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The Coupled Coherent and Incoherent Exciton Motion 
and its Influence on Optical Absorption, Electron Spin 
Resonance and Nuclear Spin Resonance 

H. HAKEN 

Institut fur Theoretische Physik der University Stuttgart 

P. REINEKER 

Abteihmg fur Theoretische Physik I der University Ulm 

The coupled coherent and incoherent motion of Frenkel excitons is treated by a model calcul­
ation comprising both its coherent and its incoherent motion. The coherent motion is determined 
by the exchange interaction integral J whereas the incoherent motion is described by the strengths 
of the local (yo) and non-local (yi) fluctuations. Calculation of the optical absorption of systems 
with two differently oriented molecules per unit cells results in the Davydow-splitting given by 
A = 8 J and the line width given by F = y0 + y±. From the equation of motion of the density 
matrix we derive a diffusion equation. The comparison with data of optical absorption and diffusion 
measurements allows to determine all parameters of the system. Using these numerical values and 
the criterium of Haken and Strobl, we derive that at room temperature the exciton motion is in­
coherent and may be described by a hopping process whereas at low temperature it is coherent. 
The interaction of the spin of the triplet exciton with its surroundings is described by the usual 
spin-Hamiltonian which is, however, simplified to a spin 1/2 particle. We solve exactly the two limit­
ing cases of completely coherent and incoherent motion for two molecules. In the incoherent case, 
the influence of the exchange interaction integral is taken into account by perturbation theory. 
We find expressions which are immediately comparable with ESR-experimental data. This com­
parison and additional information derived from optical absorption also yields the parameters of our 
model. Finally, we have calculated the longitudinal relaxation time and the correlation time of proton 
spin resonance, when triplet excitons are present in the crystal. The parameters of the model derived 
from NSR-experiments are consistent with those obtained in the two manners described above. 

I . Introduction 

Since many years, the experimental and theoretical study of excitons in mole­

cular crystals is meeting an ever increasing interest. Among many other things, ex­

citons play a role in sensitized luminescence and, more generally, in energy transport 

in solids. The detailed study of excitonic energy transfer may give insight into the 

energy transport in macromolecules. In this way, but probably also in other ways, 

energy transfer by excitons may also be of importance for the understanding of energy 

transport in biological systems [1]. 

While the existence of excitons in molecular crystals is well established, the 
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nature of its motion was not so clear up to now. For the description of the exciton 
motion two different models have been proposed, namely that of coherent [2] and 
that of incoherent motion [3, 4]. In the coherent case the exciton is assumed to move 
through the lattice in complete analogy to a Bloch wave which is eventually scattered 
by phonons. In the incoherent case it is assumed that the phase of the wave function 
of the exciton is very quickly destroyed by the interaction with the vibrations of the 
crystal so that the exciton undergoes a hopping process. In mathematical terms this 
process may be described by a master equation in its narrow sense or in the limit 
of a continuum by a diffusion equation. 

Sometime ago, Haken and Strobl [5] developed a stochastic model which allows 
to treat not only both limiting cases but also the whole range in between. The cohe­
rent contribution to the energy transport is described by the transition matrix ele­
ment between the molecules of the crystal containing the Coulomb and the exchange 
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Fig. 1. Energy levels and coherent interaction of the molecules 

interaction integral. The phonons destroy the coherence, and their influence is taken 
into account by letting fluctuate the transition matrix element and the energy of the 
localized excitation. This model allowed to derive an exact criterium for the occur­
rence of the coherent or the incoherent motion depending on the parameters of the 
system. Now, this model is developed further in order to get results comparable with 
those of experiments. Thus, contact to optical absorption measurements is made by 
calculating the influence of the coupled coherent and incoherent exciton motion on 
the absorption line shape. Furtheron, starting from the exact equation for the density 
matrix of the model, it is possible to derive a diffusion equation for the motion of the 
exciton which is valid within a certain range of the parameters of the model. Using 
results of optical absorption and diffusion measurements, from the theoretical ex­
pressions for the optical line shape and the diffusion constant all parameters of the 
model are determined. 

But the model of the coupled coherent and incoherent exciton motion renders 
useful results also in the completely different fields of electron-spin resonance and 
nuclear magnetic resonance. We investigate the influence of the exciton motion on 
the ESR-line shape of triplet excitons. The expression for the line shape takes also 
into account the influence of the coherent exciton motion and, in the limit of the 
hopping model, it is identical to Anderson's result [6]. Furtheron, we consider the 
influence of the motion of triplet excitons on the longitudinal relaxation time and 
the correlation time of NSR-measurements done at the protons of organic crystals. 
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The results of both spin resonance experiments, in connection with the results of the 
optical absorption experiments mentioned above, enable us also to derive all para­
meters of the model from our theoretical expressions. The parameters determined 
in this way are consistent with those derived from optical and diffusion experiments. 

2. Model of the Coupled Coherent and Incoherent Exciton Motion 

a) The Coherent Mo t ion of the Exc i ton 

Haken and Strobl5) consider an arbitrary arrangement of molecules whose sites 
are denoted by the index n (see Fig. 1). It is assumed that each molecule may be 
divided into a Leucht-electron and the rest and that each molecule has only two 
equally spaced electronic energy levels, a ground level and an excited level an energy 
e above the ground level. Thus the electron of each molecule may be either in the 
ground level or in the excited level. As one wants to consider Frenkel excitons, only 
such excitations are allowed, where the electron and the hole are situated at the same 
molecule, therefore the molecules always remain neutral. It is allowed, however, 
that the electron and its hole move together to the other molecule. This motion may 
either be coherent or incoherent. The coherent part of the motion is described by the 
matrix element Hn-n' of the interaction between the molecules. 

It is advantageous to use second quantization in describing our system. b+ 
and bn are the creation and annihilation operators for a localized electron-hole pair 
at molecule n. Thus we obtain for the coherent part of the Hamiltonian the expres­
sion (2.1). 

Hi = 2 £ b + b n + 2 H n - n b + b n (2.1) 
n n * n 

The terms of the first sum represent the energy of the exciton when sitting on 
the molecule at site n. The terms of the double sum annihilate an exciton at site n' 
and generate one at site n; therefore, these terms are responsible for the coherent 
energy transport. Under the assumptions of the model, the matrix element Hn-n 
contains the Coulomb and the exchange interaction integral. When considering 
triplet excitons, the Coulomb integral is zero and the only contribution to Hn-n 
stems from the exchange interaction integral which, as usually, will be denoted by 

Jn-n'. 

b) The Incoherent Mo t ion of the Exc i ton 

The influence of the vibrations within and between the molecules is taken into 
account by letting fluctuate the energy of the exciton at the molecule and the tran­
sition matrix element. 

By doing this the molecular vibrations are treated as a heat-bath pushing the 
excitonic system in a stochastic manner. This procedure may be justified, if the 
molecules are not too small and the temperature is not too low. However, it is not 
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possible to take into account the reaction of the exciton on the molecular vibrations. 
The Hamiltonian of this part of the motion is given by eq. (2.2). 

H2 = h(t) = 2 hnn'(t)b+bn' (2.2) 
n, n' 

hnn(t) is assumed to be a Gaussian Markov process. Physically this means that the 
fluctuations are generated by many independent molecular vibrations with broad 
frequency spectrum. 

The correlation functions of the stochastic process h(t) are given by these ex­
pressions 

<hnn'(t) = 0> (2.3) 

<hnn<t)hn-n-(t')> = [<W<W + <W<W(1 - <W)]2fiyn_n-<5(t - t') (2.4) 

ym = y-m (2.5) 
The first expression means, that the mean value of the fluctuations disappears 

or that a possibly existing mean value is taken into account in the coherent part of the 
Hamiltonian given by (2.1). Furtheron, the meaning of the correlation functions may 
be elucidated by considering two examples. The disappearance of the correlation 
function of the diagonal elements <hnn(t) hn'n'(t')> for n #= n' means that energy fluc­
tuations at different molecules are not correlated. Finally, from <hnn '(t) hn*n-(t)> = 
= 0 we see that fluctuations between different pairs of molecules, namely between 
n and n' and between the pair n" and n"', are not correlated. 

c) T h e E q u a t i o n of Mot ion 

From the total Hamiltonian 

H = Hi + H2 (2.6) 

we obtain the equation of motion for the density operator of the system 

MQ = [H, Q] = [Hi, Q] + [H2, ?]. (2.7) 

The first term of the equation of motion describes the coherent motion, the 
second term represents the fluctuating part. One is not interested in the operator Q 
still containing the fluctuations of the heat bath, but in the quantity Q averaged over 
the fluctuations. Taking into account that only H2 contains fluctuations, we arrive 
at the equation of motion for the averaged quantity: 

ihQ = [Hi,e] +<[H 2 ,£]> (2.8) 

What one wants to have is Q instead of Q also in the second term. This requires 
some lengthy calculation. It may be done either by using perturbation theory to in­
finite order and summing up the series again as was the procedure by Haken and 
Strobl5). Another possibility uses Feynman's time ordering operator and the charac-
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teristic functional of the stochastic process.5a) The latter procedure is due to Kubo 
[7] and allows to write the equation of motion in operator form: 

<[H2,ě]> = - 4 - 2 2 2 2 ^ n } 
n n' n" ±i 

{b+.bn-b+bn-e(t) -b+bn'e(t)b+.bn--b+.b n -e(t)b+bn' + 
+ t?(t) b+bn'b+.bn- +b+bn'b+.bn-e(t) - b+bn'^(t)b+-bn-— 

- b+.bn-e(t)b+bn- - 0(t)b.?,bn-b+bn'} (2.9) 

A{n} = yn'-n[<5nn*<5n'n- — onn-0n'n"(l — onn')] (2.10) 

For the representation of the density matrix, we use as basis functions the states 
| 0> with no exciton in the crystal and | n> = b+ | 0> with the exciton sitting at 
molecule n. The equation of motion for the density matrix may then be written in 
the following form 

ihQ = Lo (2.11) 

Here L is the Liouville-Operator. Explicitely the equations for the diagonal and 
non-diagonal elements are given by the following two equations 

^ n n = — i[Hi, 0]nn — 2 F 0 n n + 2^/n-n'On'n' 
n' 

fi£nn' = — i[Hi, o]nn' — 2r0nn ' + 2/n-n'gn'n (2A2) 

The first term on the right side of each equation describes the coherent, the 
following terms stand for the incoherent part of the motion. 

At this point it is illustrative to consider instead of the arbitrary arrangement 
of molecules a two-molecule model. The equations of motion then simplify to these 
expressions 

hQ 11 = —2/1011 +2/1022 — iJ(o2i — £12) 

kQ22 = —2/1022 + 2 / i^n — ij(@i2 — 021) (2.13) 

hQl2 = —2(/0 + / l ) 012 + 2/1021 — ij(022 — on) 

hQ2i = —2(/0 + / i ) £2i +2/1012 — -J(on — Q22) (2.14) 

The first two equations describe the change of the occupation numbers of the 
excitons at the two molecules. From the last equation we may get the change of the 
phase relation between the two molecules. 

Let us first consider the situation, where the exchange interaction integral J 
vanishes, that is we consider the complete incoherent case. Then the equations for 
the diagonal elements of the density matrix QH and 022 are completely decoupled 
from the equations for the non-diagonal elements 012 and 021. The equations for 
the diagonal elements represent a set of rate equations for the occupation numbers 
of the excitons. The transition probability for an exciton between the two molecules 

2/i 
is given by W = — , which means that it is determined by non-local fluctuations. 
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On the other hand, from the equations for the non-diagonal elements onn' of the den­
sity matrix we see, that the phase of the excitons decays exponentially with the ex­
ponent given by 2(y0 + yi). Thus the phase of the exciton is destroyed both by local 
and non-local fluctuations. 

Now we consider the situation of non-vanishing exchange interaction integral. 
Then the equations for the diagonal and non-diagonal matrix elements are coupled 
and we have to solve a four-dimensional eigenvalue problem. In this way, we get 
the occupation probability for molecule number 1 with the exciton initially sitting 
at this molecule as the expression (2A5). 

,n(t) = l + ± ( . + i p j ^ e x p j - l R,,}+ 

+4('- ipjl=rH-H (2,5) 

The exponents/describing the behaviour in time, are written down here 

j R | = j(y0 + 4 y i ) ± j ]/4P - y\ (2.16) 

From (2.16) we remark that for small values of the local fluctuations y0y i.e. 
for y0 < 2J, the occupation number exerts damped oscillations. For values of y0 

in this range, it is reasonable to denote the exciton motion as coherent. On the other 
hand, when y0 > 2J the occupation number decreases exponentially and for such 
values of y0 the motion of the exciton is called incoherent. The transition from co­
herent to incoherent motion happens, when y0 = 2J. 

3. Optical Absorption 

a) The L ine Shape of the Opt ical Absorp t ion 

Now we wish to consider the influence of the motion of the exciton on the line 
shape of optical absorption. To that end, we treat a model consisting of two molecules 
at the sites 1 and 2 each having two energy levels with distance e. The coherent 
interaction between the molecules is described by the exchange interaction matrix 
element J. 

The Hamiltonian of this system is the sum of two parts Hi and H2. Hi describes 
the coherent, H2 the incoherent part of the motion in the above explained way. 
The sum of both is denoted as H0 and considered as the unperturbed part when in­
vestigating optical absorption. 

H0 = Hi + H 2 . (3.1) 

When the two-molecule system is perturbed by a time dependent electric field 
represented in this way _̂  _̂  

E = 2Ei • cos cot (3.2) 
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the system will absorb energy. In addition to the unperturbed Hamiltonian H0 

describing the exciton motion, we have to consider this perturbation 

Hs = —2pT- Ei • cos cot. (3.3) 

Here p is the operator of the dipole moment of the two-molecule system. In 
second quantization, it is given by eq. (3.4). 

p = /Tibf + / lrbi +"fi,2b£ +7*2*>2 (3.4) 

A*n = (<pm | er | cpno) (3.5) 

b+, bn are creation and annihilation operators for excitons and /In is the dipole 
matrix element between the ground and the excited states of the molecule. It is 
assumed that optical transitions between different molecules are not possible. 

The absorbed energy per second is given by the expression (3.6). 

P = 2<o - Ei • / ( to ) . Ei (3.6) 

and thus proportional to the imaginary part of the dielectric susceptibility. 
Using Kubo's formalism [8], it is easy to show that the imaginary part of the 

tensor of the dielectric susceptibility is given by the following expression: 
+ oo 

Zu(«>) = ^ fdTe-""Trs[<e(- °°) Pk(0)Pi(T)> - <{?(-oo)Pl(r)Pk(0)>] (3.7) 

— OO 

The pk's are the cartesian components of the dipole moment operator, Trs 
means trace over the states of the two-molecule system and the brackets <• • •> aver­
aging over the fluctuations. 

The calculation of the correlation function is done according to a theorem of 
Haken and Weidlich [9] using a generalized density matrix Q, which is a function 
of some parameters ai, a*, ft, ft*. The correlation functions are then given as the 
second derivatives of the generalized density matrix according to these parameters. 

Tr8<e(-oo) Pl(t") pk(0)> = Trs (Jjfi e(t%{ai, a*, ft, ft*})V = 3 _ 0} (3.8) 

Tr s <e( - oo)pk(0)Pl(O> = Tr s U ^ e(t", {«i, a*, ft, ft})V = p _ 0} (3.9) 

The generalized density matrix is defined by 

Q(t, {a*, a,, /Si, ft*}) = <g(t, {a*, a,, ft, ft'})> = 
t 

/ h exp J - -i J H0(T)dT - i 2 ajp-t' - i £ APJf}) •<?(-<*>)• (3.10) 
— oo 

t 

• f exp j + -I jH0(T)dT + i |«;P ] t + i ̂ j*Pit"}))> 
— oo 
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T and T are time ordering operators ordering later times to the left and right, 
respectively. H 0 is the unperturbed Hamiltonian; the pjf are the components of the 
dipole moment operator and the index t' means that it is operating at time t'. It is 
not very difficult to show that the generalized density matrix has to satisfy the same 

equation of motion as the original den­
sity matrix together with additional jump 

i Z M conditions at the times tr and t" introdu­

cing the parameters ai and fii. 
The result of the calculation of the 

correlation functions [10] by this method 
may be simplified by the assumption that 
the dipole moments of the two molecules 
have the same amounts, lie in the x-z-pla-
ne and are symmetrically arranged as re-

X ferred to the z-axes (see Fig. 2). In this 
Pig- 2. case we have 

Directions of the molecular dipole moments ._> _> . _> _> 

jui + jU2 = 2/uz a n d JUI — jU2 = - 2 / / x 

For the components of the tensor of the dielectric susceptibility we then have 
these expressions: 

«»(») = [ n + [o> - (« - j ) p " n + [co - ( - e + j)]-] ^ ( 3 - l ° 

_г ľ 
I Г- + [ « , - ( - + J)]2 П + [0> - ( - Є - J)]2 XM = | Г 2 _L г . , 1 ,_ ^. тм2 - Г2-LГ,., _'/• . _ T M 8 ] ^ Є ( 3 - 1 2 ) 

The two expressions show that a light field polarized in x-direction causes 
absorption at co = e — J and a light field polarized in z-direction generates a line 
at a) = e + J. Thus the distance of the lines in the two-molecule model is A = 2 J. 
Furtheron 

r=(yo+yi) (3.13) 

describes the linewidth of the Lorentzian lines. Thus from the distance of the centers 
of the absorption lines we obtain the exchange integral J and from the linewidth 
the parameter r which is a measure for the strength of the fluctuations. The line-
width is determined both by the strength of the local fluctuations y 0 and by the non­
local fluctuations yi, because both processes destroy the phase of the exciton as 
shown in the last section. 

c) C o m p a r i s o n wi th E x p e r i m e n t s 

We wish to compare our results with the polarized excitation spectra for triplet 
excitons in anthracene crystals. These measurements were reportet by Avakian et al. 
[4], Ern et al. [11] and by Hochstrasser and Clark [12]. 
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But before applying the results of our two-molecule model to measurements 
at real crystals, we must remember that in anthracene and naphtalene crystals each 
molecule has four neighbours instead of one which are relevent for the Davydov-
-splitting. Thus instead of A == 2J we have for the Davydov-splitting A = 8J. 
Furtheron, from our model we have got a Lorentzian line shape, and there arises the 
problem how to define the linewidth and the Davydov-splitting A, if the line shapes 
of the absorption lines are not Lorentzian but have a more complicated structure. 
For the determination of these two quantities, Merrifield and Suna have proposed 
a procedure which, in the case of Lorentzian line shapes, reduces to the usual de­
finition of the Davydov-splitting and the linewidth [11], From the comparison of the 
experimental results of the above mentioned papers with our theoretical expressions 
we have the values in table 1. 

Table 1. Values for the exchange interaction integral J and the fluctuation parameter T for various 
values of the temperature infered from the experimental values of (a) Avakian et al. [4], (6) Em et al. 

[11] and (c) Clarke and Hochstrasser [12] 

T/°K A/cm-1 J/cm-1 F/cm-1 

371 19 2.4 
65 || а 
62 || b b 

298 17 2.1 
51 || а 
54 || b b 

160 18 2.25 
30 || а 
26 || b b 

118 18 2.25 
14 || а 
14 j| b b 

4 22 2.7 < 1 c 

room 
tem perаrure 17 2.1 70 а 

The first column gives the temperatures for which we have found values in the 
literature. In the second column the Davydov-splittings are given. From there we 
may calculate the exchange interaction integrals, represented in the third column. 
The fourth column represents the half width at half maximum of the optical ab­
sorption lines. All values are given in units of cm - 1 . The numbers in the last column 
finally refer to the authors of the experimental values. 

From the table we see, that with decreasing temperature the exchange integral 
increases and the parameter r describing the fluctuations becomes smaller. This is 
easy to understand because with decreasing temperature the molecules are packed 
more densely and therefore the overlap between the wave functions and thus the 
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exchange integral increases. At the same time with decreasing temperature the ther­
mal motion of the particles constituting the crystal becomes smaller and by this the 
fluctuations of the exciton energy and of the exchange integral decrease. But until 
now we don't know which of the two quantities y0 and y± is the reason for the strong 
temperature dependence of the optical linewidth, because in the linewidth they enter 
only as the sum F = y0 + y\. 

In order to get the values of y0 and y± separately, we must have additional informa­
tion. To that end, we may use information derived from diffusion or from spin res­
onance experiment. What we want first to do now, is to consider diffusion experi­
ments. 

4. Diffusion 

a) De r iva t ion of a Diffusion E q u a t i o n 

In order to get a diffusion equation, we start from our equation of motion for 
the density matrix. Separating for diagonal and non-diagonal elements, we have these 
two equations 

^ n n = — i 2 H n n ' ^ n , n + i 2 ^ n n ' H n / n - 2 / 1 O r i n T - 2 2 I n - n ' ^ n ' n ' (4.1) 
n' =t= n n' 4= n n' 

h£nn' = — i ^Hnn'Qn'n' +'l^Qnn'Hn'fn' — 2F Qnn' + 2yn-n'On'n (4.2) 
n" 4= n n" 4= nw 

We wish to consider diffusive motion and from our previous considerations of 
the model of coupled coherent and incoherent motion in § 2 we know, that in the 
case of diffusive motion y0 > 2J. Then phase relations are destroyed after a very 
short time. If we consider only time intervals longer than these decay times of the 
phase, in the equations for the non-diagonal elements we may neglect Qnn' compared 
to £nn'. After solving for gnn ' and inserting into the equation for Qnn we may neglect 
all non-diagonal elements compared to the diagonal ones and arrive at an equation, 
containing only diagonal elements. 

hQnn = 2 ^ 17& _ r 2 H n n ' + -jj _ ™ H n ' n 1 (t?n'n' — Qnn) — 
n' z I7n'~n J 7n-n' 1 ) 

- I T L r _ r 2 1 H - ' 2 + v., _r2 iH---12) <*-•-• ~ e») " (4-3) 
n' I7n'-n -- 7n -n J ) 

— 2T Qnn + 2 ^ 7n-n' Qn'n' 
n' 

The first two lines of this equation have their origin in the coherent interaction, 
the terms in the third line follow from the stochastic part of the Hamiltonian. Now 
we assume that the density of the excitons varies only slowly in space, so that we 
may expand £n'n' = t?(Xn0 in a Tylor series in (Xn* — Xn) and neglect terms higher 
than second order: 

e(Xn<) = <>(Xn) + (Xn- - Xn) V e(Xn) + 1 [(Xn- - (Xn) V ] 2 ^ n ) (4.4) 
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After inserting this into the above equation and regarding that the curly brackets 

depend only on the amount of Xn' — Xn we arrive at this diffusion equation: 

a a 
é(x) = 2D«i 

i.j axt ӘXІ e(x) 

with the diffusion tensor given by this expression. 

H» 
DlJ =JoT( r m + T ̂ Tr) Xm,XmJ 

(4.5) 

(4.6) 

Starting from our model this from of the diffusion tensor has also been published by 
Ern and coworkers [11]. 

The first term in the bracket of the diffusion tensor stems from the non-local 
fluctuations, the second from the coherent interaction in connection with the fluctua­
ting terms of the Hamiltonian. Xmi and Xmj 
are the i and j components of the lattice vector 
of molecule m and the sum runs over all lattice 

points. 

b) Comparison with D i rec t ly 
Measured D i f fus ion Tensors 

XҐ 

-v 
& 

3. The four nearest neighbours of a 

molecule in anthracene crystals 

In order to get the parameters of the sy­
stem, we use the D a a component of the diffu­
sion tensor of triplet excitons, measured by Ern Fig. 
et al. [11] in anthracene crystals at various tem­
peratures. It is very easy to evaluate the sum 
in the diffusion tensor for triplet excitons. For triplet excitons the coherent inter­
action matrix element contains only the exchange interaction integral, which decre­
ases exponentially with increasing distance. Thus, for triplet excitons, the sum runs 
only over nearest neighbours as regards the coherent interaction and the same is 
assumed for the fluctuation parameters ym. Int hese crystals the interaction between 
translationally inequivalent molecules is much larger than between equivalent ones. 
Therefore, after summing over the four nearest neighbours of fig. 3, we arrive at 
the diffusion constant given by the following expression: 

D a U(łИ*+r!-)-т 12W (4.7) 

Here a is the lattice constant in a direction, and yi and J are the interactions 
between the above defined nearest neighbours. We see that the diffusion constant 
has the general structure of the second expression of eq. (4.7), where 1 is the distance 
in one jump and W the hopping rate. 

Using the results of the diffusion measurements together with the values for J 

33 



and r derived from optical absorption experiments and a = 8.6A we may calculate 
the values for the non-local fluctuations y\. The results of this evaluation are repre­
sented in table 2. 

Table 2. Values of the parameters of the system infered from diffusion measurements of (a) Avakian 
et al. [4], and (b) Em et al. [11] 

T/°K J/cm-1 Г/cm-1 D - Ä 
/ sec 

yi /cm - 1 

í л J І /«•" 
2 Г+yJ 

371 2.4 65 1.6. 10-4 0.07 0.04 b 

298 2.1 51 1.5. 10-4 0.07 0.04 b 

160 2.25 30 2.5 . 10-4 0.10 0.08 b 

118 2.25 16 4 . 10-4 0.11 0.18 b 

4 2.7 < 1 — — — c 

room 
tempe-
rature 

2.1 70 2 . 10-4 0.11 0.03 a 

The first column of this table again gives the temperatures for which we have 
found experimental values. In the second and third columns we have represented 
once more the values for the exchange interaction integral J and the fluctuation 
parameter F derived from optical absorption experiments. The fourth column gives 
values for the diffusion constant measured by Ern and coworkers [11]. The following 
column shows the values for the non-local fluctuation parameter y± derived with the 
aid of our expression for the diffusion tensor. Finally, in the last column we have 
gathered the values for the second term in the diffusion constant. From the table we 
may infer several interesting facts. 

1. On account of F = y0 -f- 4yi and y\ < _T we see that y0 ^ r. Using now 
the criterium of Haken and Strobl for the occurrence of coherent exciton motion, 
namely y0 < 2 J, we see that at all temperatures with the exception of 4°K, y0 > 2J. 
Thus the motion of the exciton at these temperatures is incoherent and may be 
described by a hopping process. On the other hand, at 4°K we find y0 < 2J, so that 
the exciton motion now should be coherent. 

2. We may see that the temperature dependence of the optical linewidth, descri­
bed by r, is primarily determined by the local fluctuations y0 on account of y0 > y\. 

3. The exciton transport, on the other hand, is determined by the sum of the 
two quantities y\ and 1/2J2/(F + yi). From the table we see, that at all temperatures 
considered, except at the lowest temperature of 118°K, the contribution of the non-
-local fluctuations is even more important than that of the term explicitely containing 
the exchange interaction integral. 
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5. The Influence of Exciton Motion on Electron-Spin-Resonance Absorption 

From the comparison with data of optical absorption and diffusion measure­
ments in anthracene crystals we could determine all parameters of our model and 
show that at room temperature the exciton undergoes a hopping process, whereas 
at 4°K the motion takes place in a coherent fashion. There are, however, more data 
available of excitons in organic crystals, especially those of electron spin resonance 
[13, 14] and nuclear spin resonance [15, 16], particularly by Wolf and his coworkers. 
In order to exploit these experimental data we have extended our former model so 
that it includes the spin Hamiltonian. 

a) T h e Sp in-Hamil tonian 

Triplet excitons have a total spin angular momentum S = 1. The two ^-electrons 
forming the triplet state in naphtalene or anthracene molecules have a dipole-dipole 
interaction on account of the magnetic moments connected with their spin angular 
momenta. This interaction is described by the fine structure Hamiltonian [17] 

H F = S . F . S (5.1) 

Here F is a tensor. The orientation of its principle axes depends on the local orient­
ation of the molecule in the crystal lattice. 

The two molecules in the unit cells of naphtalene and anthracene crystals are 
oriented differently. As we want to compare our results of the model calculation with 
measurements done at these crystals, we assume that the two molecules of our model 
are oriented differently too. Therefore, for both molecules we obtain the following 
total fine structure Hamiltonian 

HF = b+ bi S - Fi • S + b+ b2 S • F2 • S (5.2) 

Fi is the fine-structure tensor of molecule 1, and F2 the fine structure tensor of the 
second molecule which has a different orientation. 

We wish to replace this Hamiltonian by a simpler one, containing the essential 
feature that the triplet exciton sees different magnetic fields when sitting at the two 
differently oriented molecules. Confining for simplicity on excitons with spin 1/2, 
we get the following spin Hamiltonian 

H3 = b+ bi 5(1) - £ + b+ b2 3(2) - £ (5.3) 

H(l) and H(2) respectively are the effective magnetic fields at molecule 1 and at 
yh 

molecule 2, // = --— a is the operator of the magnetic moment expressed by the spin 

operator a and the gyromagnetic ratio y. The Hamiltonian may thus be written as 

H3 = b+ bi A a+ + b+ b2 (Ba+ + Ca+ + C* a+) (5.4) 

where o*z, a+ and cr are Paulioperators. 
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The coordinate system is oriented in such a manner that the total magnetic 
field at molecule 1, including external magnetic fields, points in z-direction. At 
molecule 2, however, the magnetic field has a component orthogonal to the z-direc­
tion, too (see fig. 4). This Hamiltonian has the effect that the excitonic spin rotates 
with different velocities when the exciton is sitting at sites 1 and 2 respectively. 
Furtheron the z-component of the spin is altered by the terms at molecule 2 contain­
ing the flipflop-operators and this together with the incoherent exciton motion leads 
to relaxation. 

*z B 

Fig. 4. Orientation of the effective magnetic fields at the two molecules 

b) T h e E q u a t i o n of Mot ion of the T w o - M o l e c u l e - M o d e l 
wi th Spin 

The total Hamiltonian of the system is now given by 

Ho - Hi + H2 + H3. (5.5) 

where Hi and H2 are defined by (2.1) and (2.2), respectively. After averaging over 
the fluctuations, we obtain for the equation of motion of the density operator this 
expression 

ihQ= [Hi , Q] + <[H2, Q]} + [Ha, Q] • (5.6) 

The first two terms are known from § 2. The evaluation of the third term is not 
difficult and we shall represent the result in matrix form after having introduced 
a suitable basis in Hilbert space. 

Calculating the absorption line we consider H0 as the unperturbed operator 
and the time dependent magnetic field as the perturbation. The number of excitons 
is not altered by H0 and also the magnetic perturbation is not able to change the 
number of excitons but only to reverse the direction of the magnetic moment. 

Thus when an exciton is generated it can not disappear but must sit either at 
molecule 1 or 2. Therefore, we have not to consider the ground state with no exciton, 
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but may describe our system by states | n, s> where n denotes, if the exciton is at 
molecule 1 or 2 and s describes the direction of the spin. 

Using this basis and the notation 0ns, nv for the matrix element <ns | Q | nV> 
of the density operator Q, furtheron F = y0 + yi , the equation of motion of the 
density matrix reads 

ifions; nV = {Onl * J • 02s; n's' + On2 • J • 01s;nV — ^n'2 • J * 0ns; Is' — #n'l • J • 0ns; 2s'} + 

+ {Onl • A • S • 0i s ; n's' + dn2 • B • S • 02s; n's' + ^n2 * <5sl • C • £2, - 1 ; n's' + 

+ 0n2 • <5s, 1 • C* • £21; n's' — <Vl • A • s' • 0ns; Is' — O\i2 * B • s' • Ons; 2s' — 

— (5n'2 * 0s', i • C • Ons; 21 — ^n'2 * <Vl * C* • 0n s ; 2, -l} + 

+ {i • 2(l0nn')7n'-n- £n's; n s '— i27^ • 0ns; n's + i ' 2 ( W 2 ^ - n • Qma; ms} (5.7) 
m 

This system of differential equations looks rather complicated but nevertheless 
has a very simple structure. The terms of the first curled bracket describe the coherent 
motion of the exciton. The third bracket stems from the incoherent part of the Ha-
miltonian and taken alone represents the random walk process. Finally, the second 
bracket represents the coherent motion of the spin in the fields at the two molecules. 
In our model there exists no direct coupling of the spin to a heat bath. But an in­
direct coupling is given by the spin being transported by the exciton and the exciton 
being pushed by the heat bath. 
The ansatz i /*, n.>t\ 

e(t) = e 1 / M R t ) • e (5.8) 

reduces the solution of the system of differential equations to that of an eigenvalue 
problem which may be written in the form 

Re = L0. (5.9) 

The coefficients of the Liouville operator L form a square matrix. R are the 
eigenvalues and 0 the eigenvectors of the eigenvalue problem. Generally, when all 
coefficients being unequal zero, we obtain a 16-dimensional eigenvalue problem 
which we have solved by computer calculation [18]. But two special cases may be 
solved analytically [19]. 

If we have very strong fluctuations, phase relations between the two molecules 
are destroyed rather quickly. Then the exciton motion occurs via a hopping process 
and the influence of the exchange integral J may be neglected in zero's approximation. 
Thus for J == 0 and with the additonal assumption that the magnetic fields at the 
two molecules are parallel but have different amounts, the eigenvalue problem may be 
solved exactly. The influence of the exchange interaction integral is afterwards taken 
into account by perturbation calculation. But first it is instructive, to consider the 
other limiting case with no fluctuations at all, that is we consider H2(t) and thus the 
fluctuation parameters y0 and yi as zero. 
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c) So lu t ion of the E q u a t i o n of Mot ion in the L i m i t of V a n i s h i n g 
F l u c t u a t i o n s 

In this case it is not necessary to solve the equation of motion for the density 
matrix. Instead all information about the system is contained in the wave function 
tp, satisfying the usual Schrodinger equation 

ihip = (Hi + H 3 ) v (5.10) 

By the ansatz y(t) = e ^ w Et w e a r r i v e a t t n e t j m e independent Schrodinger 
equation 

(Hi + H 3 M = Eivn (5.11) 

for the eigenvalues Ei and eigenfunctions y)[. The influence of a time dependent mag­
netic field, applied in the plane orthogonal to the static field, leads to the following 
perturbation of the Hamiltonian 

Hs = ^ • H(t) = y(<j+ + a~) Hx(t) (5.12 

Then transitions between the above stationary states are possible. According 
to time-dependent perturbation theory, the transition probability between the states 
y)\ and xp$ is given by 

PiJ = T I <Vi I H s | v̂ j> I2 *(Ei — Ej — h«>) (5.13) 

and thus proportional to the second power of the amount of this matrix element 

Mij = (ipi | G= + a- | ifi) (5.14) 

In figs. 5 and 6 the eigenvalues Ei and the transition matrix elements | Mij |2 

are represented as a function of the exchange interaction integral J for the values 
A = B = | C | = 1 of the parameters describing the magnetic field strengths. From 
Fig. 5 we see that for J = 0, which means that there is no interaction and thus no 
transition of the exciton between the two molecules, we have the energy levels + A 
and —A belonging to the two possible alignment of a spin 1/2 in the magnetic field 
of molecule number 1. Correspondingly at molecule number 2 we have the two levels 
±1/B2 + |C|2 . 

On the other hand, for large values of J, that is rapid exchange, the energy levels 
Ei and E2 and the levels E3 and E4 are parallel. The dashed lines represent the asym­
ptotic behaviour for large values of J. The energy difference is given by AE = 
= |/(A + B)2 + I C |2. As indicated in the figure, the levels Ei and E2 belong for 
large J to the same Davydov-component, where Ei has the spin mainly in +z-di-
rection and E2 mainly in —z-direction. The levels E3 and E4 belong to the other 
Davydov-component. Fig. 6 shows the squares of the matrix elements Mij, being 
proportional to the transition probabilities between the states i and j . At J = 0 only 
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the transitions between Ei and E4 and between E2 and E3 are allowed with transition 
energies given by Ei — E 4 = 2 yB 2 + | C | 2 and E 2 — E3 = 2A respectively. In 
spin resonance experiments, thus we should see two lines. With increasing exchange 
between the two molecules there appear two further lines, one stemming from the 
transition between Ei and E3 and between E2 and E4 and the other having its origin 

IW*I 2J) A = B=ICI=1 

З ^ 1 

^ ^ - г l E 

— 1 

\ 

ғ . ^J 
Ув*+ ICI2' 

+ A — 1 

\ 

Zi^^ 

- 4 

— 1 

^J—^^ 1 i J 

Уtŕ+юř 

— 1 

^J—^^ 

* ^ > 
-3 *̂"45^̂  ̂  ЛE 
--> 
-5 

Ê^-J 

11,0*12,0 

AE=y(A*B)t*ICIi' 

H,t>-I2,t) 

11,0-12,0 

Fig. 5. Energy levels as a function of the exchange interaction integral J n the pure coherent case 

1.0 r 

/м̂ -./м,,/2 

0 1 2 3 J 

Fig. 6. Squares of the transition matrix element Mij as a function of the exchange interaction integral J 

from transitions between Ei and E2 and between E3 and E4. Both transitions lead­
ing to one line have the same transition probability. When further increasing J, 
only transitions between the pairs belonging to the same Davydov-component, 
namely between Ei and E2 and between E3 and E4 remain. All other transition prob­
abilities disappear. The transition probabilities and energy differences for the two 
transitions still allowed are equal and in spin resonance we expect only one line at 

zffi=y(A+B)2 + |C | 2 . 
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d) So lut ion of the Equation of Mo t ion in the L imit of 
Strong F luc tuat ions 

Let us now turn to the other case of very strong fluctuations, where the energy be­
tween the molecules is transferred by a hopping process. Furtheron, for the analytical 
calculation we have assumed that the magnetic fields at the two molecules be parallel. 
The matrix L in the resulting non-hermitian eigenvalue equation will be split into 

t W O p a m L , = L o , + L l , = R? (5.15) 

Here L0£ contains the terms describing the spin motion and those stemming 
from the fluctuating part of the Hamiltonian. In Li£ we have gathered the terms con­
taining the exchange interaction integral describing the coherent exciton motion. 
Our further procedure is, to consider L0£o = R°£o as the unperturbed problem 
and to treat L i by perturbation theory to second order. 

From the 16 eigenvalues corresponding to the 16-dimensional eigenvalue pro­
blem only the following four are important as regards ESR: 

R° = ± i (A + B) - 2yi ± ]/4yl - (A - B)* (5.16) 

Now it depends on the magnitude of yi, if the square root is real or imaginary, 
that is, if the square root contributes to the damping or results in a frequency shift. 

Expanding for 2yi < | A — B | and 2yi > | A — B | we get for the eigenvalues 
the expressions: 

R° = i 2 A - 2 y i R° - i2B - 2yi (2yi < | A - B |) (5.17) 

R° = - i(A + B ) - ( A 7 B ) 2 (2yi > (A - B |) (5.18) 
4yi 

2yi < | A — B | means slowly moving excitons. In this case, the imaginary parts 
of the eigenvalues, which describe the spectral position of the absorption lines, are 
given by 2A and 2B, respectively. The absorption lines are thus at the positions of 
the lines of the isolated molecules. The real part of the eigenvalues, describing the 
linewidth of the ESR-line is given by 2yi. 

On the other hand, when 2yi > | A — B |, i.e. rapid motion of the exciton, 
from the imaginary part of the eigenvalue we expect a single absorption line at 

f\ T>\2 
(A + B) with the linewidth given by — . In deriving an explicit expression 

4 / i 
for the line shape of ESR, we again use Kubo's formalism. Thus the spectral distri­
bution of the absorbed energy, i.e. the line shape of spin resonance absorption, is 
given by 
/ ( E ) = -I fdTe"( l /h)E TrBs fe(- ~ ) M X (0 )M X (T) - o ( - <%>)Mx(r)Mx(0)] (5.19) 

Here Mx is the operator of the magnetic moment and TrBs means averaging over the 
fluctuations and trace over the states of the system introduced in section 5.b. These 
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correlation functions are again calculated using the theorem of Haken and Weidlich 
in complete analogy to the method used in treating optical absorption. 

We shall evaluate %"(E) first in the limit J = 0. The influence of the exchange 
interaction integral will be considered lateron. 

The calculation of %"(E) results in 

= 8yiй(A-B)2-ZІP 

+ 

(E - 2A)2(E - 2B)2 + 16y?(E - A - B)2 

8yifi(A - B)2 • AP  
(E + 2A)2(E + 2B)2 + 16y?(E + A + B)2 

(5.20) 

This expression is well known since many years and describes the line shape of 
ESR, when the spin is moving stochastically between two different fields. We have 
evaluated this general expression for A = 1, B = 2. The result is given in fig. 7. 
In this figure, y\ is growing when going downward. For small values of 2yi, we 
obtain two lines at E = 2A and E = 2B, whose linewidth becomes wider with in­
creasing y\. For 2yi = (A — B), the two original lines have grown together to one 
single broad line, which becomes smaller and smaller with increasing y\. In order to 
get analytical expressions for the line shapes in the two limiting cases 2y\ < | A — B | 
and 2y\ > | A — B |, we may expand the general expression for %"(E) and obtain 
simple Lorentzian lines: 

Z '(E) = - UP I ^ - + ^ - - ) (2y i< | A - B |) (5.21) 

l(E - 2A)2 + 4yj (E - 2B) + 4yf j 

(A - B)2 

/ ( E ) = -IhAP — — — (2yi < | A - B |) (5.22) 

These expressions confirm our earlier considerations that for slow energy trans­
fer the resonance lines are at E = 2A and E = 2B and that the linewidth is given 
by 2y\. When the exciton, however, moves very quickly between the molecules, we 
have a single absorption line at E = A + B with the width (A — B)2/4yi. Taking 
now into account the influence of the coherent interaction, that is of the exchange 
interaction integral on the linewidth by perturbation theory, we obtain 

(A - B)2 

(*+Љ) 
(5.23) 

n+r) 
In the denominator, we have now the additional term containing the exchange inter­
action integral. We know that 2yi represents the probability for an exciton jump to 
a neighbouring molecule. But in anthracene and naphtalene crystals we have four 
nearest neighbours. Thus we must replace the jump probability by an expression 
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which is four times as great. For the linewidth of ESR instead of the left expression, 
derived from our two molecule model, in the crystal we have the expression on the 
right side of eq. (5.24). 

(A - B)2
 A _ (A - B)2 

crystal 

KFÍJ 
Ò = 

$=0,3 

2A A + B 23 

Fig. 7. Line shapes of the ESR in the pure inco­
herent case for & = 1, B = 2 and different values 

of the fluctuation parameter yi 

• - Í2Y1 +
 J2 ) 

l П +г) 

(5.24) 

Yi+r) 

Using the diffusion constant D a a , derived 
in § 4.b we may write d as shown in the 
next line 

(A - B)2 1 /*\2 

4 D a a h 
Ô = Ш (5.25) 

Introducing the jump probability W and 
the correlation time r c, the linewidth may 
be written alternatively in the manners 
given by eq. (5.26) 

Ò = 
(A - B)-

2W 
= (A - B)2Tc (5.26) 

We see that the linewidth is a linear func­
tion of (A — B)2. Forming now the deri­
vative 

dd 1 

d(A - B)2 2W 
= — (5-27) 

we see that the slope of the straight line 
d = (5[(A — B)2] determines the jump 
probability W. 

e) Compar i son wi th E x p e r i m e n t 

Now we wish to compare this result 
with the experiment. In our calculation 
we have got the secular linewidth, that is 
the linewidth on account of the difference 
in the Larmor-frequencies at the two mo­
lecules. Thus we have to compare our 
theoretical expression with the secular part 
of the total linewidth. The ESR-measure-
ments of Haarer and Wolf [14, 20] at an­
thracene crystals show that the secular 
linewidth indeed is a linear function of 
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(A — B)2, where (A — B) is the difference in the local magnetic fields. From eq. (5.27) 
we may calculate the jump probability W as 

1 [ dô ľ 
2 Ld(A - B)2j 

W = y l . . . " " ^ . ! " 1 (5-28) 

The comparison with the experiment results in 

W = 0.76 • 104G = 0.76 cm" 1 = 1.43 . 101 1 sec" 1 . 

Using this numerical value for W and the values of J and _T determined from optical 
absorption measurements at room temperature (Table 1) 

J = 2.1 c m - 1 , r = 51 cm- 1 

we arrive at 
yx = 0.06 c m - 1 . 

This value is in good agreement with y\ = 0,07 c m - 1 determined from optical ab­
sorption together with diffusion measurements. 

6. Influence of Exciton Motion on Nuclear-Spin-Resonance Absorption 

Finally, we use the model of coherent and incoherent exciton motion in order 
to derive quantities, which are measurable by nuclear spin resonance. Investigating 
anthracene crystals using NSR one observes a shortening of the longitudinal relax­
ation time, if the crystal is irradiated by light. This may be understood as follows: 
The irradiation by light generates triplet excitons in the crystal. Their magnetic 
moments interact with those of the protons leading to hyperfine structure interaction, 
which is time dependent on account of the exciton migration and in this way causes 
relaxation processes. The longitudinal relaxation time of this process is obtained by 
a model calculation. 

In order to investigate NSR one applies a constant external magnetic field H o z 

in which the proton spins may align. This field is assumed to point in z-direction. If 
the crystal is irradiated by light, triplet excitons are generated. The magnetic mo­
ments, connected with the spin of the triplet excitons generate an additional magnetic 
field at the sites of the protons. This magnetic field is time dependent on account of 
two reasons: Firstly, the magnetic moments of the excitons rotate in the external 
magnetic field with their Larmor-frequency coe = ye • H o z . Thus the additional 
magnetic field H(t) generated by the excitonic spins oscillates with this frequency coe. 

H x(t) = H ± cos coet, H y(t) = H ± sin coet, H z = H z . (6.1) 

H z is the component of this field in the z-direction, and H x the component in the 
x-y-plane. Secondly, the exciton may only generate a magnetic field at a certain 
molecule, if it is really sitting at this molecule. But on account of the interaction be­
tween the molecules, the excitons migrate from molecule to molecule. Therefore, 
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the probability gn of finding an exciton at a certain molecule depends on time. This 

time dependence is calculated within our two-molecule model. With the initial con­

dition of finding the exciton at t == 0 at the molecule n, this probability is given by 

M l _L l fi . • ^o \ -(i/fe)Rst 

^) = T+T!1+'PF=w)e + 

(6.2) 

+ _ . П _ i т _ _ Z £ _ = _ ) e - ( І / Һ ) R 9 t ì( 4 l 1/4J 2 . 
ГoJ 

and Rg and Rg are represented by (2.16). 

Assuming furtheron that these time dependencies are equal for all molecules occupied 
by an exiton, we have as total Hamiltonian: 

H = - 2 H o z yWnz - 2,n(t)Hi(t)// r ii . (6.3) 
n n, i 

Here the first term represents the energy of the protons in the external magnetic 
field H o z . The second term stems from the time dependent magnetic fields generated 
by the motion of the excitonic spins. on(t) = 0 for protons whose molecules are not 
occupied by an exciton. 

Assuming that the proton spins don't interact, we may separate the equation 
of motion of the density matrix of the protons 

ihg = [H, g] (6.4) 

by a product ansatz into the equations of motion of the single proton spins. Using 
second order perturbation theory we obtain in the interaction representation for 

-~ the usual expression 

^ __ - i - [ i ? ( t ) , g ( 0 ) ] + ^ j 2 f [ [ , ( 0 ) , i r ( t O ] , ^ ( t ) ] d t ' (6.5) 

o 

where Jf? (t) is given in the following line 

j f ( t ) = - Qjfc) — {H x (o+e 1 («p-«e) t + a- e-i(a> p-a> e)t + H Z ( T Z } (6.6) 
2 

and cop = ypH_z is the Larmor-frequency of the protons. Multiplication of the 
equation for Q with the operator of the z-component of the proton spins and using 
trace operation, as usual we arrive at an equation of motion for the z-component of 
the magnetization. Now, not all molecules are occupied by an exciton. N e be the 
number of molecules with excitons and N the total number of molecules. Thus 
N e/N is the density of the excitons. Furtheron, there is also some relaxation when 
the crystal is not irradiated, which means, when there are no excitons in the crystal. 
We denote this relaxation time by T[. 
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Taking these two facts still into account, we arrive at this equation of motion 
for the z-component of the total spin: 

The first expression in the curly bracket is the relaxation rate having its origin 
in the presence of the excitons. It will be denoted by 1/Ti, ex- For y0 > 2J, that 
is for incoherent motion of the exciton, we obtain 

1 N e 1 _ N e y * H i 1 2TC 

Tr^=NTT-^^-T"TT^ ( y o > J) ( } 

Capital Q is the difference in the Larmor-frequencies of the exciton and proton 
spins and approximately equal to the Larmor-frequency of the exciton spin. The 
correlation time TC is given by 

h 
T c ~ ' ™ (6.9) 

(*+Э 
Taking now into account that in a real crystal of anthracene we have four neigh­

bours which are relevant for the interaction between the molecules, instead of the 
left expression we have that one on the right side of eq. (6.10). 

* crystal - * ( y o > 2 J) (6.10) 

(2]"+£) = * 2-4(2>"+£) 
NSR-measurements of Wolf and coworkers [15, 16] done were at room tempe­

rature. There the assumption y0 > 2J is well fulfilled and we may use the above ex­
pression for TC in evaluating experimental data. 

At room temperature, Wolf and coworkers got 

rc == 5 • 10~12 sec . 

Furtheron, we know J and y0 from optical absorption measurements: 

J = 2.1 cm - 1 y0 = 54 cm -1 

The evaluation of the above expression then results in 

yi = 0.03 cm-1 

This value is in satisfying agreement with y\ = 0.06 cm - 1 known from the 
other experiments if we remember the rough assumptions, made in evaluating NSR-
-experiment: the interaction between the spins of the protons and the excitons was 
treated classically, the fine structure interaction was neglected, and instead of the 
two-dimensional motion of the exciton we have considered the motion of the exciton 
between two molecules. 
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7. Summary 

Let us now summarize. We have presented a model, which tries to describe the 
coupled coherent and incoherent motion of Frenkel excitons. The coherent motion 
was described by the Coulomb and the exchange interaction integral, whereas the 
incoherent motion was represented by a Gaussian Markov process. After discussing 
the properties of the model using a two molecule system, we have investigated the 
influence of the coupled coherent and incoherent exciton motion on the line shape 
of the optical absorption. Starting from the equation of motion for the density matrix, 
in the limit of very strong fluctuations we have arrived at a diffusion equation. Then 
we have extended the model in order to allow the comparison with data obtained 
from electron and nuclear spin resonance. 

Table 3, Comparison of the local fluctuation parameter yi infered from 
various experiments at room temperature 

optical absorption d i f fus ion ESR N S R 

J/cm-1 Г/cm - 1 yi/cm - 1 yi/cm - 1 yi/cm - 1 

2.1 51 0.07 0.06 0.03 

In table 3 we have collected the data derived from these experiments at room 

temperature. In the first two columns we have represented the data derived from optical 

absorption experiments. In the last three columns, the values for y\ are given obtained 

by using the data known from optical absorption and from diffusion, electron spin 

resonance and nuclear spin resonance, respectively. 

Taking into account the rough assumptions made in evaluating NSR, we may 

say that the data for y± are in satisfying agreement. Thus using our model, we may 

describe completely different experiments in a consistent manner. 

Furtheron, from the values of the parameters and the criterium of Haken and 

Strobl we could infer that the exciton motion in anthracene at room temperature is 

incoherent. On the other hand, at 4°K it should be coherent. The temperature be­

haviour of the parameters has been derived from optical absorption and diffusion 

measurements, covering the range from 371°K to 118°K. 

ESR and NSR measurements, however, are only available at room temperature 

and at 77°K. Thus, for the future, it seems to be useful to have more and exact 

enough data also from these measurements. 

From the theoretical point of view, it seems useful to extend those calculations 

which have been based on the two-molecule model to a larger arrangement of mole­

cules, because in anthracene crystals the excitons move mainly in the a-b-plane. 

Furtheron, the application of this model to perturbed crystals should deliver results 

comparable with sensibilisized flourescence measurements. On the other hand, it 

would be interesting to treat explicitely the coupling of excitons to molecular and 
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lattice vibrations and thus to derive the model of coupled coherent and incoherent 
exciton motion from first principles. 
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