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The object of this paper is to show that the concept of reflection and coreflection can 
be used to advantage when investigating orthomodular lattices. In addition, the commu­
tator sublattice of a generalized orthomodular lattice is considered, and some of its char­
acteristic properties are presented. 

In what follows, by an allele one means a quotient b\a of a lattice ££ such that 
there exists a quotient d\c of J£? which is projective with b\a and which satisfies b ^ c or 
a = d. In this case we write b\a § d\c. The set of all the alleles of ££ is denoted by A(J^). 
It is known [1] that the relation /3 defined on a relatively complemented lattice ££ by 

a = b{$)o {([m, n] <-= [a f\ b>a y b]& n\m § q\p) ==> m = »} 

is a congruence relation of the lattice J£f. Similarly, the relation y defined by 

a = b(y)o 3 n e N 3 a±y <*2, • • •> an 

a /\ b = ao fiai ^ ... g an = a /\ b 

and at+i/ai GA(J^) for every i = 0 , 1 , . . . , n— 1 is a congruence relation on such a 
lattice. 

The reflection of Ĵ f, written Ref ££> is the lattice «Sf/j8; the coreflection of JSf, written 
Coref o^, is the lattice J^/y. 

The commutator of two elements and the commutator sublattice <&' of a generalized 
orthomodular lattice ^ were denned by Marsden in [3]. The reader is referred to [1] for 
other definitions. 

If ££ is a relatively complemented lattice and ££ is an ortholattice, ££ = (L, \ / , /\ , 
', 0,1), then every congruence p of the lattice ££ = (L, v > A) is also a congruence of the 
algebra (L, V > A /)• As usual, the operations on the quotient algebra are denoted by the 
same symbols and so we write, e.g., J^/O = (L/p, V > A ,'). 

Theorem 1. Let ££ = (L, V > A,' , 0, 1) fe a relatively complemented ortholattice. 
Then ££ is on orthomodular lattice if and only if its reflection Ref ££ = (L//9, V > A , ' , 

[0], [1]) is orthomodular. 
Proof. 1. J27 is orthomodular iff every two elements s, t of J£? satisfy J V ^ = 
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= 5 V (s' Л (5 Л 0)- Hence, the orthomodularity of 3? implies the orthomodularity 
ofJť/ß. 

2. Let £ŕjß be orthomodular, let s,tєL and suppose that s ^ ť&s /\ t = 0. 
Now 5/0 / l / ř \ ť\0 and [ ř ' , í ] c [0,5]. By Remark of [1] this means that s\ť 
is projective with a quotient v\u where [w, v] <-= [0, t'] and, hence, 5 = ť(y). On the 
other hand, in the quotient algebra š£\ß we have [5] = [t]' & [s] Л [ť] = [0] and, by 
orthomodularity of =£7/3, we see that 5 = ť(ß). Therefore 5 = ť(ß f] y) and so 5 = ť. 

Recall a lattice <£ is called semi-discrete [2] if for every two comparable elements a, b 
there exists a finite maximal chain connecting a with b. 

Theorem 2. Lčí Sŕ be a relatively complemented lattice satisfying one of the following 
conditions: 
(i) oðf is semi-discrete; 
(ii) every interval in ££ satisfies ťhe descending chain condition; 
(iii) every interval in š£ satisfies ťhe ascending chain condition. 

Then 3? is isomorphic to the direct product of Ref 3? and Coref £ľ. 
Proof. Since š£ is supposed to be relatively complemented, ßy = yß; moreover, 

ß f) y is the diagonal ЛL of L2. Thus it is sufficient to show that 

(1) V a< ЬЗ a0, a ь ..., an, n є N , 
a = ao äï a\ ^ . . . _̂  an = b 

such that 

V i = 0 , 1 , . . . n — 1 ai = ai+l(y) or aг- = OІ+I(/Î) • 

Now, if & is semi-discrete, then there are ao, a i , . . . , an such that 

a = ao < a i . . . < an = b 

where <• denotes the covering relation. If a% = at+\(ß) does not hold, then aг+i/ai є 
є A (oðf) and so ai+i = <ц(y). 

If & satisfies the condition (ii) and if a < b, then either a = b(ß) or there exists an 
interval [p, q] <= [a, b] such that p + q and p = q(y). If p = a and b = a, we are 
done. If this is not the case, let q+ denote a relative complement of q in [p, b]. By [1, 
Lemma 2.3 (ii)] there exist elements ao, a i , . . . , ak - such that 

ao = q+ < a\< ...< ak = b 
and such that 

V i = 0, 1,.. . , k ai+\ = at(y) 

If a = ^+(^)5 then the chain 

a ^ q+ = ao< a\< ... < aк = b 

has the property (1). If a = a+(/3) is not valid, then a < q+ and we set <L>a = a, 
(Db = j+. Now, the same argument may be applied to the interval [(1)a, (1)b] and so 
we get that either (1) is true or there exist elements a't such that 

b = aк> ... > a\> q+ =a0 = (1)b = a'к, > ... > a[> ( 1 ) J + = a0 
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and such that ar
i+1 = af

{(y) for every i = 0 ,1 , . . . , k'. By hypothesis this process will stop 
in a finite number of steps. Consequently, (1) is true. 

The final statement of the theorem follows by duality. 
Lemma 3. If śŕ is a non-distributive simple relatively complemented lattice with 0, 

then a = 0(y) for every a of <Sť. 
Proof. By [1, Proposition 2.7] there exist elements c < d such that c = d(ß) does 

not hold. Thus there are elements p Ф q such that [p, q] <= [c, d] and q\p є A(Jť). 
So we havep < q and p = q(y) and therefore y Ф Ль- Since śŕ is simple, y = L x L. 

Proposition 4. LČÍ (G, V - Л) bć a simple lattice which is not distributive. Let 
У = (G, V 5 Л 5 a — x,0) be a generalized orthomodular lattice. 

Then <$ = <S'. 
Proof. This follows easily by using Lemma 3 and [1, Proposition 3.1]. 
Theorem 5. Let Ж = (H, \J, /\ , a ± x>0) and & = (G, V, Л > a T x> 0) be 

generalized orthomodular lattices. Suppose <p is an isomorphism (or a homomorphism) 
of the lattice (Я, \J, f\) on the lattice (G, VJ Л) (or into the lattice (G, Vз Л)). 
Let ЖL,^ßT denote the commutator sublattice of Ж and Уь respectively. 

Then 
<p(Ж±) = <ŠT 

(or <p(Ж±-) c ^ T ) . 

Proof. If h = 0(y(tf, V5 Л))> then 

0 = h0 ^ h\ = ... = hm = hy m є N 

where for every i = 0 3 1 , . . . , m — 1 we have Һ+\\ҺІ § K\\HІ. \ï<p is a homomorphism, 
then from this we get 

0 = 99(0) = <p(hь) ^ <p(h\) ^ ... ^ <p(hm) = <p(h) 

гná<p(hi+\)\<p(hi) %<p(Ki)\<p(Hi). Therefore <p(h) = 0( ľ(G, V, Л))-
Corollary 1. Let У = (G, Vэ t\)bealatticeandlet Ţ cmd J_ be two"relativeopera-

tions" defined on G in such a way that (G, v •> Л J Ű T ^ O ) and (G, VJ /\, a J_ x, 0) are 
generalized orthomodular lattices. 

Then УT = У1- where УT ,УL denote the corresponding commutator sublattices. 
Corollary 2. Suppose f is an automorphism (or endomorphism) of a lattice 

(G, V з Л )• V & = (*-ь V 5 Л 5 a T x, 0) is a generalized orthomodular lattice, then 

f(GT) = GT 
(or/(G"г) c GT). 

The verification of the following technical lemma is straightforward and will there-
fore be omitted. 

Lemma 6. Suppose a lattice (G, V 5 Л) w isomorphic with the direct product oflattices 
Жy Ж. If (G, V э Л J Ű — JC, 0) ií a generalized orthomodular lattice, then 

(i) Ж and Ж determine also generalized orthomodular lattices; 

(ü) 
(Ä, *) ^ («-, 6) => (a, 6) — (*, *) = (a — h, b — k) 

59 



for every (h, k)y (a, b) of the direct product Ж x Ж; 

(Ш) 
com[o-<2Л*l (Я>8) =(com[0}qiygl](qъgi), com [ 0 j ? 2v f a] (Я2,g2)) 
where q = tøi, £2)> g = (gъ g2) • 

Proposition 7. LĆÍ <§ be a generalized orthomodular lattice and let <& be isomorphic 
zoith the direct product Ж x Ж of tzoo lattices Жь Ж. 

Then 
<3' =• Ж' x Ж' and (Ж x Ж)' = Ж' x Ж' 

where Ж' x Ж' denotes the direct product of the generalized orthomodular lattices Ж> Ж'. 
Proof. In view of Theorem 5 it suffices to prove that (Ж x Ж)' = Ж' x Jf'. 

Clearly, (Jř x jf)' c ^ ' x Ж'. But if t is of ^f' x X', then t = (A', *') where 

w 

V com[0,AťVÄѓ*l (**> ҺІ) = *' є Я ' , 
í=i 

V com[o,*,v***i (*/» *;*) = *' є K' • 
1=1 

We may here assume that m = n.By Lemma 6 (iii) we get 

m m 

(*', *')) ^ ( V com. .. (*,„ h*) , V com. . . (*, k*)) = 
i=l í = l 

m 

= V (com[o,/7iv/.i* (Äi5Äi)jcom[o.*ťv*<*l (*ь***)) = 

1 = 1 

= V com[0>f tVft] ( Í Ь ^ І ) Є ( ^ x Ж)' 
í=i 

where qi = (ҺІ>kt), # = (h%k*)єH x K. 
Theorem 8. Let <ś bea generalized orthomodular lattice satisfying one of the conditions 

(i), (ii), (iii) of Theorem 2. 
Then <&' ^ Ref <Sand<9 = 9' x Ж where Ж ^ Coref 9. 
Proof. First, 9 ~ #//? x # / ľ by Theorem 2. By Proposition 7 we have 3 ' £ 

= (9/ßУ x (9/y)'. Using Lemma 6 (i) we see that 9\y is a generalized orthomodular 
lattice. Hence, by [1, Proposition 2.7], (9\y)' =• 1 and therefore 9' ~ (3/j8)'. Now, if 
g єG, then from the proof of Theorem 2 we conclude that there is a finite chain 

0 = ao =Ç ai = . . . ѓan =g 

with the property ŰІ = ûѓ+i (7 u ß) for every 1 = 0, 1,..., n — 1. But for the element 
[g] of 9\ß this yields [0] = [g] (y(9\ß)). Hence (9\ß)' = 9\ß by [1, Proposition 3.1] 
and so 9' =• 9\ß = Ref 9. Now, 

# - 9\ß x 9\y 
and 

x «Г/ľ)' = (śГ/Ø)' x (9\y)' = 9ф x <0> . 
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L e t / b e an isomorphism of 9\ß x 9\y on 9. By Theorem 5 

ftølß x 9lүУ) = .»', 
and we see that 

f{9\ß x <0» = 9'. 
On the other hand, 

9 =f(9\ß x <0» x/«0> x 9\y). 

Therefore 9 = 9' x Ж where Ж =/<(0> x #/y) - <0> x 9\y ^ ðř/y = Coref 9. 
Theorem 9. Let Sŕ be on orthomodular lattice offinite length. Then 

SЄ1 = SЃX x Sŕг x ... x Sŕk,k = 0, 

where the lattices SЃІ of the direct product are simple orthomodular lattices which are not 

distributive. (Here, of course, if k = 05 SЄ' = 1). Under the same hypotheses, S£ = 

= SЄ' x 2m where 2m (m — 1) denotes the direct product of m copies of the two-element 

lattice 2 y and 2° = 1. 

Proof. By Dilworth Theorem we have 

SЄ = SЃX x SЃг x ... x SЃк x ®i x ... x Ø w 

where ^ І are simple distributive lattices of finite length. Hence Çђi = 2 and, by Proposi-

tion 7, 
&' = SЃ[ x 5 ^ x ... x ^ . 

Using Proposition 4, we get 

JŽf" = ^ i X ^ 2 X . . . X ^ f c . 
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