
biexcitons, singlet excitons, triplet excitons at the point of the crystal r = {x\, *2> xs] 
at the time t and /?ST is the rate for the trapping of the singlet exciton by the triplet 
exciton. 

14 



B. Nonradiative destruction of triplet excitons by excess 
electrons 

6. Model of the Destruction of Triplet Excitons by Excess Electrons 

Now, we examine theoretically the nonradiative destruction of the triplet ex­
citons by the excess electrons in our model of the triplet exciton and of the excited 
states of the excess electrons. 

First we consider the process of the nonradiative destruction of the triplet ex­
citons by the excess electrons as a multiphonon nonradiative transition of the crystal 
from initial state with one excess electron moving in the potential field of the triplet 
electron excitation fixed on some molecule of the crystal to be final state with one 
excess electron with higher excitation energy. Suppose, that in initial state the triplet 
electron excitation/, M is localized at the p-th molecule of the crystal and denote the 
potential energy of the excess electron in the field of the localized triplet electron 

—> —> 
excitation by U& (r). Then according to the (2), the wave function q>rfr) and the 
energy Ei of the excess electron moving in the potential field of the electron excit­
ation are determined by the equation: 

\ ~ ^ A 7 + Uo^ + Uv1^\ n(^ = Ex n& ' ( 3 2 ) 

Here X are the quantum indexes of the stationary states of the excess electron 
in the field of the localized triplet electron excitation / , M. The additional potential 
energy c7p~f (r) is given through the change of the electrostatic and exchange or dis­
persive forces of the interaction of the excess electron with the molecules of the crystal 
at the excitation of the crystal from the inner electron ground state to the excited 
state with one triplet electron excitation/ localized on the/T-th molecule of the crystal. 
The additional potential energy t7p?(r) is different from zero in the vicinity of the 
molecule with localized triplet electron excitation and wanishes for electron ground 
state of the inner electrons of the crystal. Therefore setting U^(r) = 0 for all r, 
we can also use the equation (32) for the determination of the stationary states of the 
excess electrons in the final state of the transition of the crystal. 

Generally the equation (32) for U^(r) 4= 0 has the solutions with continuous 
spectrum of the energies and can have the solutions with discrete spectrum of ener­
gies also. 

The solutions with the continuous spectrum of energies belong to the scattering 
states of the excess electron in the field of the localized triplet electron excitation. 
For vanishing additional potential energy Upf(r), the equation (32) determines the 
stationary states of the excess electron in the potential field with the periodic potential 
energy c70(r). Therefore in this case the excess electron motion is to be described 
in terms of the band structure of the crystal and the quantum numbers are identical 
with the wave vector k and the band energy E^k) with band index //. Then the 

15 



normalized and orthogonalized wave function of the excess electron (f>^(r) is given 
by the expression: 

'/ViTW r7:n exp [i(k . r)] %T(r) , (33) 
FN 

where the function u^(r) is periodic in the lattice of the crystal. This description of 

the motion of the excess electron is exact for the inner electron ground state because 

in this case is Uv}(r) = 0 for all r. 
The solutions of the equation (32) with discrete spectrum of the energies cor­

respond to the bound states of the excess electron in the potential field of the lo­
calized triplet electron excitation. Iri this case we have a bound complex of excess 
electron and triplet exciton whose localization in the crystal determines the localiz­
ation of the triplet electron excitation. Using similar arguments as for the bound 
states of the singlet and triplet excitons we can conclude that as a whole the bound 
complex of the excess electron and triplet exciton moves through the crystal in the 
incoherent form i.e. through random hopping from one molecule to another. In 
diffusion approximation the behaviour of the bound complex of the excess electron 
and triplet exciton is to be described by diffusion coefficient tenser whose components 
DeT(i, /) (i, j = 1, 2, 3) can be written in the form: 

De'iihj) y 2 <'u(e) G> *)) G • e7), (34) 
C=M) 

where (.O^(Q) is the transition probability of the triplet electron excitation with bound 
excess electron from one molecule to another. 

As a mechanism of the nonradiative destruction of the triplet exciton by excess 
electron we consider the nonradiative transfer of the excitation energy from the triplet 
exciton to the excess electron, which takes place through exchange interaction only. 
In our model, we can describe this mechanism as a nonradiative recombination 
with the hole at the molecule with localized triplet electron excitation resulting in the 
transition of the jz-electron from the excited state of the same molecule to the state 
of the free excess electron. The operator H" describing this process of nonradiative 
destruction of the triplet exciton can be represented in the form: 

""- 2 2 22 2 ^ ' ^ 
i 

+ <-k-WT ÍУ2a л (-5)i îPKI,25) + 2saя(î)B^(l,0) (35) 

Here V^w\ z. a r e t r i e matrix elements of the nonradiative destruction of the triplet 
exciton by excess electron given explicity by the expression: 

Vfswii = 1/-j j <Pr'v(ri)Vvo(r2) j — - ^ ^ ^ A C ^ ) ^ ^ 3 ^ 3 ^ . (36) 
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7. Probabi l i ty and the Rate of the Nonradiat ive 
Destruct ion of the Tr ip le t Exciton by Excess Electron 

Now we calculate the probability of the nonradiative destruction of the triplet 
exciton by the excess electron within the framework of the first order time-dependent 
perturbation theory. The problem is to calculate quantum mechanically the prob­
ability of the multiphonon spontaneous nonradiative transition of the crystal from 
initial state with one excess electron in quantum state and with one triplet exciton 
/ localized at the p-th molecule of the crystal characterized by the state vector 

\ffis • ~ ly2at(-s)lfc(\,2s) + Ivtf (*)££?( 1,0)1 . '37) 

to the final state with one excess electron in the quantum state k\EfJ'(k
!) characterized 

bv the state vector 
+ 1 

| fi'k'; s > ---= a^(s) | vac > e i ; s ----= ± ~- (38) 

caused by the perturbation characterized by the operator H" in (35). 
Using the state vector (37), (38) and operator (35) and taking into consideration 

the broadening of the emission line of the incoherent triplet exciton caused by its 
incoherent interaction with various modes of lattice vibrations, we derive for the 
probability of the nonradiative destruction of the triplet exciton by the excess electron 
through the absorption of the triplet exciton by the excess electron the following ex­
pression : 

ye .,, ^ 2 2 2 I *V** M\E(k>) Ei) , (39) 
x "' ? 

where 2 means to take overage over all initial states of the excess electron in the 

field of the localizated triplet electron excitation. 
Let us suppose, that there are not bound states of the excess electron in the 

field of the localized triplet electron excitation and neglet the interaction between 
excess electron and triplet electron excitation. Then assuming, that in the initial 
state the excess electron is in its lowest energy band with band index /i and with wave 
vector k and using (39), we obtain for the nonradiative destruction rate ye of the 
triplet exciton by excess electron following formulae: 

V* - ^ 2 2 2 ! *W; A I2 4e)(E(k>) E(k)) . (40) 

r"' v 
Here V is the volume of the crystal. 
According to (40), the main contribution to the nonradiative destruction rate 

of the triplet exciton by excess electrons arises from the difference of energies 

Ep.'(Jk') — Epi(k) of the excess electron in the initial and final state near the energie 
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E[e) of the maximum of the emission band of the triplet exciton. Usually, the excit­
ation energy E[e) is much higher than the electron affinity of the molecule Ag and 
the lowest energy band of the excess electron has relatively small band with [11]. 
Therefore in its final state the excess electron has a large kinetic energy and the energy 
band 1v(&') contributing most to the ye must belong to highly excited states with 
a large bandwith. In this case assuming that the matrix element F ^ v ; ^ as function 
of k' varies slowly in the range of energies near the maximum of the emission band 
of the triplet exciton and summing over all k! in the first Brillouin zone, we get the 
following approximate formula for ye: 

In this formula, the integral is taken over the surface F of constant energy in the 
first Brillouin zone defined by the equation 

EM.(k') -Epmin-^Ep, (42) 

where EM min is the minimum energy of the excess electron in its lowest energy band. 
When the bound states of the excess electron in the field of the localized triplet 

electron excitation existe, we must consider the process of the nonradiative destruc­
tion of the triplet exciton by excess electrons as two step process with formation of 
the bound complex of the excess electron and triplet exciton. In this case the proper 
destruction process takes place in the second step as a monomolecular nonradiative 
decay of the bound complex of the excess electron and triplet exciton with the prob­
ability given by (39). Therefore we must consider in the general kinetic scheme of 
the time rate of the change of triplet excitons the time rate of the change of bound 
complexes of the excess electron and triplet exciton also. 

8. Calculation of the Nonradiative Destruction Rate of the Triplet 
Exciton by Excess Electrons in the Anthracene Crystal 

In order to obtain a rough estimate of the rate constant of the nonradiative 
destruction of the triplet exciton by excess electrons in the anthracene crystal, we 
use formula (41) under the assumptions listed below. 

1) We suppose the molecule of the anthracene crystal to be planar. We assume 
—> 

the one-electron functions ^pfW t o o e Hiickel molecular orbitals represented as 
a linear combination of atomic orbitals with magnetic axis normal to the plane of the 
molecule. 

Thus 

where 

(all atoms ť of the p-\h molecule) 

Ya(7) = 2Clf£i(ř) (43) 
Í 

/<25\ V2 

| i(r) == J — J n cos Si exp ( — an) (44) 
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is the known Slater 2pz atomic orbital centered on the 2-th atom of the molecule and 
Cif are the coefficients determined by the symmetry of the molecule. These coeffi­
cients for the anthracene molecule are given in [15]. 

2) We neglect all overlap integrals between atomic orbitals of the different atoms 
in the molecule. 

3) We take the wave function of the excess electron with large kinetic energy 
in the final state to be the free electron wave function in a vacuum normalized in the 
volume V of the crystal. We express the energy of the excess electron4 in this vacuum 
plane wave state in the form [16]: 

Ef{k')- ^—k'*+2h-Ig. (45) 
1m 

Here Ic is the ionisation energy of the crystal and Ig is the ionisation energy of 
the molecule in the gas phase. For simplicity we take the wave function of the excess 
electron in the initial state also to be normalized free electron plane wave and we 
write the enegy I^min in the form [16]: 

En mm = 2IC - Ig - Ag. (46) 

4) We suppose the following unequalities to be fulfilled: 

k0 

a 
< 1, (47) 

~ < 1 , (48) 

a d > l . (49) 

Here d is the minimum distance between the atoms in the molecule and k0 

is given by the expression 

* . = ( - ) • (50) 

5) We assume, that there is thermal equilibrium at temperature T in the initial 
state. Then supposing, that this temperature is not too high, we carry out the sum 
and the average over initial states in (41) with the help of the approximate formula: 

~ 1 I2nh\^ r i h2k2 v t 

Z ••••=— CXp\~i . . . - d 3 * - (51) 

Here m# is the effective mass of the excess electron at the bottom of its lowest 
energy band and x is the Boltzmann constant. 

Under all these assumptions and suppositions, we derive from (41) the approxi­
mate formula for the rate constant of the nonradiative destruction of the triplet 
exciton by the excess electrons in anthracene crystal: 

98e4m *' , N 
ye ~ ~~~jr Gof(T)' (52) 
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I-Tpf-p 1 4 1 4 i r ~\ \ 
GoM = 2 2 C*C" (exP [- ̂  4 J jo(^ij)} > (53) 

where &Q2 is determined by the expression for the conservation of energy 

£k'0*-EP~Ag, (54) 

jo is the spherical Bessel function of the zeroth order and dij is the distance between 
the i-th and j-th atom in the molecule. 

We see that for the values Etf = 1.83 eV [17], a = 3.08 . 108 cm [18], d = 
-= 1.39 . 10-8 cm [15], Ag = 0.55 eV [16] of the anthracene crystal, the conditions 
(47), (48), (49) are good fulfilled at room temperature r = 293-K. Inserting these 
values in (52) and using the coefficients Ci0 and Cu for the highest filled and for 
the lowest unfilled orbital in the ground configuration of the anthracene molecule 
given in [15], we get: 

ye = 2 . 10"9 cm3 sec"1 (55) 

for mM = 10"25 gr [17]. 

Considering the nonradiative destruction process of the triplet exciton by excess 
electrons as a diffusion controlled process we can derive according to [12], the follow­
ing expression for the nonradiative destruction rate of the triplet exciton by excess 
electrons : 

ye dif = 4^(De + DT) #eT. (56) 

Here De is the diffusion coefficient of the excess electron and ReT denote the 
distance to which the excess electron and triplet exciton must approach in order the 
destruction process of the triplet exciton takes place. 

Taking De ^ 1.3 . 10"2 cm2 sec"1 [16], DT = 2 . 10~4 cm2 sec"1 [11] and # e T = 
= R0 = 4.8 . 10~8 cm [11] we get with the help of the formula (56) 

ye dif ^ 8 . 10-9 cm3 sec-1. (57) 

This value of ye dif may be considered as the lower limit because it is always 

I^eT > I^o-
The experimental value of ye according to [8] is 

ye exp = 1.1. 10-9 cm3 sec-1. (58) 

We see from (55), (57) and (58), that the calculated value of the rate constant 
ye and ye dif are in the agreement with the experimental)value within a factor 10 and 
that the rate constant ye calculated according to (55) is nearer to the experimental 
value (58) than minimum value of yedif calculated according to (57). Therefore our 
calculations support the interpretation of the decrease of the triplet exciton lifetime 
in anthracene crystal in terms of the triplet exciton nonradiative destruction by 
excess electrons. From these calculations we can also conclude, that the determining 
process of the nonradiative destruction of the triplet exciton by excess electron is the 
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spontaneous nonradiative transition of the crystal from the initial state with one excess 
electron and one triplet exciton to the final state with one excess electron with higher 
excitation energy. 
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