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In the course of investigations carried out on diffraction of neutrons by crystal lattices of
quartz, germanium, silicon and kalium phosphate, which were set in acoustic or ultraacoustic
vibrations piezoelectrically or electromechanically, two effects were observed: on one side the
enhancement of the intensity of the diffracted slow neutron beam with respect to its intensity of
neutrons diffracted by nonvibrating lattices, on the other side its modulation — at the satisfactory
great amplitude of vibrations — mostly with the double frequency of vibrations, in which the crystal
lattices of investigated samples were set. In the case of kalium phosphate the enhancement of the
diffracted intensity of neutrons was achieved also by applying the static electric field of intensity
of several kV/cm in a definite crystal direction. The aim of this paper was to compare these results
mutually and to try to work out the obtained results from the uniform point of view analogous
to the method, applied for the explanation of effects of diffraction of X-rays upon crystal lattices
deformed statically or periodically.

B Teuenune uccnemoBanus quddpakuun HEUTPOHOB Ha KPUCTAJLIMUECKUX peIIeTKaxX KPEeMHA,
repmanusi ¥ Gocdara KammMsa, KOTOpble ObUIM NPUBOAEHbI B AKYCTMUECKHE MIIH YJIbTpa-
AKYCTHYECKHE KOJIEOAHHS IMI303JIEKTPHUUECKHA WM 3JIEKTPOMEXaHUYECKH, ObUIM OGHApyI>KEHbI
nBa 3¢ eKThI: ¢ OAHONU CTOPOHBI MOBBILIEHHE HHTEHCMBHOCTH AUGPAKTHPOBAHOIO HEHTPOHHOIO
NMy4yKka B OTHOLIEHMH K HHTEHCHBHOCTH BO Bpems aAucddpakiuy Ha He KoJIeOaoLMXCsl PeleTKax,
C OPYroil CTOPOHBI €€ MOLYJIALUHMS, UIMEHHO — IIPH JOCTATOYHO GOJIBIIOH aMILIUTYAE KoJIeGaHuif —
rJIaBHbIM 00pa30M C JBOMHOM YaCTOTOM KOJIeOGaHMIA, B KOTOPBIX ObIMK BO30Y»KIAEHBI KDUCTAJIIHYEC-
KHE pelIeTKH M3ydyeHbIX 06pasuoB. B ciyuae docdara kanus nosbiuenue auddpakTHpOBaHOM UH-
TEHCHBHOCTH HEHUTPOHOB OBbLIO JOCTHUTHYTO TOXKE IOMOILIY CTATUYECKOIrO 3JIEKTPHUYECKOrO IT0JIbA
C HHTEHCHBHOCTBIO HECKOJIbKO KV /cm BO30Y)KAEHHOr0o B JAHHOM HANPABJICHMM H U3YYEHHOM KpH-
crasne. Llenb aToit paGoThl — B3aMMHOEe cpaBHeHME 3(hheKTOB 0OHApY KEHbIX Ha YIIOMAHYTHIX 00-
pasuax ¥ ux o6paboTka M3 OOIMIA TOUKM 3PEHUs aHAJIOTMUYHOM CIoco0y, KOTOPbI GbIM MCIIOJIB-
30BaH 1s1 00sicHeHMs 3¢ dekToB auddpakuuyM peHTreHOBCKMX JIyyeil Ha KPHCTAIMYECKUX pe-
weTKax aecopMHUPOHAHBIX CTATHYECKH MIIH IEPHOIUUECKH.

P#i studiu difrakce neutront na krystalovych mtiZkdch kfemene, kfemiku, germania a fosfo-
redtianu draselného, které byly uvddény do akustickych nebo ultraakustickych kmitd piezoelek-
tricky nebo elektromechanicky, byly pozorovdny dva jevy: jednak zvy$eni intensity difraktovaného
neutronového svazku vzhledem k jeho intensité p¥i difrakci na nekmitajicich m¥iZk4ch, jednak jejj
modulace,a to — pfi dostatedné velké amplitud& kmitti — pfevaZné s dvojndsobnou frekvenci kmitu,
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do nichZ byly uvddény krystalové mtiZze studovanych vzorkd. U fosforeéhianu draselného bylo

zvydeni difraktované intensity neutront dosaZeno také pfi vytvofeni statického elektrického pole
o intensité n&kolika kV/cm, vyvolaného v urditém krystalovém sméru. U&elem této préice bylo tyto
jevy pozorované na uvedenych vzorcich vz4djemné porovnat a pokusit se o jejich zpracovani z jednot-
ného hlediska obdobného ke zpusobu, pouZitému pro vysvétleni jevl difrakce ziteni X na krysta-
lovych mtiZzkédch deformovanych staticky nebo periodicky.

I. Introduction

In the year 1965, the experimental equipment of the team investigating in the
Nuclear Physics Institute of the Czechoslovak Academy of Sciences in ReZ the
diffraction of slow neutrons [1], [2] reached such a stage, that it was possible to
consider the successful realisation of neutron diffraction by a vibrating lattice of
a single crystal in form of a bar, set in longitudinal vibrations piezoelectrically [3].

In that time, there were known experiments only which proved the intensity
enhancement of the rocking curve of X-rays diffracted either in the Bragg case or
in the Laue case by the lattice of a single crystal deformed either statically or
dynamically (see [45] and further papers quoted on p. 331 and 332 of the vol. I of
the book [92]). G. W. Fox and P. H. Carr proved in their paper [45] just in the year
1931 that the blackening of single points of a Laue diagram, produced upon a photo-
graphic film by a narrow beam of X-rays, diffracted on different lattice planes of the
investigated single crystal, increased, if the Laue diagram was performed on a
vibrating single crystal, i.e. on its vibrating — periodically deformed — crystal
lattice. This fact shows that the intensity of X-rays diffracted by a vibrating lattice
plane was increased with respect to the intensity diffracted by the same nonvibrating
plane, in other words by the influence of crystal vibrations the reflectivity of its
lattice planes increased too.

Later papers confirmed the observations of G. W. Fox and P. H. Carr and
besides this they explained on the basis of the dynamical theory the connections
between the changes of a diffracted intensity of X-rays and the deformations of the
crystal lattice [46], [47], [48], [49] (see chap. 5).

With respect to the mentioned facts concerning the diffraction of X-rays, in the
contribution [3] submitted to the “International Conference about Piezoelectricity*
organised in September 1965 by the College of Mechanical and Textile Engineering
in Liberec the attention was turned to the possibility to investigate the diffraction
of slow neutrons by periodically deformed crystal lattices. In the same time it was
stated that in the process of neutron diffraction by vibrating crystal lattices, e.g.
of SiO2, should — besides the neutron intensity enhancement — also its modulation
occur (see [4] and [5]).

In the mean time, in the year 1966 T. F. Parkinson and M. W. Moyer from the
University of Florida carried out experimentally the diffraction of neutrons by the
piezoelectrically excited quartz plate vibrating with the frequency of 500 kHz [30],
[31]. They proved in their first paper [30] not only the — approximately twofold —
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intensity enhancement of neutrons diffracted by the vibrating quartz plate with
respect to the intensity of neutrons diffracted by the nonvibrating plate, but even the
modulation of the neutron beam with the frequency equal to the double multiple
of the resonance frequency of the vibrating plate; they improved their results in the
second paper [31].

One year later the Australian group from the University of Melbourne carried
out experiments concerning also the enhancement and the modulation of the beam
of neutrons diffracted by different lattice planes of a quartz plate vibrating in its
fundamental frequency of 40 kHz of longitudinal vibrations [32]. The main results —
the enhancement and the modulation of a beam of neutrons diffracted by a vibrating
crystal lattice — have not been changed.

The Czechoslovak group of physisists carried out her preliminary experiments
about the diffraction of neutrons by vibrating lattices using the double axis spectro-
meter SPN 100 of slow net trons installed at VVR-S-reactor in the Nuclear Physics
Institute in ReZ. They applied for this purpose piezoelectrically excited plates or bars
of SiOg, produced by TESLA in Hradec Krilové. Our measurements were per-
formed with the collimated monochromatic beam of slow neutrons with the wave
length An = 1.54 A and with the beam divergency of 15’ in the Bragg case on two
quartz plates, the surface of which was perpendicular to the Xc-axis; one of them
had the thickness of 2.84 mm and the fundamental resonance frequency of thick-
ness (longitudinal) vibrations ~1 MHz, the other one the thickness 5.68 mm and
the frequency of the same type of vibrations ~0.5 MHz. In the course of increasing
of the exciting voltage, i.e. with the increasing amplitude of vibrations of the quartz
plate, the intensity enhancement of the beam of neutrons diffracted by the lattice
plane (11.0) of the vibrating quartz plate was observed too [6]. In the maximum of
the rocking curve was in dependence upon the increasing voltage, exciting the quartz
plate vibrations, even the 60-fold intensity enhancement achieved with respect to the
intensity, measured in the course of diffraction upon the nonvibrating plate [11].
For two quartz bars having their lengths 70 and 90 mm and vibrating with resonance
frequencies of ~30kHz and ~40 kHz of longitudinal vibrations, the frequency
modulation of the intensity of a neutron beam diffracted by one of the lattice planes
of the vibrating quartz plate was by means of a time analyzer observed [7]; the
modulation frequency was equal to the double multiple of the resonance frequency
of the vibrating quartz bar as was expected according to the results of papers [4]
and [5] (see also chap. 4).

For the excitation of different types of vibrations even for dielectric and semi-
conducting materials, which do not have the piezoelectric properties, an electro-
mechanical method of excitation [18], [19], [15] was develloped, by which e.g. bars
from single crystals of Si and Ge [41] were set in flexural vibrations. Analogous
experiments were performed also with bars from single crystals of Fe [12], which
were set to longitudinal vibrations by a transmitter of ultrasonic waves.

The process of diffracted neutrons was with a greater angular resolution and

5



precision more thoroughly investigated applying the tripple axis crystal spectrometer
of slow neutrons TKSN 400 [22]. The obtained results of the Czechoslovak group
were published in papers [16], [17], [24], [25], [41], [88], [89], [97], [98], [104], [105]
and further experiments are going on.

Analofous experiments were started also using ferroelectric single crystals
ADP [43], KDP [88] and KNT. There were found interesting connections
between the intensity of diffracted neutron beam and the static and alternating
voltage applied in the definite direction across the investigated bar from ferro-
electric material.

In further chapters the summary review of the main results should be given,
the observed effects should be classified, and an attempt of their explanation should
be done. Real effort will be develloped to carry out corresponding analysis of the
observed effects from the unit point of view, of course, as far it is possible to achieve
this according to the contemporary knowledge of processes of neutron diffraction
by statically or dynamically deformed lattices of single crystals.

2. Spectrometers Applied for Neutron Diffraction
by Deformed Crystal Lattices

As in the year 1912 in which Max von Laue discovered the diffraction of X-rays
by crystal lattices, in a similar way after the discovery of neutron in the year 1932
a new scientific discipline of
neutron optics was develloped
in which the first place has
the diffraction of neutrons.

For neutron diffraction
and for its application to the
investigation of condensed
matter, there were in all la-
boratories of neutron physics
constructed instruments called
“neutron spectrometers’’ [64].

In the first time it was
a double axis neutron crystal
spectrometer. The first Cze-
choslovak neutron spectro-
meter SPN 100 was also of
this type and was built in
Nuclear Physics Institute of
Czechoslovak Academy of

Fig. 1. Schematic ground plan of the tripple axis neutron Sciences in ReZ in the year
crystal spectrometer TKSN 400 1965 [1], [2]. Using this spec-

3 715 2
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trometer the first experiments concerning the diffraction of neutrons by vibrating
crystal lattices were carried out.

B. N. Brockhouse develloped in the year 1961 the construction of a tripple axis
neutron crystal spectrometer [67], [68]. Spectrometer of this type is also the Polish
spectrometer TKSN 400 [69], [20], which was in the year 1971 provided by Czecho-
slovak Commission for Atomic Energy for the Department of Nuclear Physics of the
Faculty of Mathematics and Physics of the Charles University. It is installed at the
hole of the reactor VVR-S of the Nuclear Research Institute in ReZ and used for
the same purpose.

In this review the description of the spectrometer TKSN 400 will be given
which includes also the characteristic features of the spectrometer SPN 100.

The schematic Fig. 1 shows the ground plan of the spectrometer TKSN 400.
The beam (1) of slow neutrons goes out from the Soller collimator (2) of the reactor
VVR-S (3) passes the hole in the supplementary shilding (4) and is monochromated
in the course of diffraction by the lattice of the single crystal (6) (called mono-
chromator) placed on the rotary table (5). Monochromatic beam entering under the
angle 2 @g the collimator (7) has the defined energy En, i.e. the defined wavelength
An. Across the monitor (8) it is flying to the investigated sample (9) and is absorbed
by the catcher (21). :

The beam of neutrons can be after the reflexion or diffraction by the investigated
sample (9) and after passage through the Soller collimator (11) analysed in two
ways :

1. Itis possible to measure the intensity of the neutron beam by the proportional
counter (12) filled with 9BF3, before which the Soller collimator (13) is placed and
which is provided by the shilding (14).

2. The energetic spetrum of the diffracted neutron beam can be analysed by
means of neutron diffraction by a further single crystal (15). The rotary arm of the
table (16) for the investigated sample and the rotary arm of the table (17) of the
analyser are mutually independent; they are installed together on the rotary arm of
the monochromator. The table of the monochromator and the table of the analysing
crystal are coupled with the corresponding arms by means of special gears with the
ratio 1 : 2.

The éngular positions of the monochromator and analyser tables can be read
off with an accuracy of 41’ while the positions of the monochromator, of the sample
arm and of the analyser can be recorded with an accuracy of 42’ [69].

The spectrometer is controled by means of an electronic device, which permits —
with respect to the possibility of using programme fed from a punch tape — even
a quite large automatisation of measurements [69]. Single parts of this control unit
are illustrated in the bloc schem of Fig. 2. The device is situated in a panel stage,
in which the control and positioning panel for hand operation of goniometer heads
is also placed; the heads can be driven electrically too.

The recording unit is a set of instruments of a trade mark “Optima’’, which is
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Fig. 2. Block schem of the control system of the TKSN 400 neutron spectrometer

combined from an electric typewritter, from a recorder of the punched tape and from
a puncher.

Motion of single parts, e.g. of axes of the spectrometer, is possible to control
from the keyboard of the typewritter, further from the 8-channel punched tape or
by hand operation, i.e. by pressure-bottons upon the control panel, or by hand
operation directly upon the spectrometer.

The main programmer controls the fixed cycle of the spectrometer according
to the built — in programme, provides the following sequencing of operations such
as reception of the input data from the keyboard of the typewritter, or from the
punched type — positioning of parameters (angles) of the spectrometer — measure-
ments from detectors — recording of measured data — respectively the repetition
of measurements — conclusion of the cycle.

The construction of the electronic device gives the possibility of connection
to the control computer.



3. Diffraction of Neutrons by Lattices of Single
Crystals Deformed Statically

The process of diffraction by lattices deformed statically either by a direct
mechanical pressure or by flexion was investigated by means of X-rays as well by
means of neutrons. It is refered here about same of the obtained results from this
reason, because this process has a series of characteristics which are common with
the process of neutron diffraction by lattices deformed dynamically, e.g. by means
of resonance vibrations either of bars or plates excited either piezoelectrically or elec-
tromechanically. Analogous deformations can be produced statically or dynamically
also by the electric field — and probably even by the magnetic field — as will be
shown in this chapter.

3.1 PROCESS OF NEUTRON DIFFRACTION BY LATTICE PLANES
OF SINGLE CRYSTAL DEFORMED BY MECHANICAL STRESS

Several papers [71], [72], [73], [74] about these problems were carried out upon
the suggestion of Professor H. Maier-Leibnitz [70] in the Institute Max von Laue —
Paul Langevin in Grenoble, but also in other laboratories [75], [76], [77]. There were,
however, used for this purpose also other principles, as a gradient of temperature
[78] or a gradient of the interplanar lattice distance [79], [80] which are in their
effects equivalent to the mechanical deformation.

T. Riste [75] investigated the diffraction properties of curved grafite single
crystals (5 X 2.5 x0.1 cm3) with the radius Rm = 79 cm of curvature. The cylindrical
area included the lattice plane (002). For the wave length A, = 1.86 A of neutrons
and for the focussing performed by decreasing the area of the reflected beam a gain
of 3.8 for the neutron flux was achieved at the distance of 2R from the crystal.

G. Egert and H. Dachs [76] applied for neutron monochromators single crystals
of germanium curved in the same way, which was used by Y. Cauchois [81] and
T. Johansson [82] for diffraction of X-rays. On such neutron monochromators they
carried out the measurements of the wave length spread, of the focussing properties
and of the integrated reflecting power as a function of their curvature. On the basis
of their results they come to the conclusion that germanium is a suitable material
for monochromators.

P. Thomas [77] investigated the properties of a monochromator produced
from a single crystal of copper in form of a plate (5.8 X2.0 0.3 cm3) the surface
5.8 X2.0 cm? of which formed with the reflecting lattice plane (111) the angle
o = 45° Its radius of curvature was Rm = 89.5cm. The monochromator was
develloped for the transmission method of diffracted neutrons with the wave length
An = 1 A. The optimal thickness of the monochromator was Topt = 0.3 cm. The
experimental results confirmed the expected parameters of this monochromator.

M. Antonini, M. Corchia, E. Nicotera and F. Rustichelli [73] develloped for
neutron monochromators curved silicon single crystals, the curvature of which they
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reached by formation of a thin film of SiOz or SigN4 on one surface of the single
crystal in the form of a disk having radius of 40 mm a thickness either 0.5 mm or
1 mm. Both surfaces of this disk were parallel with the crystal lattice plane (111).
The relative reflectivity of the lattice plane (111) of this monochromator, measured
for the wavelength A, = 1.2 A of neutrons, is increasing as a function of the
decreasing radius of curvature and reaches almost the six multiple value.

Most of the neutron diffraction effects observed for curved single crystals was
explained in the paper B. Klar and F. Rustichelli [74] by means of the conception
of the dynamical theory of diffraction by perfect crystals, according to which the
radius R. of curvature is given by the expression
1 Ver Ay 7t Vetd

B —_ T T 2
5 O On = o Joy — ¢ 4 8" OB
G.1)

in which 405 = ® — @p denotes the deviation of the angle @ from the Bragg
angle @g, expressed in radians, the quantity A4 as a function of the thickness T of
the diffracting single crystal is given by the relation

AT
Re=J65

J— 2FH .
A= Vo T, 3.2)
the quantity y is connected with A by the relation
y=0) +cd 3.3)
in which c¢ is defined by the expression
_ Y
c= 44" 3.4

In the expressions (3.1) and (3.2) denotes T = 7nx1 = 1/dnx1 = 1/d the reciprocal
distance between the lattice planes, V. the volume of the unit cell, Fg the structure
factor, including the length of the coherent scattering of neutrons.

For the analysis of experimental data observed on single crystals curved in
different ways, the calculation of their reflectivity according to the kinematical and
dynamical theory of diffraction is necessary (see f.e. [62]).

From the results of all quoted papers [70] till [78], which were occupied by the
investigation of curved monochromators, follows, that by the curvature of the single
crystal and by the deformation of the lattice planes the increase of the crystal
reflectivity takes place. For the silicon single crystal with thickness 7 = 0.5 cm
a good agreement with the measured value R{?’ (exper.) = 19.5” of the integrated
reflectivity with the expected calculated value R{ (teor.) = 17.2” for the radius
Rm = 35m of curvature was achieved; in this case the radius of curvature is very
near to the optimal value Ropt = 30,4 m of the radius.
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3.2 DIFFRACTION OF NEUTRONS BY LATTICE OF SINGLE
CRYSTAL DEFORMED IN ELECTRIC FIELD

Even when the influence of the electric field upon the different features (pro-
perties) of crystals was studied in the series of papers [84], [85], [86], [87], the influence
of the szaric electric field — at least as far as we know — was not till now investigated
upon the value of the intensity of mono-
chromatic neutron beam diffracted by the Y
crystal lattice. We have carried out such '
experiment using KDP (KH:PO4) and
obtained results described in the paper [88].

The bar of KDP (¢ =1.0cm, b =
= 0.3cm, [ = 4.4 cm) was cut from the 45° Y-
single crystal of KDP and was oriented T
with respect to the crystallographic system i
Xeo, Yo, Zeo (see Fig. 3); its length I = 45° f

i

= 4.4 cm lies in the (X, Y)-plane and
forms with the X, — axis the angle 45°,
while the shortest edge b = 0.3 cm was e
parallel to the axis Z, = Z. The static - g,
electrical voltage Uz was applied in the > X
direction of the Z, = Z and produced the
electric field with the intensity Ez.

Diffraction by neutrons by the lattice X c
plane (220) of KDP was performed at the
temperature of 18 °C, i.e. in the piezo-
electric region, using the spectrometer Fig. 3. Orientation of the bar of KH2PO4
TKSN 400 (see chap. 2). Rocking curves with the laboratory system (X, Y, Z) with
were measured for neutrons with Ay = respect to its crystdl9gr?phic system (Xc, Yo,

. Zc); 1 denotes the incident neutron beam,
= 1.05A in dependence upon Uz resp. 2 the neutron beam diffracted by lattice
E3z. Peak intensities F(@s) registered in planes (h & 1)
the maximum of rocking curves for
© = O3 are plotted as a function of Ez in Fig. 4. It was found that the intensity
J(Os) increases with Ez practically linearly and reaches for Ez = 10.000 V/cm
1.55-times higher value with respect to the value #(@g)g,_o measured in the
case without electric field.

The contraction or dilatation xx in the direction of X-axis, i.e. in the direc-
tion [ of the bar of KDP is directly proportional to the intensity Ez = Ugz/b of
electric field and is — according to (4.17) — connected with it by the relation

%‘1_ R %gcﬂ = dyEr =22 Uy (3.5)
where dsg is the piezoelectric coefficient, b the shortest edge of the bar from KDP
in the direction of the Z, = Z-axis (see Fig. 3).
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The relative change A4d/d of the interplanar lattice distance d causes the change

of the Bragg angle @y in the new angle
Oy = O+ 403 (3.6)

The difference +46p is given — according to (4.26) for the static case (0u(x)/0t =
= 0) — by the relation
Ou(x, dss tg O
lg;—t) tg Op = -+ das tgOpEz = + > bg 2
if we use the relation (3.5) and denote the ratio +dsstg @s/b by D.

+ 40 =

U,=DU; (3.7

T T T

aJ/) (%) —
S 3

S

1

0 25 S 75 10
Ez (kV/em) —

Fig. 4. Dependence of the relative variation 4%/¥ (%) of the peak intensities of the neutron beam
diffracted by the lattice plane (220) of KDP upon the intensity of the applied static electric field

For Uz = 0 the rocking curve can be represented by the normal distribution
of Gauss in the form as in the relation (4.23). When the voltage Uy is applied, the
shift (3.7) takes place and the intensity ¥ of neutrons diffracted in the Laue case
(Fig. 3) by the plane (h, £ = h, [ = 0) is given by the expression

0—0 A03p)?
9O) = JOw exp (— O 01 L 400" )
where o denotes the half-width for the value #(©)/#@z) = 0.607.
If we writte the expression (3.8) in the following way

F0 (- ) (- =) (12

(3.8)

a2

202

we obtain it like a product of three factors. 3.9
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The first of them is the Gauss’ distribution for the experimental situation, when
Ez = 0, to which corresponds the rocking curve 1 of the Fig. 5.

The second factor of this product — according to the relation (3.7) — has its
argument proportional to Ez and causes the shift of the rocking curve 1 on the side
of positive values of 4@y in the case, that the sense of the intensity Ez of the

-~

J(8)/J(8g)—
o
&

-8 s +8(sec of arc) —

Fig. 5. Experimental shifts of the relative intensity measured on the lattice plane (440) of KDP
for the applied static electric potencial difference Uz = 0 (curve 1); Uz = —2.5kV (curve 2);
Uz = +2.5kV (curve 3)

electric field is opposite to the sense of the crystallographic axis Z, = Z (curve 2
in Fig. 5). The sense of the intensity Ez being identical with the sense of the crystal-
lographic Z-axis, the shift of the curve 1 towards negative values takes place, i.e.
460y < 0 (curve 3 in Fig. 5). .

The third factor of the product (3.9) is in its argument proportional to EZ and
is, therefore, independent on the sense of the applied electric field. For small values
of A@sg, this factor has the value very near to 1.

The shift of the maximum, using the double axis arrangement was not observed.
The rocking curves were corresponding to the Gauss distribution and had — even
when the voltage was applied — the same width equal to 18.5' (see paper [88]).

As soon as in the spectrometer TKSN 400 the tripple axis arrangement was
used, the shift of the maxima of rocking curves by the influence of the voltage Uz
was observed (Fig. 5) and the linear dependence of this shift upon the intensity Ez
of the electric field was found.

The change of the width of the rocking curves was not found, even not when
double crystal (4, —4) setting was applied [89]; their width 12” remained the same —
in the limits of errors — untill the highest applied voltage Uz = 4-2.5kV.

13



3.3 DIFFRACTION OF NEUTRONS BY LATTICE OF SINGLE
CRYSTAL DEFORMED IN MAGNETIC FIELD

From the literature we do not know papers, which would describe effects caused
by diffraction of neutrons by lattices of single crystals by the influence of a static
magnetic field. With respect to the effects, which were described in the chap. 3.1
and 3.2, it is reasonable to suppose, that deformations caused by a magnetic field
upon magnetic materials (and in a suitable arrangement even upon nonmagnetic
materials) shall have the analogous influence upon the process of diffraction of
neutrons as deformations caused by mechanical forces or by electric tension. It would
be, therefore, very reasonable to complete the neutron diffraction in this sense and
compare the results caused by the magnetic field with the results refered in chap.
3.1 and chap. 3.2.

4. Diffraction of Neutrons by Lattices of Single Crystals
Deformed by Resonance Vibrations of Bars or Plates

From the existence of definite effects caused by the diffraction of X-rays by
crystal lattices deformed statically or dynamically (see chap. §), it is possible to
expect, that analogous effects can arise in the course of diffraction of neutrons with
respect to their wave properties ; however, at the same time it can be concluded that
these effects will have different characters with respect to distinct properties of X-rays
and neutrons.

In this chapter we would like systematically to describe processes, which are
caused by the diffraction of neutrons by periodically deformed lattices of single
crystals and which manifest themselves by two basic characters: 1) by the increase
of the intensity of the beam of diffracted neutrons and 2) by the modulation of this
intensity in rythm of the double frequency of vibrations of crystal lattice.

Our first experiments, which were concerning the increase of the intensity of
diffracted beam of neutrons with the wave length A, = 1.54 A were carried out
upon the lattice plane (11.0) of quartz plate with a surface perpedicular to the X¢-axis
of quartz crystal and piezoelectrically excited in thickness (longitudinal) vibrations
[6]; a 40-fold increase of intensity was achieved just in first experiments.

Further experiments the aim of which was the investigation of the modulation
of the intensity of the diffracted neutron beam were carried out just on the lattice
plane (200) of quartz bars excited piezoelectrically in longitudinal vibrations in
direction of their length [7].

In further our papers there were applied to the realization of vibrations of crystal
lattices like the longitudinal vibrations of bars [12], [13], [22], like the flexural ones
[15), [41], or even the longitudinal — shear vibrations of plates [107]; they are
described in chap. 4.1.
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4.1 MODES OF VIBRATIONS OF BARS AND PLATES AND THEIR
EXCITATION

4.1.1. Fundamental Frequency and Overtones vf Longitudinal and Flexural
Vibrations of Bars and Thickness Vibrations of Plates

For diffraction of neutrons by vibrating crystal lattices the bars or plates pre-
pared from single crystals of Si, Ge, Fe, natural and synthetic crystals of SiOg,
synthetic crystals of KH2PO4 (KDP), and of KNaC4H4Cs . 4 HoO (KNT) were

Fig. 6. Orientation of the bar of SiOz with its laboratory system (X Y Z) with respect to the crystal-
lographic system (Xe, Ye, Z¢) of the left-handed quartz crystal; 1 denotes the direction of the
incident neutron beam, 2 the direction of the neutron beam diffracted by the lattice plane (0 k2 0)

applied. According to the orientation of bars or plates in the single crystal, the elastic
compliances s;x given in the crystallographic system X, Y¢, Zc of coordinates
were transformed by means of the corresponding relations ([90], [91], [92], [93],
[94], [95], [96]) in the laboratory system X, Y, Z of coordinates which is connected
with the form of the bar as shown in Fig. 3 and Fig. 6.

Bars were excited in longitudinal or flexural vibrations, plates in thickness-
longitudinal or thickness-shear vibrations. The equations of motion for these types
of vibrations can be formulated in a unit form, as W. Voigt ([90] p. 792 ; see also [59])
showed. For the sake of easy survey they will be refered here separately.

For the excitation of longitudinal vibrations of bars in the direction of their
length, i.e. in the direction of the X-axis all three possibilities described in chap.
4.1.2, 4.1.3 and 4.1.4 were applied. If we denote for these three cases the excitation
force S(x, ) we can writte the equation of motion for forced, damped, longitudinal
vibrations of a bar free on both ends in the form [92], [95].

02u 1 0%u 0%u '
4 —at—z— -_ I —a—x‘z— - FW = S(x, Z) = §(x) KUgej(wt+°’) (4.1)
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in which ¢ denotes the density, s;; the elastic compliance in the direction of the
X-axis (i.e. in the direction of the bar length L), F the coefficient of internal friction
for the corresponding crystal, &(x) and K are constants and Use/(@t+@) the
alternating voltage (Fig. 7).

The excitation force produces in the bar the elastic displacement u(x,:) =
= uo(x) + us(x, r) in the direction of the X-axis which is given by the sum of the

x
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Fig. 7. Arrangement of the crystal bar for the electromechanical excitation of its longitudinal
vibrations in the direction of the X-axis

static component ug(x) and of the periodical one us(x, ¢); it represents the solution
of the eq. (4.1) and can be written in the form

u(x,t) = uo(x) + us(x,2) = 3 Ancosynx -+ D Bncosynxel @t+e) (4.2)
A h

for h =1,2,3,4... according to the fixation of the bar in its holder.
The quantities Ay and Bn can be written in general form

Ah = Ah(xa U) ) Bh - Bh[x’ U: (CO - wh)2] > (43)
where yn is connected with wn by the relation
; ) h?
7h = esnof =775, (4.9)

so that the resonance frequency fn is given by the expression

h 1
fh - i ]/'EEE . (4.5)

By changing the frequency f = w/2n of the exciting voltage Usel(@t+9), we
can for f = fn excite resonance vibrations and obtain the maximum value of the
elastic displacement u(x, r).

For the excitation of periodical displacements of lattice planes in the direction
of the thickness a (i.e. in the direction of Y-axis) flexural vibrations in the plane XY
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(Fig. 8) wete applied and to their production the electromechanical excitation was
used (chap. 4.1.3). According to [25], [59], [92], [95] we can writte

2 2) o
=5+ o (1 + F??) o = Stu1) = &(x) KUw/@t+o (4.6)
where
1
0'2 =-£)EI:, 30 = -l—faab. (4-7)

Elastic displacement o(x, £) is in the case of flexural vibrations of bars given
by the expression

(1) = vo(x) + vs(,8) = é Aupn(x) + h:il Bupn(x)d@®)  (4.8)

7 als? 4
A [ RIS X T

<z

Fig. 8. Arrangement of the crystal bar for the electromechanical excitation of its flexural vibrations
in the (X Y)-plane

in which the quantities 4n and Bp are characterized also by relations (4.3). The
function yn(x) has for the on both ends free bar the form

wn(x) = (sinh AnL -+ sin knL) (sinh knx -+ sin knx) —

— (cosh knL + cos kpL) (cosh knx + cos knx) . 4.9)
The characteristic values »n = knL are roots of the transcendent equation
cosh kpL . cos knL = 1 (4.10)

as far as the ratio b/L (of the width to the length) of the bar is enough small. The
first four roots have the values [59], [95]
x1 = kL = 0; x3 = kL = 4.7300; %3 = k3L = 7.8532; x4 = kaL = 10.9956 .
(4.11)
The roots xn characterise the frequencies of the fundamental mode and of the
overtones of flexural vibrations of bars and are mutually connected by the relation

® a 1
= — — 7 . 4. 12
p 4 V3 L2} esu “12)
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In the case of quadratic plates thickness-longitudinal vibrations were excited,
the displacement of which takes place in the direction of the plate thickness a. Their
frequency fn is given by the expression

h Cii
fo = 5 —0— (4.13)
in which c¢ii is the corresponding elastic coefficient in the direction of the plate
thickness a.

In the case of circular plate the thickness — shear vibrations were excited, the
frequency fu of which is in the first approximation also given by the relation (4.13).
However, the periodical course of the elastic displacement is much more com-
plicated.

4.1.2 Piezoelectric Excitation of Vibrations of Bars and Plates

To bring bars of SiOz, of KDP and of KNT into longitudinal vibrations for
resonance frequencies we applied the piezoelectric excitation. We started from the
known relations between the components of the elastic deformation xxe till xyc
and components of the intensity E of the electric field produced by the voltage U,
which are in the crystal system X, Y¢, Zc of coordinates defined by the following
equations [92] (vol. 1., § 27)

Xx,e = duEx + dnEy + dnE, (4.14)
¥y,e¢ = d12Ex + d22Ey + d3:2E;
2z, = d13Ex -+ d23Ey + dssE;
Yz,¢ = d14Ex + d24Ey + d34E;
2x,c = disEx + dasEy + dssE;
Xy, e = disEx + degEy + dseE;

where djx are the piezoelectric coefficients and
E=grad U. (4.15)

Quarz has in the system X, Ye, Zc of coordinates the following piezoelectric
coefficients different from zero:

dn; dig = —du; dia; des = —dia and deg = — 2411 -

D.C. voltage U, connected to the electrodes or mettalized bar surfaces perpendicular
to the Xc-axes produces the component Ex of the electric field and the deformation
of the length unit in the direction of the Yc-axis (Ey = E; = 0)

AL U
= Yve = di2Ex = —dnEx = —dn o= —dn grad U (4.16)

according to the second of eq. (4.14) and using the relation (4.15).

If we instead of D.C. voltage U apply the A.C. voltage Ugei(wt+9) we set the
quartz bar in longitudinal vibrations (see 4.1) in the resonance frequency fn in the
case that we choose the frequency f = w/2% of the voltage Ujge/(wt+e) equal to fn.
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For bars of KDP or KNT it is necessary to use the orientation as shown in Fig. 3.
If we transform the equations (4.14) from the Xe, Y., Zc system according to
Cady [92] (vol. I, par. 135) into the X Y Z system we obtain for the connection of
the D.C. voltage U to electrodes perpendicular to the Z-axis the components xx
and yy of deformation in the direction of the axes X and Y according to the
relations

a’;(;‘) = xx = dy; Ez = dss Ez = dsg grad U, (4.17)
0 /
’l;g}y) = yy = dgp Ez = —dseEz = —dss grad U. (4.18)

where Ez is the intensity of the electric field produced by the voltage U in the
direction of Z-axis. :

Using the alternating voltage with a variable frequency we can set the bars of
KDP and KNT in resonance longitudinal vibrations in one of the frequencies (4.5).

The excitation of thickness-longitudinal vibrations of quartz plates, the surface
of which are perpendicular to the crystallographic Xc-axis, can be carried out in one
of their resonance frequencies (4.13) by application of the alternating voltage
Usel @t+9)  with variable frequency connected to electrodes or metallized surfaces
perpendicular to Xe-axis.

The excitation of the thickness — shear vibrations (chap. 4.1.1) can be done
also piezoelectrically, however, it is more complicated and cannot be described by
simple relations, mentioned above.

4.1.3 Electromechanical Excitation of Vibrations of Bars and Plates

For the purpose of electromechanical excitation of longitudinal vibrations of
bars the electromechanical arrangement according to the Fig. 7[18], [19] was applied.
The bar was provided upon its end surfaces Pz and P3 and upon the surface P;
by a silver layer. It was fixed in the place of the nodal line and situated between the
electrodes Kz and K3 to which the D.C. voltage Uy, as well as the A.C. voltage
Usgel@t+9) is connected. This voltage produces between the metallized end Pz of
the bar B and the exciting electrode K3 the electromechanical force Si(x,z) given
by the relation

2
(1) = 52%8 [(Ug + ‘2]) ¥ 2UoUsef(‘”‘+°’)] . (4.19)
This force produces according to the eq. (4.1) of motion a periodic elastic displace-
ment (4.2) of longitudinal vibrations of the bar in the direction of its length. We have
used them for the determination of elastic constants [23].

The two electrodes arrangement can be in principle used for the excitation of
flexural vibrations too. Fig. 8 shows, however, the arrangement, which we have
most frequently used, and in which the bar excited, in its fundamental frequency
with two nodal lines was used as a coupling element between the output and input
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of the amplifier EA. The electromechanical force Si(x,z) for excitation of flexural
vibrations produced by the electric field between the electrode K3 and the metall
layer P; has the half value of the force Si(x,z) given by (4.19). This force is exciting
the elastic displacement (4.8) in the direction of the Y-axis.

4.1.4 Excitation of Vibrations of Bars by a Power Transfer

The excitation of longitudinal vibrations of a single crystal bar can be done
by coupling the bar with a magnetostrictive resonator [12] supplied by a power
generator. The relative strain amplitude of the resonator vibrations was measured
by means of a detector made from an electrostrictive ceramic of BaTiOs type.

4.2 INCREASE OF THE INTENSITY OF THE NEUTRON BEAM
DIFFRACTED BY A VIBRATING CRYSTAL LATTICE

4.2.1 Experimental facts

As soon as the existence of the increase and of the modulation of the intensity
of the neutron beam diffracted by vibrating crystal lattices — expected in the abstract
[3] and in the papers [4], [S] — was experimentally proved and described in papers
[31], [32], [6], [7], [8], [11], [12], thorough investigation of these-effects was started.
The experiments of neutron diffraction were carried out by means of the double axis
crystal neutron spectrometer SPN 100 [1], [2] and later also by means of the triple
axis crystal neutron spectrometer TKSN 400 [20], [69] (see chap. 2) on single
crystals of SiOg, Si, Ge, Fe and later also on KDP and KNT [13], [15], [16], [17],
[21], [22], [24], [41], [42].

If longitudinal vibrations and piezoelectric excitation were used, the samples
of SiO; single crystal were bar shaped and oriented for the purpose of neutron
diffraction — as shown in Fig. 6. The X-axis is the electric axis in the direction
of which the voltage from a finely tunable oscillator (RFT typ PDG-1) of sufficient
stability and amplified by a selective amplifier was applied. In the paper [13], [22]
and [24] measurements of neutron diffraction on quartz bars excited in longitudinal
vibrations in the direction of their length were performed in the Nuclear Physics
Institute of the Czechoslovak Academy of Sciences by means of the above mentioned
spectrometers. A monochromatic neutron beam with the wavelengths of 4; = 1.05A
or A2 = 1.54 A having the angular divergency from 2’ till 15', at the VVR-S reactor
of the Nuclear Research Institute in Re? was used. The orientation of all quartz
samples was chosen in such a way that diffraction from lattice planes of the (0 4 0)
type (the YZ-plane, Fig. 6) took place in the symmetric Laue case.

The experiments offered in all cases a similar picture, as regards the intensities
of neutrons diffracted by vibrating crystal lattice (see Fig. 9). The rocking curve
taken off on the vibrating single crystal bar has in corresponding points of the curve
higher values of diffracted intensity than the rocking curve of the nonvibrating single
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crystal bar. In the double axis arrangement, their width was in both cases the same,
which fact is caused by the instrumental feature of the spectrometer, i.e. by the great
angle of divergency of its neutron beam (0°2') in the double axis arrangement.
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Fig. 10. Increase of rocking curve widths with growing vibration amplitude in double (1, —1)
crystal setting: 1 nonvibrating Si bar; 2, 3 and 4 Si bar vibrating with the amplitude of 0.75 um,
1.5 ym, and 3 pm at its end

However, by using the triple axis arrangement of the spectrometer TKSN 400
the increase of the rocking curve width 2¢ on the amplitude uo of the periodic
changes of the elastic displacement

un = o Sin (*hg-) x sin wt (4.22)

was proved and is shown in Fig. 10 [22].

In this case all rocking curves can be represented by the normal distribution
of Gauss in the form [22],

52u0) = FoiOm) exp (— €20 @23

where ¥u,,(@s) is the neutron intensity in the maximum of the rocking curve,
(@ — O3) is the deviation from the Bragg angle @y and oy, is connected with the

full width H,, of the rocking curve for a crystal vibrating with an amplitude wuo
by the relation.

Hy, =20y, }/2In2 . (4.24)



For oy. it is possible to writte the approximate relation

ou, ~ | OB ~ uo (4.25)

because 4@p ~ up according to [44]. This dependence was proved experimentally
[22].

Using the quartz bar of length L = 120 mm; the ratio of peak intensities of
diffracted neutrons R = ¥v/¥s = R(i) as a function of the excitation current 7 [24],
where Fv and ¥s are the intensities of neutrons for a vibrating and a nonvibrating

50

R

40

30

20

10

Fig. 11. R versus excitation current 7 for A, = 1.05A, Tx = 3mm (1); Tz = 14mm (3),
and for A2 = 1.54 A, Tx =3 mm (2); Tz = 14mm (4), for the quartz bar with the
length L = 120 mm
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single crystal respectively, was measured for two neutron wavelengths and for two
crystal thicknesses. The obtained experimental data for the dependance of R = R(7)
are shown in Fig. 11 [24].

The bars from single crystals of SiOz and also from Si and Ge can be excited
in flexural vibrations too. It means that the elastic strains in the X YZ-system of

Fig. 12. Dependence of R = R(U) for the single crystal of Si; An = 1.05 A; O (11) trans-
mission; @ (224) reflexion; A (112) reflexion; U is the voltage drop Rsi, where i is the excita-
tion current flowing through the sample

the bar (see Fig. 8 occur in the X'Y-plane and the bending of the bar takes place
in the direction of the Y-axis. For this purpose the corresponding bar is used in the
arrangement shown in Fig. 8 and electromechanically excited [15], [18], [25], [41].

In Fig. 12 the experimental values of R obtained for neutrons with the wave
length A, = 1.05A and for lattice planes (111), (112) and (224) of a bar shaped
single crystal of Si are given. The bar having dimensions 5 x 12 X105 mm3 was
oriented with its length parallel to the crystal direction [111]. It was excited in
flexural vibrations with the fundamental resonance frequency f = 4300 Hz. The
maximum value of the displacement in the bar centre (x = 0) was umax = 4,5 pm
for the control voltage U = 3 V.

For the lattice plane (111) one has R ~ 1 which fact corresponds to the con-
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dition (;. 1;5 = 0. In such a case the vibrations of the lattice plane cannot have
any influence on the intensity of diffracted neutrons. The largest values of R were
observed for the forbidden neutron reflexion on the plane (112). The function
R = R(U) for the planes (112) and (224) differ very little from the linear dependence
(see chap. 4.2.2).

Similar results were obtained for bar shaped single crystals of Ge and SiO; (see
chapter 4.2.2).

It is still interesting to mention that in the year 1974 three papers [43], [66],
[88] were published which describe experiments on ferroelectrics ADP and KDP,
similar to that, which were performed on Si, Ge and SiOs.
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Fig. 13. Assymmetric Laue case in which the lattice plane (kkl) reflecting neutrons forms with
the plane (Y Z) the angle (+a)

Professor T. F. Parkinsson and his collaborators have investigated the enhance-
ment of intensities of rocking curves taken off on vibrating resonators cut from ADP
[43], [66] in the form of plates excited piezoelectrically in thickness-shear modes
coupled with flexure modes. They writte:

“With the ADP crystal stationary, rocking curves were run for several (h k1)
planes to determine precise values for @s. The rocking curves were then repeated
with the crystal vibrating ...

The enhancement ratio was found by integrating the area under each curve:

R= (j’qbv do) (j'qb. de)-1



where @, and @ are respectively, the intensities with the crystal vibrating and
stationary”.

Two typical results of the enhancement measurements for two (4 k1) planes are
given in Fig. 5 of the paper [43], [66] and the maximum 2.4-times enhancement
was found.

Similar results on KDP were published in the “Short Note” [88], in which
in the maximum of rocking curves on the vibrating and stationary bar of KDP the -

(P

Virx / .
/

Fig. 14. Assymetric Laue case in which the lattice plane (k%) reflecting neutrons forms with the
plane (Y Z) the angle (—«)

1.9-times enhancement of the intensity of diffracted neutrons was achieved. If to
the alternating voltage the static field of Ez = 10 kV/cm was applied, the enhance-
ment of the intensity of diffracted neutrons reached the value 2.4.

4.2.2 An attempr of an approximate explanation of observed results

The piezoelectric excitation of longitudinal vibrations of bars with the frequency
(4.5) causes the periodic displacement (see chapter 4.1.1) of crystal planes and there-
fore also of lattice planes in the direction of the bar length. The displacement « in
the defined point (x, y, 2) of the bar can be described by the expression (4.22).

First we shall suppose that the neutrons are incident at the Bragg angle Og
upon the nonvibrating single crystal in the assymmetric Laue case shown in Fig. 13
and Fig. 14; later for the sake of simplicity we shall consider the symmetric Laue
orientation (Fig. 6).

As soon as the single crystal bar will be set in longitudinal vibrations — than due
to the strain (du/0x) and to the velocity (0u/0r) of lattice planes — there arises
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a deviation A@p = @ — @ from the Bragg angle Op [17], [44] which can be
expressed in the form
A5 = —tg O Ou(x,t) cos o Ou(x,t)

0x - onprcos Op ot

, (4.26)

in which o,r denotes the velocity of the diffracted neutrons. From the physical
point of view the deviation 4@z is caused by the aberration and Doppler effects, due
to the mouvement of lattice planes, and by their deformation.

The change 04@p during the time of flight of neutrons across the vibrating
sample with thickness T is given for the case shown in Fig. 13 by the formula

T

040 = cos O3 005 (05— o) {—- sin @g sin (@ — oc)—g% +
cz;: 3?124 __ sina coi ,(“@B — a) aangt } 4.27)
and for the case shown in Fig. 14 by the expression
0408 = — o coZ(@B s {— sin @5 sin (@5 + a)% +
%‘%— sin o CO,SDIEI_@B + ) aangt } (4.28)

Inserting in (4.27) or (4.28) the angle « = 0, we obtain the expression

T 1 02u . 02u
040p = YT (W_ﬁr 552 —smz@BW) (4.29)

for the symmetric Laue case illustrated in Fig. 6. Using in (4.29) the relation (4.22)
we obtain it in the form

040p =

uow?T ( 2,

. . TX .
——3p- \os — sin? 0}3) sin — sin wt (4.30)
02, cos? @p \ 22,

L
in which vpx denotes the velocity of propagation of ultrasonic vibrations along the
direction of X-axis. :

For calculating the integrated intensity of diffracted neutrons we shall proceed
in a similar way as for the diffraction of X-rays [49] or for the diffraction of neutrons
on statically bent single crystals [73].

First we shall suppose that for a nonvibrating single crystal perfect neutron
reflexion occurs over arange H and that the area under the rocking curve is according
to the Darwin [108] treatment equal to H = 2.66s, where s is given by the formula

_ N:A’F

" 7sin20p
in which N, is the number of unit cells per unit volume and F the structure factor
of neutrons.

(4.31)
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The second assumption is that the extinction coefficient €, which governs the
depth of penetration of the neutron beam before it is reflected, has the constant value
Eave over the whole range @ and is zero elsewehre. The value is the linear average
of Darwin's € over the angular range w, and is given for neutrons by

eave = %ﬂchF (4.32)

similar to [49].
Using these assumptions we can state how the integrated intensity diffracted
by a vibrating single crystal should depend on the displacement . For this purpose
we shall divide the vibrating single crystal in » layers, each from which is diffracting
neutrons independently as a thick perfect crystal. In the case that the time of flight
of neutrons across the crystal is much lower than the period of vibrations of a single
crystal bar, i.e. for T/v cos @ < 27/w it is possible in each time to writte

n(t) = —Mwﬂ = plsin wt| (4.33)
uow?T 1 . R ) C ax
" “we?, costOp (vgr sin®Op ) sin 7~ . (4.34)

In the case of negligible absorption of neutrons in the sample we shall obtain
for the integrated intensity Fvo of neutrons diffracted by a vibrating crystal the
relation:

Fvo = Fsn(z) :‘75%@

(4.35)

where F¥s is the integrated intensity of neutrons diffracted by the lattice planes of
a nonvibrating thick single crystal given by the Darwin’s formula:

8 NAF
" 3 =#sin20g

in which % = Jo(4) denotes the intensity of the incident neutron beam.

It is apparent that as amplitude #o of vibrations is increased, the layers des-
cribed above become thinner, whereas the distance required for almost complete
reflection remains fixed. Applying the corresponding correction C (see [49]) of the
intensity Fvo of diffracted neutrons for the “thin crystal” effect, we obtain:

|640%]

w

s Jo (4.36)

Fv = FvoC = Js [1 — exp(— Eave wT||64O5| cos Op)] .  (4.37)

The mean value JFv of the intensity of neutrons diffracted on the vibrating
single crystal is given by the relation:

o~ o . l Ea,veT
Fv = Fsplsin wr| [ 1 — exp (— [sin we] pcos @B)] (4.38)

which is impossible to express by simple functions.
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The ratio R = Jv/¥s of the intensity of neutrons diffracted on a vibrating
(§#v) and on the nonvibrating (¥s) single crystal can be obtained directly from the
relation (4.37). In the case when the correction for the “thin crystal” effect does not
take place, i.e. C ~ 1, the mean value is given by the simple expression

— 2
R=Jv|Fs=_p (4.39)
which is valid for #»> 1.
For testing the theoretical suppositions about the influence of ultrasonic
vibrations on the process of neutron diffraction the measurements of the value
R = R(i) and of the time modulation of the neutron beam were carried out.
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Fig. 15. Rr, Ra versus excitation current ¢ for 4; = 1.05A (1), A2 =1.54 A(2), Tx = 3mm
(3) and Tz = 14 mm (4) of a quartz bar with the length L = 120 mm

The experimental data of Fig. 11 show the nearly linear dependence of R = R(;)
versus the current 7 on the beginning of the curves 1 to 4. However, it can be seen
clearly from Fig. 11 that there exists the nonlinearity for higher currents of 7, which
is most probably caused by two reasons: the first one is connected with the non-
linearity of up = uo(¢) for high amplitudes of the displacement, the second one is
due to the “thin crystal” effect.

For testing the dependence of values p from relation (4.34) on the bar thick-
ness T, the relation Rt = R(;, T) for two wavelengths of diffracted neutrons was
investigated. In Fig. 15 the curves 1 and 2 represent the experimental dependence
on 7 of the relation

Rr = (Sx/Sz) . v(G, Tz)[Fv(, Tx) (4.10)
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where (Sx/Sz) is the ration of irradiated areas, Fv( T) is the mean value of the
peak intensity of diffracted neutrons. For the values p> 1 we shall get from the
relation (4.38) that Rt = T'z/Tx. In the case of our synthetic single crystal of SiOs
the calculated value Rt = Tz/Tx = 4,7 agrees quite well with the experimental
value for 7 > 2mA (p> 1) for both wavelengths of diffracted neutrons.

The dependence of the values p on the wave length of neutrons was investigated
experimentally for two thickness es (Tx = 3 mm and T, = 14 mm) of the bar cut
from the single crystal of SiO2. In Fig. 15 the experimental values corresponding
to the relation

Ry = (Ha| Hi) . Fo(h1)| Fo(22) [Fv(is A2)| Fv(G, M) (4.41)

are shown as curves 3 and 4. In the relation (4.41) Hs and H; denotes the half-
width of the rocking curve for the wave lengths 4 and A; respcetively, and
Fv(i, A) is the mean value of the peak intensity of neutrons diffracted by the vibrating
bar cut from the single crystal of SiOs. For the values p> 1 the relation R ~
~ (Ag/M)? results from the expression (4.38) under supposition that cos &g/
| cos @ps ~ 1. In our case the calculated value of R; is equal to R; = 2.2. For
i > 2 mA the experimental values of R; are independent of the resonator current ¢
and are in quite a good agreement with the calculated value 2.2 for both thicknesses
of the single crystal bar of SiOs.

Considering for the neutron diffraction the possibility of secondary reflexions
during their flight across the sample, the integrated intensity ¥ was calculated
in the paper [97] supposing — like in the paper [73] — that this intensity is pro-
portional to the number

n(t) = ——Wéggf’)' = % ok k“;;fxf)l‘ sin k“’le;i IQB sin kL—” x (4.42)
of perfect “crystalline layers” normal to the length L of the bar; the quantity s is
given by the expression (4.31).

Hence ¥ can be written in the form

P =n i’?-v (4.43)

where v = SoT is the irradiated crystal volume, Sy the area of the face of the
irradiated volume element and J the integrated intensity of a beam diffracted by
one “crystalline layer” with a unit area of the face.

The quartz single crystal bar was excited in the lst, 3rd and 5th harmonic
frequencies (i.e. for 2 = 1, 3 and 5) and the diffraction of neutrons by the lattice
plane (01.0) in the position of symmetric Laue transmission was investigated for both
thicknesses 7x and T, Fig. 16 illustrates the dependence of the integrated
intensity J” by a vibrating quartz single crystal bar on the resonator current ¢ to
which the vibration amplitude ug: is considered to be proportional. A vibration
amplitude uo1 = 4 um corresponds to the resonator current 7 = 5 mA.
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The results shown in Fig. 16 can be assumed as a very good agreement of the
experimental results with the theoretical considerations mentioned above for & = 1.
The linear dependence of ¥ on the excitation current i proves the relations (4.42)
and (4.43) in the case of Tx = 3mm, resp. Tz = 13mm for 7> 1 mA, resp.
7 < 0.3 mA, considering uo; as a linear function of 1.
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Fig. 16. The integrated intensity J» as a function of the current { flowing through the quartz
resonator for longitudinal vibrations at the fundamental frequency f = 38.948 kHz for two thick-
nesses Tx = 3 mm [curve O] and Tz = 13 mm [curve @)]; the bar length L = 77 mm

As wuox becomes still larger, ¥ in equ. (4.43) increases indefinitely.
From the physical point of view, this is impossible; for large values of wox
the curve is expected to level off. A further factor that should be considered
is the fact that for larger amplitudes wuox is no longer a linear function of the
crystal current i.

Therefore, the deviation from linearity in the intensity dependence for 2 = 3
and & = 5 may be due to either one or both of the reasons mentioned above.

The analysis of the experimental results — showing on the contrary to the
Fig. 16. — great differences for 7x = 3mm and for 7z = 13 mm in cases of
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Fig. 17. Time modulation of neutrons diffracted by vibrating quartz single crystal in the position
with (@) 405 =0 — O = —5.4', (b) 408 =0, (c) 40 = O — O = + 6.7'. The smooth

curves were obtained from experimental values of neutron intensities by the method of minimum
squares

k =3 and k = 5, requires relations in which the presence of the term

koTztg Op
2|vny|

in ¥, enables us to estimate the magnitude of secondary reflexions presuming that
each of the n(z) “crystalline layers” diffracts totally in the Braggs case.

Theoretical values of (¥4/¥%)e for &= 1,3 and 5 are 1.00, 0.76 and 0.41.
The averige experimental values of (J¥%/#x)exp for 2= 1 and 3 are 1.03 (for
71 = 0.75mA) and 0.61 (for 7 = 0.25 mA).

For k = 5 the comparison of the calculated value with the average experimental
one is not possible, because the experimental value of (¥, #%)exp depends on the
high-frequency exciting current 7, which dependence was observed only for k2 =1
and %k = 3. Thus in the case of 2 = 5 it is only possible to compare individual
experimental quantities at low values of 7.
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43 MODULATION OF THE INTENSITY OF THE NEUTRON BEAM
DIFFRACTED BY A VIBRATING CRYSTAL LATTICE

4.3.1 Experimental facts

At the International conference concerning investigations on piezoelectric
resonators in Liberec in September 1965 the attention was brought to the possibility
of intensity modulation of neutrons diffracted by a vibrating crystal lattice [3] which
was in more detailed way described in further publications [4] and [5]. Practically in
the same time T'. F. Parkinson and M. W. Moyer [30], [31]and A. G. Klein et al. [32]
have realised the beam modulation of a neutron beam by vibrating lattices of quartz
resonators. The observed results were confirmed and further develloped on quartz
resonator in papers [7], [8], [9], [14], [15], [33], [16], [34], on Ge and Si in [41], on
ADP in paper [43] and on KDP in the diplom work [98].

On a bar shaped quartz single crystal, having dimensions 3 mm X 14 mm X

%120 mm the time modulation of neutrons with wavelength A, = 1.54 A by the
lattice plane (020) was investigated in paper [16]. The quartz bar was piezoelectrically
excited in the series resonance of the fundamental mode of vibration having the
resonance frequency f = 22.6 kHz. The centre of the neutron beam impinging the
lattice plane was at a distance y = 3 //8 from the centre of the vibrating quartz bar.
The time modulation of diffracted neutrons was measured by a multichannel analyzer
by applying the time digital converter with the channel width of 1 us. The modulation
takes places with the repetition frequency of 2w, where w is the circular frequency
of longitudinal vibrations in the direction of the bar length (see chapter 4.3.2). The
variations of the neutron intensity with time shows Fig. 17. In this figure the meas-
urements of the time modulation of neutrons diffracted by a vibrating single crystal
in positions A@p = —54', AOp =0 and A@p = {-6.7' are illustrated. The
intensity of neutrons for a non-vibrating single -crystal is time independent in all
positions and about four times smaller than the mean intensity of neutrons diffracted
by a vibrating single crystal.

Similar results were obtained for the time modulation of the neutron beam
(An = 1.05 A) by the lattice plane of a single crystal quartz bar, having dimensions
3 X 14 X120 mm? and oriented in the quartz crystal in such a way that the surface
14 x 120 mm? was identic with the crystallographic plane (01.1). The bar was excited
electromechanically in its fundamental frequency f = 1160 Hz of flexural vibrations
in the direction of the 3 mm long edge.

The results in the dependence on the control voltage are given in Fig. 18, in
which the curve 2 shows that for small excitation voltage the fundamental modulation
component has the frequency w. With increasing amplitude of vibrations the com-
ponents with the frequency 2w, 3w, 4w ... (see curves 3 and 4 of Fig. 18) are gradually
arising. The observed phenomena can be explained by the assumption of the
existence of the static bending of the investigated bar, characterized by the radius Ry
of curvature (see paper [41]).
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Fig. 18. Time modulation of the neutron beam diffracted by the plane (01.1) of the single crystal
SiOg; curve 1 for U = 0 mV; curve 2 for U = 200 mV; curve 3 for U = 500 mV; curve 4
for U = 1000 mV. ¥ denotes the counts per channel of the analyzer, and N the channel number
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Fig. 19. Time modulation of the neutron beam diffracted by the plane (224) of the vibrating
single crystal of Si. Curve 1 background for U = 0mV; curve 2 for U = 0 mV; curve 3 for
U = 500 mV; curve 4 for U = 1000 mV; curve 5 for U = 2000 mV. ¥ denotes counts per
channel, N the number of the time channel of the analyzer, and T the period of bar vibrations

Measurements of the time modulation of the diffracted neutron beam were
performed as a function of the amplitude of vibration of the bar also for the dif-
fracting lattice plane (224) of the silicon single crystal. The obtained experimental
data are shown in Fig. 19 from which it can be seen that the neutron beam is modulated
by the fundamental component with frequency of 2w. For the explanation of this
fact see again the chapter 4.3.2.

With the same experimental arrangement the time modulation of a neutron
beam was carried out for the diffraction by the lattice plane (111) and by the lattice
plane (333) of single crystal of germanium. The experimental data are shown in Fig.
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Fig. 20. Time modulation of the neutron beam diffracted by a vibrating single crystal of Ge.

a)(111); A2 = 1.54 A; b)333; 41 = 1.05A. Curve 1 for U = 0 mV; curve 2 for U = 800 mV.

¥ denotes counts per channel, N the number of the time channel of the analyzer,and T the period
of bar vibrations
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20. For neutrons with A, = 1.05 A diffracted on the lattice plane (333) it can be
seen in the lower part of Fig. 20, that the fundamental modulation component has
the frequency 2w. This diagram shows also, that there exists some influence of
Doppler and aberration effects causing different counting rates of neutrons in odd
and even minima of the time spectrum as a consequence of the assymmetry of the
rocking curve of neutrons diffracted by the plane (333). The time modulation of
neutrons with the wavelength of i, = 1.54 A diffracted by the plane (111) may be
explained like in the case of SiOz (see Fig. 18) assuming a certain degree of static
deformation existing in the non-vibrating single crystal.

Experiments on time modulation of a neutron beam diffracted on lattice planes
of plates cut from ADP [43], [66] excited in thickness-shear vibrations, and of bars
cut from KDP [98] excited in longitudinal vibrations, offered similar results.

4.3.2 An attempt of an approximate explanation of observed results

It is difficult to describe and explain the physical process of the time modulation
of a neutron beam by vibrations of lattice plane, however it can be illustrated in the
following way.

If we consider a single crystal bar vibrating longitudinally in the direction of its
length L (Fig. 6), we can use for the displacement u the expression (4.22). The
velocity of the motion of crystallographic lattice planes of the bar in the direction
of the X-axis is then given by the relation,

% = vp COS Wl , Up = Upw Sin _anx . (4.44)

If the diffraction lattice plane of the single crystal is moving with this velocity
a change of the Bragg angle @g takes place. In the case when the direction of the

Vv =

velocity amplitude o, is collinear with the reciprocal lattice vector 7, vp/vn <KL 1,
Ot expresses the change of the diffraction angle @z in the form

Ot = dot cos wt (4.45)

where
60t=ﬂcos(93+3‘lsin@3tan93:3‘l 1
Un Vn v Ccos @p

(4.46)

which conforms with equation (1) of Shull et al. [36]. The first term of the eq. (4.46)
is due to aberration the second one to the Doppler effect.

The rocking curve of the single crystal can be expressed in the form (see also
(3.9) and (4.23))

7 = 70 e (~ o) (447)

where ¥(0) is the neutron intensity in the maximum of the rocking curve, 6 =
= @ — O3 is the deviation from the Bragg angle ®p and ¢ is connected withthe
full width H,, of the rocking curve at half maximum intensity by the relation (4.24).
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The influence of the periodic displacement of the vibrating bar on the deviation
0 can be described by the relation

0 = 0¢ + 0t = do + ot cos wt (4.48)

in which d¢ is a time — independent deviation from the Bragg angle given by the
position of the diffracting lattice plane and do¢ is given by eq. (4.46). The influence
of the periodic time variation d, i.e. of the time modulation on the neutron intensity
J(6, r) can be described in analogy to (4.47) by the corresponding expression

(5o+6t)_2].

J(6, 1) = ¥, £) exp [— 57 (4.49)

The value ¥(0, r) represents the time modulated maximum intensity of the rocking
curve in the position &g = 0.
Applying the following relations [99], [100]

exp (ix sin @) = -E Fu(x) exp (in0O) (4.50)

Fu(iz) = exp (n— l) In(2) (4.51)

where Fu(x) and In(2) are Bessel functions of the n-th order of the real and
imaginary argument. Substituting for J; from equation (4.45), equation (4.49)
becomes

F(6,0) = F(b1,0) exp( ) Z In ( %.- ‘5‘”) explin(wt + m)]  (4.52)

n=—~oao

where
2

K0y, 1) = K0, 1) exp (— j;;_) % Z Inm (7‘2) exp [imQuwt + 7)].  (4.53)

m=-—00

As can be seen from equations (4.52) and (4.53), supplementary modulations
occur in addition to the time modulation of diffracted neutrons. At the maximum
of the rocking curve (dp = 0) the supplementary modulation components are
az cos 2wt, a4 cos dwt, ag cos 6wt, etc. In positions where o + O still further
modulation components occur, b; cos wt, bz cos 2wt, bz cos 3wt, etc., which are
due to the influence of abberation and the Doppler effect on the time modulation
of neutrons diffracted by a vibrating single crystal.

Due to these facts the integrated intensity J¥ given by the formula (4.43)
changes periodically with time — according to the given experimental conditions —
as described in chapter 4.3.1.

5. Conclusions

Finally we would like to draw the attention to the fact that the phenomena
observed in the course of investigations upon the neutron diffraction by vibrating
lattice planes are interesting also by comparing them with analogous results obtained
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in experiments of X-rays diffraction. They have, however, useful applications too,
several examples of which we would to mention here.

As concerns the diffraction of X-rays by lattice planes of single crystals deformed
statically or periodically, there exist similar observations of the enhancement of the
diffracted intensity [45] as in the case of neutron diffraction (especially in the publi-
cations from the last time [38], [49], [107], [27], [28], [29], [42], [48], [83], [108] till
[113]) what is brought about by the fact, that in principle the causes of this effect
are in both cases the same. For the excitation of lattice vibration of nonpiezoelectric
crystals an acustoelectrical method [115] equivalent to our electromechanical method
[18], [25] was applied too.

It was, therefore, possible to apply in our paper [24] for the explanation of the
phenomena observed in our investigations of neutron diffraction the procedure
of the paper of White [49]. The main difference between the process of X-rays and
neutron diffraction can be seen in the different absorption of X-rays and neutrons
in the majority of single crystals and their different extinction features.

Comparing both cases of diffraction, it is interesting to mention that we do not
know any paper in which the observation of the modulation of the intensity of X-rays
by the frequency of the vibrating geometrical body prepared from the investigating
single crystal could be observed. Observations of this effect could be probably per-
formed in a similar way as was done in the statement of the acustic modulation of
gamma-rays from 57Fe by S. L. Ruby an D. L. Bolef. [116].

It is also interesting to state, that the neutron diffraction by vibrating lattice
planes has important applications not only for solution of physical problems but
especially in practical investigations [117]. The periodically modulated neutron beam
is much more useful for different investigations than the normal beam of neutrons
with constant intensity. In many cases, e.g. for the investigations of metastable states
of atomic nuclei, it would be much more effective, to apply the modulated neutron
beam than to use the normal one. Applying the lattice vibrations for monochromators,
it is possible to increase their effectivness many times (even 100-times). From change-
able intensity of neutrons diffracted by vibrating piezoelectric resonators, their
quality can be determined. By neutron diffraction topography [21], [106] the different
frequency modes of vibrating plates from single crystals can be identified in a similar
way as in the paper [118]. For special cases even a pulse neutron beam can be formed
by means of vibrating single crystal [11].
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