Acta Universitatis Carolinae. Mathematica et Physica

Ladislav Bican
The structure of primary modules

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 17 (1976), No. 2, 3--12

Persistent URL: http://dml.cz/dmlcz/142384

Terms of use:

© Univerzita Karlova v Praze, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/142384
http://project.dml.cz

1976 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 17, NO. 2, Pag. 3-12

The Structure of Primary Modules

L. BICAN
Department of Mathematics, Faculty of Mathematics and Physics, Charles University, Prague*)

Recetved 26 November 1974

This article characterizes the class of associative rings with identities to which the structural
theory of p-primary abelian groups can be carried over. The paper deals with the study of the theory
of basic submodules and Ulm-Zippin theory.

B craThe OLMCBbIBAETCA KJIACC aCCOLMATHBHBIX KOJIEL[ C CUHHULEI Ha KOTOpbIE II€PEHOCHTCS
TEOpHUs CTPOEHHS P-IIPUMAPHBIX abesieBbIX rpynm. B pabore ndyuaercs teopusi 6a3UCHBIX NOAMO-
Ryneit u Teopus Yabma-llbinuna.

V ¢&lanku je charakterizovana tfida asociativnich okruhi s jednotkovym prvkem, na nézZ lze
pfenést strukturni teorii p-primérnich abelovych grup. Price se zabyv4 studiem teorie bazisnich
podmodult a Ulm-Zippinovy teorie.

{. Introduction

The present paper continues my investigations [2]. For the rings satisfying the
conditions (1I) and (2I) (see § 2 below) one can build almost all the theory known
for the p-primary abelian groups. As in [2] we shall restrict ourselves to such structural
properties of I-Loewy modules that are logically equivalent to the conditions (1I)
and (2I). The Ulm-Zippin’s theory for countably generated p-groups can also be
carried over to countably generated /-Loewy modules. The only difficulty in proving
Ulm’s theorem for I-Loewy modules over rings with conditions (1I) and (2I) lies
in the fact that the finitely generated I-Loewy modules are not finite, in general.
Lemma 5.5 below substitutes this property of abelian p-groups sufficiently and the
proof of Ulm’s theorem for I-Loewy modules over the rings satisfying the conditions
(1) and (2I) runs then without change.

Although almost all the results on abelian p-groups can be proved for I-Loewy
modules over the ring satisfying the conditions (1I) and (2I), we shall restrict
ourselves to the fundamental results, only. It will be clear from the theory explained
below (and in [2]) in what a way any other result must be formulated and proved.

At the end of the paper the fundamental results contained here and in [2] are
summarized.

*) 186 72 Praha 8, Sokolovskéd 83, Czechoslovakia



2. Preliminaries

In what follows R stands for an associative ring with identity. Unless stated
otherwise, by the word module we shall always mean a unitary right R-module.
A module M is said to be simple if it is non-zero and has no proper submodules.
The socle S(M) of the module M is the submodule of M generated by all simple
submodules of M. The Loewy series of M (often called socle sequence, in the
literature) is defined for ordinals by Si(M) = S(M), Sar1(M)/Se(M) =

= SM/ Sa(M)) and S, M = ) Sp(M), « limit. The smallest ordinal a = «(M)
p<a

for which Sa(M) = Sq11(M) is the Loewy length of M. M is a Loewy module if
Sa(M) = M for some «. A Loewy module with finite Loewy length is said to be
bounded. For an element m of a module M the annihilator (0 : m) = {r €R,
mr = 0} of m is said to be the order of m.

Let I be a maximal right ideal of R. The I-socle S(M, I) of a module M is
the submodule of M generated by all simple submodules of M isomorphic to R/I.
As before, we can define the I-Loewy series, I-Loewy length, I-Loewy module
(sometimes called primary, or I-primary module).

A right ideal K of R is called Loewy right ideal if R/K is a Loewy module.
The Loewy length of K is that of R/K. An I-Loewy right ideal is defined in the
obvious way. These definitions are taken from Shores [10].

Let I be a maximal right ideal of R, M an I-Loewy module and m € M. The
I-height AY(m) of m in M is defined as the supremum of the set of all integers %
(including 0) for which m € MI¥. An I-Loewy module M is said to be divisible if
every element of M is of infinite I-height. An I-Loewy module M is said to be
I-quasicyclic if Sq+1(M)] Sa(M) is either O or isomorphic to R/I, for all ordinals «,
and if M is not bounded. An /-Loewy module M is called reduced if it contains no
I-quasicyclic submodules.

Note that in the case of abelian groups the Loewy module is the ordinary torsion
group, I-Loewy module is the primary group, I/-quasicyclic module is the group
C(p*) and the I-height coincides with the p-height for the corresponding prime p.
Recall, that a cyclic module mR is said to be ideal cyclic if the order of m is a two-
sided ideal.

Now we are going to formulate the conditions (1I) and (2I) (see [2]).

(1I) Every right I-Loewy ideal of R is two-sided.
(2I) If I is a two-sided ideal of R which is maximal as a right ideal then I/I2 is
either trivial or simple as both right and left R-module.

For the convenience of the reader we shall formulate the following results
of [2].

2.1. Lemma: Let / be an ideal of a ring R which is maximal as a right ideal
and let R satisfy the condition (2I). If @€l = I? is an arbitrary element then
I¥* = Rak + Intk = gkR + In+k for all integers n, k.

Proof: See [2], Lemma 2.2.
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2.2, Lemma: If K is an I-Loewy right ideal of a ring R satisfying the con-
ditions (1I) and (2I) then K = I for some integer n.

Proof: See [2], Lemma 2.3.

2.3. Lemma: Let / be a maximal right ideal of a ring R satisfying the con-
ditions (1I) and (2I). If M is an I-Loewy module and meM, ae€l ~ I? are
arbitrary elements then A¥(m) = sup {k, xa* = m is solvable in M}.

Proof: See [2], Proposition 2.4.

2.4. Lemma: Let / be a maximal right ideal of a ring R satisfying the con-
ditions (1I) and (2I) and I™ Z In+l for every integer n. Then the following state-
ments on an J-Loewy module are equivalent:

(i) M is a direct sum of [-quasicyclic modules,
(i) M is divisible,
(iii) M is injective with respect to the full subcategory of I-Loewy modules.

Proof: See [2], Theorem 3.2.

2.5. Lemma: Let R be a ring satisfying the conditions (1I) and (2I). If an

I-Loewy module M is a finite direct sum of ideal cyclic submodules, M = S¢
j=1
then every submodule N of M is a finite direct sum of ideal cyclic submodules,
N= 3 Dy and m<n.
k-1

Proof: It follows immediately from Kulikov’s criterion ([2], Theorem 4.1,
see also Theorem 5.10 below) that N is a direct sum of ideal cyclic submodules.
The inequality m < n follows at once from the obvious inclusion S(N) < S(M).

2.6. Lemma: Let R be aring satisfying the conditions (1I) and (2I). Then
every countably generated I-Loewy module M can be expressed as the union
M = OO M, where Mp < Mn1 and M, is a finite direct sum of ideal cyclic

n=1
submodules.
Proof: Let M be generated by the elements wj, ug, ... and let M, be the
submodule of M generated by wi, u2, ..., un. Then M = |J M, and every M,

n=1
is a finite direct sum of ideal cyclic submodules by [2], Theorem 4.2 (see also
Theorem 5.10 below).

2.7. Proposition: Let R be a ring satisfying the conditions (1I) and (2I).

Then every submodule of a countably generated I-Loewy module M is countably
generated.

Proof: Let N be asubmodule of M. By2.6 M = G My, where M, < Mnn
n=1
and M, is a finite direct sum of ideal cyclic submodules. Consequently, N =

= | (N ) M») where every N (| M, is finitely generated by 2.5. Thus N is
n=1
countably generated.



2.8. Proposition: Let R be a ring satisfying the conditions (1I) and (2I) and
let I = I»*1 for some n. Then every I-Loewy module is a direct sum of ideal
cyclic submodules of orders at most I”.

Proof: Let M be an I-Loewy module. Clearly mI® = 0 for every m € M,
so that MI» = 0 and M is bounded. Now it suffices to use Theorem 4.2 of [2].

2.9. Notation: The above Proposition completely describes the I-Loewy
modules over the rings with I® = In+! for some n. Thus in the rest of this paper 7
will always denote a maximal right ideal of R such that I* 2 I»+1 for every natural
integer n.

3. Purity

3.1. Definition: A submodule N of an /-Loewy module M is said to be pure
in M if MI® (\ N = NI* for every natural integer n.
3.2. Lemma: Let R be a ring satisfying the conditions (1I) and (2I) and let M
k
be an a-Loewy module. If u = 3 wir;, us € M, r; € I then there exists u' € M
i1
such that u = «'a”, where a el =~ I2
Proof: We can clearly assume u # 0. If It annihilates all the wu;, i =1,
k
2, ...,k then by Lemma 2.1 r; =sa" +s,, si€R, s;elt and u = 3 wr; =
k k : i

1=1
= > wsia® = ( 2 uis;) a”.
i=1 i=1
3.3. Proposition: Let R be a ring satisfying the conditions (1I) and (2I) and
let ael =~ I? be an arbitrary element. Then a submodule N of an I-Loewy
module M is pure in M iff for every natural integer » and every u € N the solvability
of the equation xa” = u in M implies its solvability in N.

Proof: Let N be purein M and let the equation xa™ = u, u € N be solvable

k

in M. Then ue MI" (\ N = NI", ie. u= 3 wri, uy €N, r¢€I". By 3.2u=

= u/qm for some u' € N. =1 .
Conversely, let # € MI* [} N be an arbitrary element. Then u =_Z wiry €N,

=1

us € M, rieI®. By Lemma 3.2 u = u'a® for some u' € M and by the hypothesis
there exists an element v €N with # = va” and hence u e NI". Thus
MI» (\ N < NI* and consequently N is pure in M, the converse inclusion being
obvious.

3.4. Lemma: Let R be a ring satisfying the conditions (1I) and (2I). f B& N
are submodules of an I-Loewy module M such that B is pure in M and N/B is
pure in M/B then N is pure in M.

Proof: Owing to 3.3, the proof is the same as that for abelian groups (see [5],
§23, M)) and it will therefore be omitted.

3.5. Lemma: Let R be a ring satisfying the conditions (1I) and (2I). If M is
an [-Loewy module such that every element of the socle of M is of infinite /-height
in M then M is divisible.
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Proof: We shall use the induction on the orders of the elements. Let/ be
a natural integer, ¥ € M be an element of order I* and let every element of order
less than I* be of infinite I-height. It follows from Lemma 2.1 that the element
ua*-1 is of the order I, so that wva¥tl-1 = ya¥-1 for some v € M. The element
va! — u is of the order I*-1 and the induction hypothesis yields wa! = va! — u
for some w € M and the assertion follows easily.

3.6. Proposition: Let R be a ring satisfying the conditions (1I) and (2I).
If S is a submodule of an I-Loewy module M such that S is a direct sum of ideal
cyclic submodules of the same order I* then the following are equivalent:

(i) S is a direct summand of M,
(i) S is purein M,
Gii) Mrr 1 S=0.

Proof: (i) implies (ii) trivially.

(ii) implies (iii). By Definition 3.1. MI* | § = SI* = 0.

(iii) implies (i). Let T be a submodule of M maximal with respect
to Mat< T and T () § = 0. Assume the existence of an element ue M ~
~(S4+T)withuaeS + T, ua=v+w, veS, WeT. Then uat = vat-1 +
+ wat-1 and consequently vat-! = 0 since wuat € Mat = T. Thus za = v for
some z €S owing to the form of S and Lemma 2.1. Now u —z€ S + T and
(u— 2)a=weT. Bythechoice of T, (T + (¥ — 2) R) () S * 0, so that there
is 0*xs=x+wm—=2)r, x€T, reR Further, rel, since (u— 2)r =
=s5s—xe€8S + T. Let I' be the order of ¥ — 2. By Lemma 2.1, r = ar' + 1",
reR, v"el' and s =x + (u — 2) ar' € S\ T = 0 which contradicts the choice
of s. Therefore M =S + T.

3.7. Corollary: Let R be a ring satisfying the conditions (1I) and (2I). Then
every non-divisible I-Loewy module M contains a (non-zero) ideal cyclic direct
summand.

Proof: M contains an element u of finite I-height. By Lemma 3.5 we can
suppose that u lies in the socle of M. Let va* = u, where k2 = h¥(u). Owing to
Proposition 3.6 it remains only to show that vR is pure in M. Let xa! = or % 0,
xeM, reR. It follows from 2.1 that r =sat + ¢, seR =1, telkl, <k
and saf¥F =a¥ks' + ¢, sseR =1, ¢ elI¥*l, from which xal*k¥-t = pragk-t =
= vsa*¥ = vaks' = us'. Now, again by 2.1 §'s" +2=1, zel, s"e R~ I and
altk-is" =" gqltk—i L 2/ " eR— 1, 2 €IV where IV is the order of x.
Consequently, xs"altk~t = xqltk-ts" — ys's" =y and I+ Ek—i<bk, [I<1i.
Finally or = vsa! = (vsat-!) @' and @R is pure in M by Proposition 3.3.

3.8. Proposition: Let R be a ring satisfying the conditions (1I) and (2I)
and let M be an I-Loewy module. Then a submodule N of M is pure in M iff
every coset u + N, u € M contains an element having the same order as « + N.

Proof: If Nis purein M and if # + N is of order I* then ua* = v, v e N
and consequently #'a* = v for some u' € N. Now the order of u — ' is at most
I% by 2.1 and hence u — ' is of order I*.



Conversely, for ua* =v, ueM, veN let 4 be the element of u + N
having the same orderas # + N. So #'a* =0, u — 4’ € N and (u — «') a* = v,
as desired.

3.9. Proposition: Let R be a ring satisfying the conditions (1I) and (2I).
If N is a pure submodule of an /-Loewy module M such that M/N is direct sum
of ideal cyclic modules then N is a direct summand of M.

Proof: It follows easily from 3.8 (cf. Theorem 25.2 of [5]).

4. Basic submodules

4.1. Definition: A submodule B of an I-Loewy module M is said to be

a basic submodule of M if

(i) B is a direct sum of ideal cyclic submodules,
(ii) B is pure in M, -
(iii) M|/B is a direct sum of I-quasicyclic modules.

4.2. Theorem: The following are equivalent for a ring R satisfying the
condition (1I):

(i) Every I-Loewy module has a basic submodule,
(i) R satisfies the condition (2I).

Proof: (i) implies (ii). Let M be a finitely generated /-Loewy module. No
non-zero factor of M is a direct sum of /-quasicyclic modules, since such modules
clearly have no finite set of generators. Thus M is its own basic submodule and R
satisfies the conditions (1I) and (2I) by [2], Theorem 4.2 (see Theorem 5.10 below).

(ii) implies (i). The set of elements {as, A € A} of an I-Loewy module M will

be called purely independent if the sum > a;R is direct and pure in M. Using the
icAa

Zorn’s lemma one can easily see that in every I-Loewy module a maximal purelyv
independent set exist. Let L = {a;, 4 € A} be a maximal purely independent
set of an I-Loewy module M. Then aq;R are ideal cyclic by (1I) and

B = 3 a;R is purein M. Suppose that M/B is not a direct sum of /-quasicyclic
pisY

modules. Then M/B is not divisible by Lemma 2.4 and consequently it contains
an ideal cyclic direct summand N/B by Corollary 3.7. Since N/B is clearly pure
in M/B, N is pure in M by Lemma 3.4. Morevover, by Proposition3.9 N =B + C
where C is ideal cyclic, contradicting the maximality of M, and we are through.

5. Ulm-Zippin’s theory

Throughout this section we shall assume that all /-Loewy modules considered
are reduced.

5.1. Definition: Let 7 be an ordinal. A well-ordered sequence My, My, ...,
Mg, ..., x <7 of non-zero I-Loewy modules is called the Ulm sequence of the
type 7 if



(i) every M,, « < 7 is a direct sum of ideal cyclic modules,
(ii) every Mg, « + 1 < t is unbounded.

We shall call the Ulm sequence countable if 7 is a countable ordinal and every
Mg, « < 7 is countably generated.

Two Ulm sequences Mo, My, ..., Mgy ...y <t and My, M, ..., M, ...,
« < 7' are said to be isomorphic if T = v and M, ~ M, for every « < 7.

5.2. Definition: Let M be an [-Loewy module. Let us define the sequence
of submodules M2 of M in the following way: Mo = M, M2+l consists of all the

elements of M that are of infinite I-height in M2 and M* = (| M?, « limit.
B<a
Further, for every o« we put M, = Me/Ma+1, If the sequence just defined is the

Ulm sequence then we shall say that M has the Ulm sequence.

5.3. Lemma: Let R be a ring satisfying the conditions (1I) and (2I) and let ¢
be an epimorphism of an /-Loewy module M onto N such that the kernel K of ¢
contains only the elements of infinite I-heights. Then A} (m) = hY(p(m)) for every
meM.

Proof: Let a € I = I2 beanarbitrary element and let the equation xa* = gp(m)
be solvable in N. Then for some u € K the equation xa* = m + u is solvable
in M. Since h}(u) = co by the hypothesis, k¥ (m) > k by Lemma 2.3. Thus
h¥(m) — hY(p(m)) and we are through, the converse inequality being obvious.

5.4. Definition: Let M be an I-Loewy module, m e M. If m e Mv —~ Mv+1
and Y (m) = n then the pair (y, n) is called the generalized I-height of m in M
and is denoted by H¥(m).

The crucial step in the next is the following:

5.5. Lemma: Let R be a ring satisfying the conditions (1I) and (2I). If U is
a finitely generated submodule of an I-Loewy module M then the set {HY(m),
m e U} is finite.

Proof: We shall use the induction on the number of generators of U. Let
U = x1R. By Lemma 2.2, x1R ~ R/I* for some natural integer ¢. It follows from
Lemma 2.1 that every element of xR can be written in the form xia'r, where
a€l = I? is an arbitrary element (fixed in the sequel) and r e R ~ I. Thus for
suitable s €R, s’ €I* we have rs = | + s'(R/I* being local) and xalrs = xa’.
Now using Lemma 2.1 we get HY(x1at) = H¥(x1airs) = HY(x1alr) = HY (x1a?)
and consequently {H¥(x1), HY(x1a), ..., H¥(x1a*-1)} equals to the set considered.

Let us suppose that every submodule of M with at most / — 1 generators has
the desired property and let U = x1R + x2R + ... + xR (and U cannot be gen-
erated by less than / elements). Let us suppose that for the elements u, = ZI xiri",
n=1,2,.., wehave H¥(un) < Hf(un+1) forall n =1,2,.... We ca'n ::learly
assume that all the x;r{™ are non-zero since the converse would contradict to the
induction hypothesis. Further, we can suppose that every r{® is equal to some a¥

(it follows from the first part of the proof that if we multiply every u, by a suitable
element of R we obtain a new sequence having the desired property and the same
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generalized [-heights). Moreover, since x;R ~ R/I* by Lemma 2.2, we can assume
without loss of generality that all »{* are equal to the same a¥, 2 < . Now con-
sidering the differences uy — w2, ug — us, ..., un — Un+1, ... We obtain an infinite
set of elements of g1R + ... 4+ g;-1R with pair-wise different generalized I-heights,
which contradicts the induction hypothesis.

5.6. Theorem: The following conditions are equivalent for a ring satisfying
the condition (1I):

(i) Every countably generated I-Loewy module has countable Ulm sequence,
(ii) every countably generated /-Loewy module has Ulm sequence,
(iii) R satisfies the condition (2I).

Proof: (i) implies (ii). Obvious.

(ii) implies (iii). Since every countably generated I-Loewy module without
elements of infinite /-heights has the Ulm sequence of type 1, it is a direct sum of
ideal cyclic submodules and it suffices to use Theorem 4.9 of [2] (see Theorem
5.10 below).

(iii) implies (i). Let M be a countably generated I-Loewy module. By Lemma
5.3 no M, contains elements of infinite /-height. By Proposition 2.7, every M2 and
hence every M, is countably generated and thus M, is a direct sum of ideal cyclic
submodules by Theorem 4.2 of [2].

Now let M, be bounded, Mga* = 0. Then M2k = Mae+l, For every
m € Ma*1 and every natural integer / the equation xa**! = m is solvable in M¢,
However, xa* € M2*1 and (xa¥)a® = m for arbitrary m € M2l and a natural
integer [ shows M@+l is divisible and consequently M2+l = 0, M being reduced
(see Lemma 2.4). Thus « 4 1 = 7. It follows from Lemma 5.5 that for a countably
generated module M the set {HY(m), m € M} is countable and consequently 7
is a countable ordinal.

5.7. Proposition: Let R be a ring satisfying the conditions (1I) and (2I).
Then to every countable Ulm sequence My, o < 7 there exists a countably gen-
erated /-Loewy module M, the Ulm sequence of which is isomorphic to Mg, « < .

Proof: The proof of Zippin’s theorem (see [5], Theorem 36.1) can easily be
adapted to our case (instead of Theorem 16.1 of [5] Lemma 2.4 must be used).

5.8. Definition: We shall say that the Ulm-Zippin’s theory holds for I-Loewy
modules if the map assigning to each I-Loewy module M the sequence M, from
5.2 induces a one-to-one correspondence between the isomorphism classes of reduced
countably generated I-Loewy modules and the isomorphism classes of countable
Ulm sequences. '

5.9. Theorem: Let R be a ring satisfying the condition (1I). Then the follow-
ing are equivalent:

(i) The Ulm-Zippin’s theory holds for I-Loewy modules,
(ii) R satisfies the condition (2I).

Proof: (i) implies (ii). It follows immediately from Theorem 5.6 (ii) imples

(i). By Theorem 5.6 every countably generated /-Loewy module has the countable
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Ulm sequence and by Proposition 5.7 to every countable Ulm sequence My, & < T
there exists a countably generated I-Loewy module M, the Ulm sequence of which
is isomorphic to Mg, & < 7. Thus it remains to show that two countably gene-
rated I-Loewy modules with isomorphic Ulm sequences are isomorphic.

Let U be a submodule of an I-Loewy module M. As in [5] we shall call an
element m € M proper with respect to U, if HY(m) = H¥(m + u) for all u € U.
If U is finitely generated, m’ ¢ U, m'a € U, then the coset m' + U consists of the
elements of the finitely generated submodule U + m'R of M and Lemma 5.5
shows the existence of an element m” €m’ + U which is proper with respect to U.
Moreover, the same Lemma shows that among all such elements there is at least one
element m with maximal H¥(ma). Now one can easily adapt the proof of Ulm’s
Theorem ([5], Theorem 37.1) to finish the proof of our Theorem. The details will be
omitted.

At the end of this paper we summarize some results obtained here and in [2].

5.10. Theorem: For a ring R satisfying the condition (1I) (especially for a
subcommutative or commutative ring R) the following conditions are equivalent:

(i) The Kulikov’s criterion holds for I-Loewy modules, i.e. an /-Loewy module
M is a direct sum of ideal cyclic submodules iff M is the union of an ascending
chain of submodules M, such that the I-heights of elements of M, in M
remain under a finite bound &y,

(ii) every bounded I-Loewy module is a direct sum of ideal cyclic submodules,

(iii) every finitely generated I-Loewy module is a direct sum of ideal cyclic sub-
modules,

(iv) every countably generated I-Loewy module without elements of infinite
I-heights is a direct sum of ideal cyclic submodules,

(v) every I-Loewy module has a basic submodule,
(vi) the Ulm-Zippin theory holds for /-Loewy modules,
(vii) R satisfies the condition (2I).
Proof: See [2], Theorem 4.2 and Theorem 5.9 above.
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