Acta Universitatis Carolinae. Mathematica et Physica

Jaroslav Ježek; Tomáš Kepka
Extensive varieties

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 16 (1975), No. 2, 79--87
Persistent URL: http://dml.cz/dmlcz/142371

Terms of use:

© Univerzita Karlova v Praze, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Extensive Varieties

J. JEŽEK and T. KEPKA
Department of Mathematics, Charles University, Prague

Received 4 March 1974

Consider universal algebras A of a given type Δ. We recall that Δ is a set of some operation symbols, each having assigned a non-negative integer (arity) and to any $F \in \Delta$ of arity n there corresponds in A an n-ary operation, denoted by F_{A}. An element $a \in A$ is said to be idempotent if the one-element subset $\{a\}$ is a subalgebra in A, or equivalently if $F_{A}(a, a, \ldots, a)=a$ for any $F \in \Delta$ (if F is nullary, this means $F_{A}=a$). Let K be a variety (i.e. an equationally definable class) of algebras of type Δ. We shall say that K is an extensive variety if any algebra of K can be imbedded into an algebra of K having at least one idempotent.

Proposition 1. Let K be a variety of Δ-algebras. The following are equivalent: (i) K is an extensive variety.
(ii) For any $A, B \in K$ there is an algebra $C \in K$, containing a subalgebra isomorphic to A and a subalgebra isomorphic to B.
(iii) For any subset $M \subseteq K$ there is an algebra $C \in K$ such that every $A \in M$ is isomorphic to a subalgebra of C.
(iv) The free K-product of any pair of K-algebras is formed by monomorphisms.
(v) The free K-product of any family of K-algebras is formed by monomorphisms.

Proof. The equivalence of (ii), (iii), (iv) and (v) is easy and belongs to the mathematical folklore.
(i) implies (ii). For $A, B \in K$ there are $C, D \in K$ with idempotents such that A is a subalgebra in C and B is a subalgebra in D. The cartesian product $C \times D$ is an element of K and contains subalgebras isomorphic to A and B.
(ii) implies (i). Let $A \in K$. There exists an algebra $B \in K$ such that A and the one-element algebra are subalgebras in B.

Let x, y, z, \ldots be a set of variables. Expressions containing variables and operational symbols from Δ are called Δ-terms. If t is a Δ-term then $\operatorname{var}(t)$ will be the set of all variables occurring in t. Further, by $W(\Delta)$ we shall denote the Δ-algebra of all the Δ-terms. Let $u, v \in W(\Delta)$ and $A \in K$. We shall say that the algebra A satisfies the equation $u=v$ if $f(u)=f(v)$ for all homomorphisms f of $W(\Delta)$ into A. Finally, if E is a set of equations, then $\operatorname{Mod}(E)$ denotes the variety of all Δ-algebras satisfying all equations from E.

Proposition 2. Let Δ be a type containing no nullary symbols and E be a set of
equations such that $\operatorname{var}(u)=\operatorname{var}(v)$ for every equation $u=v$ belonging to E. Then $\operatorname{Mod}(E)$ is an extensive variety.

Proof. Let $A \in \operatorname{Mod}(E)$. Choose an element e not belonging to A and define a Δ-algebra B in the following way:
(i) $B=A \bigcup\{e\}$.
(ii) If $F \in \Delta$ is of arity n and $a_{1}, a_{2}, \ldots, a_{n} \in A$ then $F_{B}\left(a_{1}, \ldots, a_{n}\right)=F_{A}\left(a_{1}, \ldots, a_{n}\right)$.
(iii) If $F \in \Delta$ is of arity $n, a_{1}, \ldots, a_{n} \in B$ and $\left\{a_{1}, \ldots, a_{n}\right\} \nsubseteq A$ then $F_{B}\left(a_{1}, \ldots, a_{n}\right)=e$. Since e is idempotent and A is a subalgebra in B, it is enough to prove $B \in \operatorname{Mod}(E)$. For, let $u=v$ be an equation from E and f be a hommorphism of $W(\Delta)$ into B. If $f(x) \in A$ for any $x \in \operatorname{var}(u)$, then $f(u)=f(v)$ follows from the validity of $u=v$ in A. In the opposite case we have $f(u)=f(v)=e$.

Proposition 3. Let Δ be a type containing no nullary operations and K be a variety of Δ-algebras. Let there exist two Δ-terms u, v such that $\operatorname{var}(u)$ and $\operatorname{var}(v)$ are disjoint sets and the equation $u=v$ is satisfied in K. The following conditions are equivalent: (i) K is an extensive variety.
(ii) The equation $u=F(u, u, \ldots, u)$ is satisfied in K for all $F \in \Delta$.

Proof. (i) implies (ii). Let $A \in K$ be an arbitrary algebra. Then A is a subalgebra in an algebra $B \in K$ which possesses an idempotent e. If $f: W(\Delta) \rightarrow A$ is a homomorphism then we define a homomorphism g of $W(\Delta)$ into B in this way: $g(x)=e$ for all variables $x \in \operatorname{var}(v)$ and $g(x)=f(x)$ for all variables $x \notin \operatorname{var}(v)$. We have $f(u)=g(u)=g(v)=e$, so that $f(u)=f(F(u, u, \ldots, u))=e$.
(ii) implies (i) trivially.

If Δ contains some nullary operations, then a variety K of Δ-algebras is extensive iff every algebra from K contains at least one idempotent, i.e. iff $F(c, c, \ldots, c)=d$ is valid in K for any $F \in \Delta$ and any two constants $c, d \in \Delta$.

In the following we restrict ourselves to the case of groupoids and quasigroups.
Proposition 4. Any variety of semigroups is extensive.
Proof. Let K be a variety of semigroups. If $\operatorname{var}(u)=\operatorname{var}(v)$ for every equation $u=v$ valid in K then the assertion follows from Proposition 2. In the opposite case it is evident that there exist two different natural numbers n, m such that $x^{n}=x^{m}$ holds in every semigroup from K. Hence any cyclic semigroup form K is finite, and consequently it contains an idempotent.

Proposition 5 .Let t, u, v be three groupoid terms such that $\operatorname{var}(t)=\operatorname{var}(u)=$ $=\{x\}$ and $\operatorname{var}(v)=\{y\}$. Then $\operatorname{Mod}(t=u v)$ and $\operatorname{Mod}(t=v u)$ are extensive.

Proof. Let $A \in \operatorname{Mod}(t=u v)$. If $a \in A$, then we denote by f_{a} the homomorphism of W into A such that $f_{a}(z)=a$ for every variable z. Let $a, b \in A$ and $f_{a}(u)=f_{b}(u)$. We show that $f_{a}(t)=f_{b}(t)$. Indeed, if $\mathrm{g}: W \rightarrow A$ is such a homomorphism that $g(x)=a$ and $g(y)=b$, then we can write $f_{a}(t)=g(t)=g(u v)=g(u) g(v)=f_{a}(u) f_{b}(v)=$ $=f_{a}(u) f_{b}(v)=f_{b}(u) f_{b}(v)=f_{b}(u v)=f_{b}(t)$.

Choose an element e not belonging to A and define a groupoid B in such a way:
(i) $B=A \cup\{e\}$.
(ii) A is a subgroupoid in B.
(iii) $e a=e$ for any $a \in B$.
(iv) If $a \in A$ and $a=f_{b}(u)$ for some $b \in A$ then $a e=f_{b}(t)$.
(v) If $a \in A$ and $a \neq f_{b}(u)$ for all $b \in A$ then $a e=e$.

It is easy to show that $B \in \operatorname{Mod}(t=u v)$. For $\operatorname{Mod}(t=v u)$ the proof is similar.
Proposition 6. Let t and u be two groupoid terms such that $\operatorname{var}(t)=\{x\}$, $\operatorname{var}(u)=$ $=\{x, y\}$, and let u contain no subterm having the form $y v$ for some term v. Then Mod ($t=u$) is extensive.

Proof. Let $A \in \operatorname{Mod}(t=u)$. Take an element $c \in A$, an element e not belonging to A and set $B=A \cup\{e\}$. We extend the groupoid structure of A to B setting $a e=a c$, $e b=e$ for all $a \in A$ and $b \in B$. In order to prove the proposition it is sufficient to show $B \in \operatorname{Mod}(t=u)$. For, let f be a homomorphism of W into B. The following cases can arise:
(i) $f(x) \in A$ and $f(y) \in A$. Then $f(t)=f(u)$ follows from the validity of $t=u$ in A.
(ii) $f(x)=f(y)=e$. In this case, $f(t)=e=f(u)$.
(iii) $f(x)=e$ and $f(y) \in A$. If v is a term whose first variable is x then $f(v)=e$ as it is easy to prove by the induction on the length of v. However, by the hypothesis, x is the first variable in u, and therefore $f(t)=e=f(u)$.
(iv) $f(x) \in A$ and $f(y)=e$. Let g be a homomorphism of W into A such that $g(x)=f(x)$ and $g(y)=c$. Let us prove the following assertion using the induction:

If w is a term such that $w=y, \operatorname{var}(w) \subseteq\{x, y\}$ and no subterm of w has the form $y v$, then $f(w)=g(w)$.

The assertion is trivial if w is a variable. Assume $w=r s$. We have $r \neq y$ and from the induction hypothesis it follows $f(r)=g(r)$. If $s \neq y$ then $f(s)=g(s)$, and hence $f(w)=g(w)$. If $s=y$ then we can write $f(w)=f(r) f(s)=g(r) e=g(r) c=g(r) g(y)=$ $=g(w)$.

The assertion is proved and may be applied to our case. We get $f(t)=g(t)=$ $=g(u)=f(u)$.

Proposition 7. Let t and u be two groupoid terms such that $\operatorname{var}(t)=\{x\}$, $\operatorname{var}(u)=$ $=\{x, y\}$ and let u contain no subterm having the form $v y$. Then $\operatorname{Mod}(t=u)$ is extensive.

Proof. The proof is similar to that of the proceding proposition.
Proposition 8. Let t be a groupoid term such that $\operatorname{var}(t) \subseteq\{x, y\}$. Then $\operatorname{Mod}(x=$ $=x . y t)$ and $\operatorname{Mod}(x=t y . x)$ are extensive.

Proof. Let $A \in \operatorname{Mod}(x=x . y t)$. Choose an element e not belonging to A and define a groupoid B as follows:
(i) $B=A \cup\{e\}$ and A is a subgroupoid in B.
(ii) $e a=e$ for all $a \in B$ and $a e=a$ for all $a \in A$.

The rest is obvious.
Proposition 9. The groupoid variety $K=\operatorname{Mod}(x=y x . y)$ has the following properties:
(i) $K=\operatorname{Mod}(x=y . x y)$.
(ii) Every groupoid from K is a quasigroup.
(iii) K is extensive.

Proof. The equation $x=y x . y$ implies (after substitution $x y$ for y) $x=x y . x . x y=y . x y$. Similarly, $x=y . x y$ implies $x=y x . y$.
(ii) is an easy consequence of (i).

Let $A \in \operatorname{Mod}(x=y x . y)$. Choose an element e not belonging to A and denote by Z the absolutely free groupoid generated by the set $A \bigcup\{e\}$. To avoid confusion, we denote the multiplication in Z by o . For $u, v \in Z$ we shall write $u s v$ if $v=u \circ w$ or $v=w \circ u$ for some $w \in Z$. The smallest reflexive and transitive relation on Z containing s will be denoted by t. Further, let B be the set of all the elements $z \in Z$ such that

```
non }u\circ(v\circu)t
non (u\circv) ○utz
    non eo etz
    non aObtz
```

for all $a, b \in A$ and all $u, v \in Z$. The set B, as one may check easily, possesses the following properties:

1. $A \cup\{e\} \subseteq B$.
2. If $u \circ v \in B$ then $u, v \in B$.

We shall define a binary operation $*$ on B in the following way:
(i) $a * b=a b$ for all $a, b \in A$ and $e * e=e$.
(ii) $u * v=u \circ v$ if $u, v \in B$ and $u \circ v \in B$.
(iii) Let $u, v \in B$ and let $u * v$ be not defined. Then there is uniquely determined $z \in Z$ such that $v=z \circ u$ or $u=v \circ z$ (here we use the fact that Z is an absolutely free groupoid). The property (2) of B yields $z \in B$ and we set $u * v=z$.
Now it remains to show $B \in \operatorname{Mod}(x=y x . y)$. For, let $u, v \in B$.
If $u=v=e$ then $(u * v) * u=e=v$.
If $u, v \in A$ then $(u * v) * u=u v . u=v$.
If $u=v \circ z$ for some z then $(u * v) * u=z * u=z *(v \circ z)=v$.
If $v=z \circ u$ for some z then $(u * v) * u=z * u=z \circ u=v$.
In all other cases $(u * v) * u=(u \circ v) * u=v$.
Proposition 10. If the length of a groupoid term t is at most there, then the groupoid variety $\operatorname{Mod}(x=t)$ is extensive.

Proof. If $\operatorname{var}(t)$ contains at most two variables then either $\operatorname{Mod}(x=t)$ is trivial or one of Propositions $2,5-9$ applies. If $x \notin \operatorname{var}(t)$ then $\operatorname{Mod}(x=t)$ is trivial. The remaining case is $\operatorname{var}(t)=\{x, y, z\}$. The variety $\operatorname{Mod}(x=x . y z)$ is equal to $\operatorname{Mod}(x=x y), \operatorname{Mod}(x=y z . x)$ is equal to $\operatorname{Mod}(x=y x)$ and the varieties $\operatorname{Mod}(x=y x . z), \operatorname{Mod}(x=y . x z)$ are trivial. Further, let $A \in \operatorname{Mod}(x=x y . z)$. Put $B=A \bigcup\{e\}$ where e is an element not belonging to A. Take an element $c \in A$ and define $e a=e$ for all $a \in B, a e=a c$ for all $a \in A$. Then $B \in \operatorname{Mod}(x=x y . z)$ is a groupoid with idempotent and A is a subgroupoid of B. Similarly we can show that $\operatorname{Mod}(x=y . z x)$ is extensive.

Proposition 11. The groupoid variety $\operatorname{Mod}(x=x y . y x)$ is extensive.
Proof. Let $A \in \operatorname{Mod}(x=x y . y x)$. Choose an element e such that $e \notin A$ and set
$B=A \bigcup\{e\}$. We shall define the groupoid structure on B as follows: A will be a subgroupoid in B and $a e=a, e a=e$ for all $a \in B$. Obviously $B \in \operatorname{Mod}(x=x y . y x)$.

Proposition 12. The groupoid variety $\operatorname{Mod}(x=y x . x y)$ is extensive.
Proof. Let $A \in \operatorname{Mod}(x=y x . x y)$ and let A have no idempotent elements. The mapping f of A into itself defined by $f(a)=a a$ possesses the following properties:

$$
\begin{aligned}
& f(f(a))=a \text { for all } a \in A, \\
& f \text { is a permutation of } A, \\
& f(a) \neq a \text { for all } a \in A .
\end{aligned}
$$

From this it follows that there are two disjoint sets $C \subseteq A$ and $D \subseteq A$ such that $A=$ $=C \bigcup D$ and f is a one-to-one mapping of C onto D and of D onto C. Choose an element e not belonging to A and define a groupoid B in this way:
(i) $B=A \bigcup\{e\}$ and A is a subgroupoid in B.
(ii) $e e=e$ and $a e=e, e a=a a$ for all $a \in C$.
(iii) $a e=a a$ and $e a=e$ for all $a \in D$.

It remains to show $B \in \operatorname{Mod}(x=y x . x y)$. But $a e . e a=e . a a=e, e a . a e=a a \cdot e=$ $=a a . a a=a, b e . e b=b b . e=e, e b . b e=e . b b=b b . b b=b$ for all $a \in C$ and $b \in D$.

Proposition 13. The groupoid variety $K=\operatorname{Mod}(x=y y . x y)$ has the following properties:
(i) $K=\operatorname{Mod}(x=y x \cdot y y)$.
(ii) Any groupoid from K is a quasigroup.
(iii) K is extensive.

Proof. The equation $x=y y . x y$ implies:
(1) $x=y(x \cdot y y)$ (the substitution $y y$ for y)
(2) $x x=(y x . y x) y$ (since $x x=(y x . y x)(x x . y x)=(y x . y x) y)$
(3) $x=((y . x x)(y . x x)) y$ (as follows from (2) using the substitution $x x$ for x)
(4) $y x . y x=y y . x x$ (as, by (2), $y x . y x=y y .((y x . y x) y)=y y . x x)$.

Now we can write, using 1 and 4,
$y x . y y=y x .((x x . y x)(x x . y x))=y x .((x x . x x)(y x . y x))=y x .(x .(y x . y x))=x$.
Similarly we can show that $x=y x . y y$ implies $x=y y . x y$. Let $A \in K$. The equations (1) and (3) show that A is a division groupoid. Let $a, b, c \in A$ and $a b=a c$. Then $b=$ $=a b . a a=a c . a a=c$. Similarly, if $b a=c a$ then $b=a a . b a=a a . c a=c$. Thus we have proved that A is a cancellation groupoid, and consequently A is a quasigroup Let $A \in K$ and e be an element not belonging to A. We denote by Z the absolutely free groupoid freely generated by the set $A \bigcup\{e\}$ and by o the multiplication in Z. Define s and t in the same way as in the proof of Proposition 9. Further we shall define z^{\prime} for all $z \in Z$ in this way: $e^{\prime}=e, a^{\prime}=a a$ for all $a \in A$ and $(u \circ v)^{\prime}=u^{\prime} \circ v^{\prime}$ for all $u, v \in Z$. Obviously $z^{\prime \prime}=z$ and $u=v^{\prime}$ iff $u^{\prime}=v$. Let B be the set of all $z \in Z$ such that
non $u \circ$ utz
non $a \circ b t z$
non $u^{\prime} \circ(v \circ u) t z$
non ($u \circ v$) $\circ u^{\prime} t z$.

Obviously, $A \subseteq B, z \in B$ iff $z^{\prime} \in B$ and if $u \circ v \in B$ then $u, v \in B$.
We shall define a binary operation $*$ on the set B in the following way:
a) $a * b=a b$ for all $a, b \in A$ and $e * e=e$.
b) $z * z=z^{\prime}$ for all $z \in B$.
c) If $z, w \in B$ and $z=u^{\prime}, w=v \circ u$ for some u, v then $z * w=v$.
d) If $z, w \in B$ and $z=u \circ v, w=u^{\prime}$ for some u, v then $z * w=v$.
e) If $z, w \in B$ and $z * w$ is not yet defined then, as it is easy to see, $z \circ w \in B$ and we put $z * w=z \circ w$.
Now it remains to prove $B \in \operatorname{Mod}(x=y y . x y)$. For, let $u, v \in B$.
If $u=v$ then $(u * u) *(u * u)=u^{\prime} * u^{\prime}=u^{\prime \prime}=u$.
If $u \neq v$ and $u, v \in A$ then $(u * u) *(v * u)=u u * v u=u u . v u=v$.
If $u \neq v, u=z \circ w$ and $v=w^{\prime}$ for some z, w then $(u * u) *(v * u)=u^{\prime} * z=$ $=\left(z^{\prime} \circ w^{\prime}\right) \circ z=w^{\prime}=v$.
If $u \neq v, u=z^{\prime}$ and $v=z \circ w$ for some z, w then $(u * u) *(v * u)=u^{\prime} * w=z * w=$ $=z \circ \mathfrak{w}=v$.
In all other cases, $(u * u) *(v * u)=u^{\prime} *(v \circ u)=v$.
Proposition 14. Let u and v be two groupoid terms, each of them having length two, such that $\operatorname{var}(u) \subseteq\{x, y\}$ and $\operatorname{var}(v) \subseteq\{x, y\}$. Then the groupoid variety $\operatorname{Mod}(x=$ $=u v)$ is extensive.

Proof. We have sixteen possibilities. For each of them one of Propositions 2, 5, 6, 7, $11,12,13$ gives the result with the exception of $\operatorname{Mod}(x=x y . y y)$ and $\operatorname{Mod}(x=$ $=y y . y x)$. If $A \in \operatorname{Mod}(x=x y . y y)$ then it is sufficient to take an element e and define B by the following way:
$B=A \bigcup\{e\}, A$ is a subgroupoid in $B, e e=e, a e=a$ and $e a=e$ for all $a \in B$. Similarly we can show that $\operatorname{Mod}(x=y y . y x)$ is extensive.

Remark. If t is an arbitrary groupoid term of length four then the problem whether the groupoid variety $\operatorname{Mod}(x=t)$ is extensive remains open. For example we do not know the answer for the variety $K=\operatorname{Mod}(x=y(x . x y))$. The groupoid $A=\{0,1,2,3,4,5,6\}$ with multiplication $a b=2 b-a+1(\bmod 7)$ belongs to K and has no idempotent.

Example 1. Let $\mathfrak{f}=\operatorname{Mod}(x=x x .(y y . y))$,
$L=\operatorname{Mod}(y y . y=x x .((y y . y)(y y . y))), K=\mathcal{F} \cap L$. Then:
(i) \mathcal{f}, L are extensive and K is non-trivial.
(ii) If a groupoid A from K has an idempotent then it is the one-element groupoid.
(iii) Any non-trivial groupoid variety contained in K is not extensive. In particular, K is not extensive.
The fact that L and \mathcal{F} are extensive follows from Proposition 5. Further, the groupoid $A=\{1,2\}$ with multiplication $1.1=2,1.2=1,2.1=1$ and $2.2=1$ belongs to K, as one may check easily. Let $B \in K$ and $e \in B$ be an idempotent. Then, for all $x \in B$, we can write $x=x x .(e e . e)=x x . e=x x .((e e . e)(e e . e))=e e . e=e$.
The assertion (iii) follows easily from (ii).
Example 2. Let $\mathcal{f}=\operatorname{Mod}(x x . y y=y y . x x), L=\operatorname{Mod}(x x=(y y . y) x)$ and $K=\mathfrak{f} \cap L$. Then:
(i) \mathcal{f} and L are extensive.
(ii) Let $A \in K$ and $x, y \in A$ be such that $x x=y y . y$. Then either $x x . x x$ is idempotent or A has no idempotents.
(iii) Any groupoid from K has at most one idempotent.
(iv) Let $A \in K$ be a groupoid without idempotent elements. Then A can be imbedded into a groupoid from K having an idempotent iff $x x \neq y y . y$ for all $x, y \in A$.
(v) K is not extensive.
(vi) If $F \in K$ is free then F can be imbedded into a groupoid from K having an idempotent.
f and L are extensive by Propositions 2, 5. Further, let $A \in K, x, y \in A$ and $x x=y y . y$. Assume that A possesses an idempotent element e. We have $e=e e=(y y . y) e=$ $=x x . e=x x . e e=e e . x x=e . x x=(e e . e) . x x=x x . x x$.
(iii) follows immediately from (ii). Let $A \in K$ and let $x x \neq y y . y$ for all $x, y \in A$. Take an element e not belonging to A and define a groupoid B in such a way: $B=$ $=A \bigcup\{e\}, A$ is a subgroupoid in $B, e x=x x$ for all $x \in B, x x . e=x x . x x$ for all $x \in A$ and $z e=e$ provided $z \in A$ and $z \neq x x$ for all $x \in A$. It is an easy exercise to show $B \in K$. In order to show that K is not extensive, let us consider the following groupoid:
$A=\{1,2,3\}, 1.1=2,1.2=1,1.3=1,2.1=1,2.2=1,2.3=3,3.1=2,3.2=3$ and $3.3=1$.
For all $x \in A$ we have $x x . x=1$ and $x x=1,2$. From this we can easily deduce that $A \in K$. However (2.2). $2=1=3.3$, and hence A cannot be imbedded into a groupoid from K having an idempotent. Finally, suppose that there exists a free groupoid $F \in K$ such that $x x=y y . y$ for some elements $x, y \in F$. Then, for all $A \in K$, there are $a, b \in A$ with $a a=b b . b$. However, the last assertion is not true since the groupoid B defined by

$$
\begin{gathered}
B=\{1,2,3\}, 1.1=2,1.2=3,1.3=3,2.1=3,2.2=1,2.3=3,3.1=2,3.2=1, \\
3.3=1
\end{gathered}
$$

belongs to K and has the property $x x \neq y y . y$ for all x, y.
An identity $u=v, u$ and v being two groupoid terms, is said to be balanced if $\operatorname{var} u=\operatorname{var} v$ and if every variable has at most one occurence in u and v. It is easy to see that the groupoid variety $\operatorname{Mod}(u=v)$ is extensive. On the other hand, the problem is not so trivial if we consider $\operatorname{Mod}(u=v)$ as a quasigroup variety.

Proposition 15. The variety of all commutative quasigroups is extensive.
Proof. Let G be a commutative cancellation halfgroupoid (i.e., G is a set with a partial binary operation, $a b=b a$ provided $a b$ or $b a$ is defined and $a b \neq a c$ if $a b, a c$ are defined and $b \neq c$). Choose (pair-wise different and not belonging to G) symbols $x(a, b), y(a, b)$ and put $H=G \bigcup\{x(a, b), y(a, b) \mid a, b \in G\}$. On the set H we shall define a partial binary operation $*$ as follows:
(i) G is a subhalfgroupoid in H.
(ii) If $a, b \in G$ and $a b$ is not defined then $a * b=b * a=x(a, b)$.
(iii) If $a, b \in G$ and the equality $a c=b$ holds for no $c \in G$ then $a * y(a, b)=y(a, b)$ $* a=b$.
As it is easy to see, H is a commutative cancellation halfgroupoid and the rest of the proof is obvious.

Proposition 16. Let $u=v$ be a balanced groupoid identity of length three. Then the quasigroup variety $\operatorname{Mod}(u=v)$ is extensive.

Proof. It is obvious that $\operatorname{Mod}(u=v)$ is equal to at least one of the following varieties.
$K_{1}=\operatorname{Mod}(x . y z=x . y z), K_{2}=\operatorname{Mod}(x . y z=x . z y), K_{3}=\operatorname{Mod}(x \cdot y z=y . x z)$, $K_{4}=\operatorname{Mod}(x . y z=z . x y), K_{5}=\operatorname{Mod}(x . y z=y . z x), K_{6}=\operatorname{Mod}(x y . z=y x . z)$,
$K_{7}=\operatorname{Mod}(x y . z=x z . y), K_{8}=\operatorname{Mod}(x y . z=z x . y), K_{9}=\operatorname{Mod}(x y . z=y z . x)$,
$K_{10}=\operatorname{Mod}(x . y z=x y . z), K_{11}=\operatorname{Mod}(x . y z=y x . z), K_{12}=\operatorname{Mod}(x . y z=y z . x)$,
$K_{13}=\operatorname{Mod}(x \cdot y z=z y . x), \quad K_{14}=\operatorname{Mod}(x . y z=z x \cdot y), \quad K_{15}=\operatorname{Mod}(x \cdot y z=x z \cdot y)$,
$K_{16}=\operatorname{Mod}(x . y z=z . y x), K_{17}=\operatorname{Mod}(x y . z=z y . x)$.
K_{2}, K_{6} and K_{12}. Since every quasigroup is a cancellation and division groupoid, $K_{2}=$ $=K_{6}=K_{12}$ is the variety of all commutative quasigroups and we may apply Proposition 15.
K_{1}. The variety of all quasigroups is extensive, as it is easy to see.
K_{3} and K_{7}. Let $A \in K_{3}$ and $a, b \in A$. There is $e \in A$ such that $e b=b$.
Then $e . a b=a . e b=a b$, and consequently e is a left unit in A. In particular, $e e=e$.
Similarly we can prove that any quasigroup from K_{7} has a right unit.
K_{4} and K_{5}. Let $A \in K_{5}$ and $a, b \in A$. There is $e \in A$ such that $b e=b$. We can write $e . a b=a . b e=a b$. Hence e is a left unit in A, and therefore A contains at least one idempotent element. Further, $K_{4} \subseteq K_{5}$, as one may check easily, and so K_{4} is extensive. K_{8} and K_{9}. Since $K_{8} \subseteq K_{9}$, it is enough to prove that any quasigroup from K_{9} has a right unit. For, let $A \in K_{9}$ and $a, b \in A$. There exists $e \in A$ with $e a=a$. Then $a b=e a . b=a b . e . K_{10}$. As it is well known, K_{10} is the variety of all groups, hence being extensive.
K_{11}. If $A \in K_{11}$ and $a, b \in A$ then $a b=a . e b=e a . b$ where $e \in A$ is such that $e b=b$. However A is a cancellation groupoid, and therefore e is a left unit in A.
K_{13}. Let $A \in K_{13}$ and $a, b \in A$. There are $c, d \in A$ such that $a c=d a=a$. Then $a a=a . a c=c a . a$, and hence $c=d$. Now we have $b a=b . a c=c a . b=a b$. K_{14} and K_{15}. Similarly as for K_{11}.
Let us note here that $K_{4}=K_{5}=K_{8}=K_{9}=K_{11}=K_{14}=K_{15}$ is the variety of all abelian groups.
K_{16}. Let $Q \in K_{16}$. By Theorem 17 and Theorem 18 [4] there are an abelian group $Q(+)$, its automorphism f and $x \in Q$ such that $a b=f^{2}(a)+f(b)+x$ for all $a, b \in Q$. Denote by M the set consisting of all ordered pairs (n, q) where n is an integer and $q \in Q$. Let $F(+)$ be the free abelian group freely generated by the set M and g be the automorphism of $F(+)$ which is determined by $g((n, q))=(n+1, q)$. For all $a, b \in F(+)$ we put $a * b=g^{2}(a)+g(b)+(0, x)$. Proceeding similarly as in the paragraph 9 of [2] we may prove that $F(*)$ is a free quasigroup in the variety K_{16}. The set $N=\{(0, q) \mid q \in Q$,
$q \neq x\} \bigcup\{0\}$ is a set of free generators of $F(*)$. Hence the mapping $h: N \rightarrow Q, h((0$, $q))=q$ and $h(0)=x$, can be extended to a homomorphism h of $F(*)$ onto Q. In view of Lemma 27 [2], the mapping $k: F(+) \rightarrow Q(+)$ defined by $k(a)=h(a)-h(0)$ is a group homomorphism of $F(+)$ onto $Q(+)$ and $k g=f k$, $k g^{-1}=f^{-1} k$. Let R be the subring generated by g and g^{-1} in the ring End $F(+)$ of all endomorphisms of the abelian group $F(+)$. We can define an R-module structure on $Q(+)$ in the following way:
If $q \in Q$ and $r \in R$ then $r \circ q=k(r(a))$ where $a \in F(+)$ is such that $k(a)=q$. It is obvious that $g \circ q=f(q)$ and $g^{-1} \circ q=f^{-1}(q)$ for all $q \in Q$. Let $P(+, \circ)$ be an injective hull of the R-module $Q(+, \circ)$. For all $a, b \in P$ we define the product $a b$ as follows:

$$
a b=g^{2} \circ a+g \circ b+x .
$$

It is an easy exercise to show that P is a quasigroup (under this operation) and that $P \in K_{16}$. Further, R is a ring without zero divisors and ($P+, 0$) is injective. Hence $P(+, 0)$ is a divisible module. In particular, since $g^{2}+g-1 \neq 0$ in R, there exists $p \in P$ such that $p=g^{2} \circ p+g \circ p+x=p p$. Finally, Q is a subquasigroup in the quasigroup P and we are through.
K_{17}. Similarly as for the preceding case.

References

[1] R. H. Bruck: A survey of binary systems, Springer Verlag, 1958.
[2] T. Kepka, P. Němec: T-quasigroups II., Acta Univ. Carol., Math. et Phys., Vol. 12, No. 2, 31-49.
[3] A. I. Malcev: Algebrajičeskije sistěmi, Izd. Nauka, 1970.
[4] P. Němec, T. Kepka: T-quasigroups I., Acta Univ. Carol., Math. et Phys., Vol. 12, No. 1, 39-49.

