Acta Universitatis Carolinae. Mathematica et Physica

Jaroslav Ježek; Tomáš Kepka

Free commutative idempotent abelian groupoids and quasigroups

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 17 (1976), No. 2, 13--19

Persistent URL: http://dml.cz/dmlcz/142385

Terms of use:

© Univerzita Karlova v Praze, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Free Commutative Idempotent Abelian Groupoids and Quasigroups

J. JEŽEK and T. KEPKA
Department of Mathematics, Faculty of Mathematics and Physics, Charles University, Prague»)

Received 26 November 1974

Abstract

A geometrical construction of free objects in the variety of commutative idempotent abelian groupoids is given. It follows from the construction that the free objects are cancellation groupoids.

Свободные коммутативные идемпотентные абелевы группоиды и квазигруппы. Дано геометрическое описание свободных объектов в многообразии всех коммутативных идемпотентных абелевых группоидов. Показывается, что эти свободные объекты - группоиды с сокращениями.

Volné komutativní idempotentní abelovy grupoidy a kvazigrupy. - Je dána geometrická konstrukce volných objektů ve varietě všech komutativních idempotentních abelových grupoidů. Z konstrukce plyne, že tyto volné objekty jsou grupoidy s krácením.

A groupoid G is called

- commutative if $a b=b a$ for all $a, b \in G$,
- idempotent if $a a=a$ for every $a \in G$, and
- abelian if $a b . c d=a c . b d$ for all $a, b, c, d \in G$.

The purpose of this paper is to give a description (and in fact a construction) of free groupoids (resp. quasigroups) in the variety \mathscr{G} (resp. \mathscr{H}) of all commutative idempotent abelian groupoids (resp. quasigroups). For the sake of brevity, such groupoids (quasigroups) will be called CIA-groupoids (CIA-quasigroups). Some properties of CIA-groupoids and CIA-quasigroups were studied e.g. in [1], [2], [4], [5] and [6].

I. Free ClA-quasigroups

The aim of this section is to describe free CIA-quasigroups. We start with a universal-algebraic background.

Let a (finite or infinite) sequence $\Delta=\left\langle n_{1}, n_{2}, \ldots\right\rangle$ of non-negative integers be given. Δ-algebras are formations $A=\left\langle X, f_{1}, f_{2}, \ldots\right\rangle$ such that X is a nonempty set and f_{i} is an n_{i}-ary operation in X. (If $n_{i}=0$, this means $f_{i} \in X$).
*) 18672 Praha 8, Sokolovská 83, Czechoslovakia

For any variety K of Δ-algebras we define a variety K^{*} of Δ^{*}-algebras in this way: $\Delta^{*}=\left\langle 0, n_{1}, n_{2}, \ldots\right\rangle$; a Δ^{*}-algebra $\left\langle X, a, f_{1}, f_{2}, \ldots\right\rangle$ belongs to K^{*} iff $\left\langle X, f_{1}, f_{2}, \ldots\right\rangle$ belongs to K (and the element $a \in X$ is quite arbitrary).
1.1. Lemma. Let K be a variety of Λ-algebras and let $\left\langle X, a, f_{1}, f_{2}, \ldots\right\rangle$ be a free K^{*}-algebra, freely generated by a set $Y \subseteq X$. Then the Δ-algebra $\left\langle X, f_{1}, f_{2}, \ldots\right\rangle$ is free in K; it is freely generated by the set $Y \cup\{a\}$.

Proof is easy.
Let a variety K_{1} of Δ_{1}-algebras and a variety K_{2} of Δ_{2}-algebras be given. The varieties K_{1} and K_{2} are called equivalent if there exists a one-to-one mapping φ of K_{1} onto K_{2} such that the following two conditions are fulfilled:
(1) if $A \in K_{1}$, then the algebras A and $\varphi(A)$ have the same underlying sets;
(2) if $A, B \in K_{1}$ and if f is a mapping of the underlying set of A into the underlying set of B, then f is a homomorphism of A into B iff it is a homomorphism of $\varphi(A)$ into $\varphi(B)$.
1.2. Lemma. If the varieties K_{1} and K_{2} are equivalent then an algebra $A \in K_{1}$ is free in K_{1} iff $\varphi(A)$ is free in K_{2}; if Y is a set of free generators in A, then it is a set of free generators in $\varphi(B)$, as well.

Proof is easy.
Now we shall construct two special varieties and show that they are equivalent.
The class \mathscr{H} is a variety if CIA-quasigroups are considered as universal algebras with two binary operations (multiplication \circ and division :). Algebras of the variety \mathscr{K}^{*} have, moreover, one nullary operation.

The class \mathscr{U} of all uniquely 2-divisible abelian groups (i.e. abelian groups such that the mapping $x \mid \rightarrow 2 x$ is a permutation) is a variety if these groups are considered as algebras with two binary operations (addition + and subtraction -) and one unary operation (denoted by $\frac{1}{2} x$).
1.3. Lemma. The varieties \mathscr{H}^{*} and \mathscr{U} are quivalent. The mapping φ and its inverse φ^{-1} are defined in this way: if $A=\langle X, a, 0,:\rangle \in \mathscr{H}^{*}$, then $\varphi(A)=\left\langle X,+,-, \frac{1}{2}\right\rangle$ where $x+y=(x \circ y): a$ and $\frac{1}{2} x=a \circ x$; if $B=\left\langle X,+,-, \frac{1}{2}\right\rangle \in \mathscr{U}$, then $\varphi^{-1}(B)=\langle X, a, \circ,:\rangle$, where a is the zero element of B and $x \circ y=\frac{1}{2}(x+y)$.

Proof. The assertion $\varphi(A) \in \mathscr{U}$ follows immediately from the more general Toyoda's theorem [8]; some similar constructions can be found in [3] and [7]. However, the direct proof of 1.3 is easy.

It follows from 1.1, 1.2 and 1.3 that for the description of free algebras in \mathscr{H} it is sufficient to find a description of free algebras in \mathscr{U}.

Denote by R the set of all rational numbers which can be expressed as $2^{-m} c$ for some integer c and some natural number m. For any natural number n define n significant elements $e_{1}^{n}, \ldots, e_{n}^{n}$ of the cartesian power R^{n} :

$$
\begin{aligned}
e_{1}^{n} & =\langle 1,0, \ldots, 0\rangle, \\
e_{2}^{n} & =\langle 0,1,0, \ldots, 0\rangle, \\
& \ldots \\
e_{n}^{n}= & \langle 0, \ldots, 0,1\rangle .
\end{aligned}
$$

Put, moreover,

$$
e_{0}^{n}=\langle 0,0, \ldots, 0\rangle
$$

1.4. Lemma. The set R is a uniquely 2-divisible abelian group with respect to the ordinary addition of rational numbers. The group R^{n}, with operations defined componentwise, is free in the variety \mathscr{U}; the elements $e_{1}^{n}, \ldots, e_{n}^{n}$ are its free generators.

Proof is well-known and easy.
1.5. Theorem. The set R^{n} is a CIA-quasigroup with respect to the operation \circ defined by

$$
\left\langle x_{1}, \ldots, x_{n}\right\rangle \circ\left\langle y_{1}, \ldots, y_{n}\right\rangle=\left\langle\frac{1}{2}\left(x_{1}+y_{1}\right), \ldots, \frac{1}{2}\left(x_{n}+y_{n}\right)\right\rangle .
$$

This quasigroup R^{n} is free in the variety \mathscr{H}; the elements $e_{0}^{n}, e_{1}^{n}, \ldots, e_{n}^{n}$ are its free generators.

Proof is a trivial combination of the previous lemmas.
The construction of free CIA-quasigroups of infinite ranks α (and the proof, as well) is quite analogous; the underlying set is the set of all those mappings f of α into R for which the set $\{j \in \alpha ; f(j) \neq 0\}$ is finite.

2. Free ClA-groupoids

Denote by P the set of all rational numbers which can be expressed as $2^{-m_{c}}$ for some integers m and c such that $m \geq 0$ and $0 \leq c \leq 2^{m}$. Given an integer $n \geq 1$, we denote by F_{n} the set of all $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in P^{n}$ such that $a_{1}+\ldots+$ $+a_{n} \leq 1$. Especially: $F_{1}=P$. The set F_{n} is a groupoid with respect to the operation o defined by

$$
\left\langle x_{1}, \ldots, x_{n}\right\rangle \circ\left\langle y_{1}, \ldots, y_{n}\right\rangle=\left\langle\frac{1}{2}\left(x_{1}+y_{1}\right), \ldots, \frac{1}{2}\left(x_{n}+y_{n}\right)\right\rangle
$$

Define $n+1$ significant elements $e_{0}^{n}, e_{1}^{n}, \ldots, e_{n}^{n}$ of F_{n} in the same way as in Section 1. We shall prove that $\left\langle F_{n}, 0\right\rangle$ is a free CIA-groupoid, freely generated by $\left\{e_{0}^{n}, e_{1}^{n}, \ldots, e_{n}^{n}\right\}$. The construction is thus similar as in the case of CIA-quasigroups; in fact, the free CIA-groupoid of rank $n+1$ is just the subgroupoid generated by free generators in the free CIA-quasigroup of rank $n+1$. However, the proof is more complicated. The difficulty is that we do not know a priori that the free CIA-groupoid is cancellative.
2.1. Lemma. The groupoid $\left\langle F_{n}, 0\right\rangle$ is cancellative and belongs to \mathscr{G}.

Proof is evident.
2.2. Lemma. The groupoid $\left\langle F_{n}, 0\right\rangle$ is generated by $\left\{e_{0}^{n}, e_{1}^{n}, \ldots, e_{n}^{n}\right\}$.

Proof. Denote by H the subgroupoid generated by $\left\{e_{0}^{n}, e_{1}^{n}, \ldots, e_{n}^{n}\right\}$. We shall prove by the induction on m that whenever c_{1}, \ldots, c_{n} are non-negative integers such that $c_{1}+\ldots+c_{n} \leq 2^{m}$, then $\left\langle 2^{-m} c_{1}, \ldots, 2^{-m} c_{n}\right\rangle \in H$. If $m=0$, this follows from $\left\{e_{0}^{n}, \ldots, e_{n}^{n}\right\} \subseteq H$. Let now $m \geq 1$ be fixed; we shall proceed by the induction on the number of those i for which c_{i} is odd. If c_{1}, \ldots, c_{n} are all even, then

$$
\left\langle 2^{-m} c_{1}, \ldots, 2^{-m} c_{n}\right\rangle=\left\langle 2^{-(m-1)} \frac{1}{2} c_{1}, \ldots, 2^{-(m-1)} \frac{1}{2} c_{n}\right\rangle \in H
$$

by the induction assumption on m. If c_{i} is odd for exactly one i then $c_{1}+$ $+\ldots+c_{n}<2^{m}$ and we may write

$$
\begin{gathered}
\left\langle 2^{-m} c_{1}, \ldots, 2^{-m} c_{n}\right\rangle=\left\langle 2^{-m} c_{1}, \ldots, 2^{-m}\left(c_{i}-1\right), \ldots, 2^{-m} c_{n}\right\rangle \circ \\
\left\langle 2^{-m} c_{1}, \ldots, 2^{-m}\left(c_{i}+1\right), \ldots, 2^{-m} c_{n}\right\rangle .
\end{gathered}
$$

If there are two $i, j(1 \leq i<j \leq n)$ such that c_{i} and c_{j} are odd then

$$
\begin{gathered}
\left\langle 2^{-m} c_{1}, \ldots, 2^{-m} c_{n}\right\rangle=\left\langle 2^{-m} c_{1}, \ldots, 2^{-m}\left(c_{i}-1\right), \ldots, 2^{-m}\left(c_{j}+1\right), \ldots, 2^{-m} c_{n}\right\rangle \circ \\
\left\langle 2^{-m} c_{1}, \ldots, 2^{-m}\left(c_{i}+1\right), \ldots, 2^{-m}\left(c_{j}-1\right), \ldots, 2^{-m} c_{n}\right\rangle .
\end{gathered}
$$

Lemma is thus proved.
Denote by T the set of all finite sequences $\left\langle x_{1}, \ldots, x_{p}\right\rangle$ such that $p \geq 1$, every x_{i} is either 0 or 1 and whenever $p \geq 2$, then $x_{p-1}=0$ and $x_{p}=1$. For any two elements $u=\left\langle x_{1}, \ldots, x_{p}\right\rangle$ and $v=\left\langle y_{1}, \ldots, y_{q}\right\rangle$ of T define an element $u * v \in T$ by the induction on $p+q$:
(1) $0 * 0=0 ; \quad 1 * 1=1 ; \quad 0 * 1=1 * 0=\langle 0,1\rangle$;
(2) if $p=1$ and $q \geq 2$, put $u * v=\left\langle x_{1}, y_{1}, \ldots, y_{q}\right\rangle$;
(3) if $p \geq 2$ and $q=1$, put $u * v=\left\langle y_{1}, x_{1}, \ldots, x_{p}\right\rangle$;
(4) in the case $p \geq 2$ and $q \geq 2$ we count $\left\langle x_{2}, \ldots, x_{p}\right\rangle *\left\langle y_{2}, \ldots, y_{q}\right\rangle=$ $\left\langle z_{1}, \ldots, z_{r}\right\rangle$ and put

$$
\begin{gathered}
u * v=\left\langle x_{1}, z_{1}, \ldots, z_{r}\right\rangle \text { if } x_{1}=y_{1} ; \\
u * v=\langle 0,1\rangle \text { if } r=2 \text { and } x_{1} \neq y_{1} ; \\
u * v=\left\langle x_{1}, y_{1}, z_{2}, \ldots, z_{r}\right\rangle \text { if } r \geq 3, \quad x_{1} \neq y_{1} \text { and } x_{1}=z_{1} ; \\
u * v=\left\langle y_{1}, x_{1}, z_{2}, \ldots, z_{r}\right\rangle \quad \text { if } r \geq 3, \quad x_{1} \neq y_{1} \text { and } y_{1}=z_{1} .
\end{gathered}
$$

2.3. Lemma. Let a CIA-groupoid $\langle G, 0\rangle$ and two elements $a, b \in G$ be given. The mapping $h_{a, b}$ of T into G, defined by

$$
\begin{aligned}
& h_{a, b}(0)=a \\
& h_{a, b}(1)=b \quad \text { and } \\
& h_{a, b}\left(x_{1}, \ldots, x_{p}\right)=h_{a, b}\left(x_{1}\right) \circ h_{a, b}\left(x_{2}, \ldots, x_{p}\right) \text { if } p \geq 2, \text { is a homo- }
\end{aligned}
$$

morphism of $\langle T, *\rangle$ into $\langle G, 0\rangle$.
Proof. The operation * was defined so that this might be true.
2.4. Lemma. If we put $\langle G, 0\rangle=\left\langle F_{1}, 0\right\rangle, a=0$ and $b=1$ in Lemma 2.3 then the mapping $h_{0,1}$ is an isomorphism of $\langle T, *\rangle$ onto $\left\langle F_{1}, 0\right\rangle$.

Proof. By 2.2 and 2.3 it is sufficient to show that the mapping $h=h_{0,1}$ is injective. We shall prove by the induction on $p+q$ that $h\left(x_{1}, \ldots, x_{p}\right)=h\left(y_{1}, \ldots, y_{q}\right)$ implies $\left\langle x_{1}, \ldots, x_{p}\right\rangle=\left\langle y_{1}, \ldots, y_{q}\right\rangle$. This is evident if either $p=1$ or $q=1$, as $r \geq 2$ implies $h\left(z_{1}, \ldots, z_{r}\right) \notin\{0,1\}$. Let $p \geq 2$ and $q \geq 2$. Suppose $x_{1}=0$ and $y_{1}=1$. We have $0 \circ h\left(x_{2}, \ldots, x_{p}\right)=1 \circ h\left(y_{2}, \ldots, y_{q}\right)$, which is possible only if $h\left(x_{2}, \ldots, x_{p}\right)=1$ and $h\left(y_{2}, \ldots, y_{q}\right)=0$; the last equality gives $q=2$ and $y_{2}=0$, a contradiction with $\langle 1,0\rangle \notin T$. A similar contradiction can be derived from $x_{1}=1$, $y_{1}=0$. We get $x_{1}=y_{1}$, so that

$$
h\left(x_{1}\right) \circ h\left(x_{2}, \ldots, x_{p}\right)=h\left(x_{1}\right) \circ h\left(y_{2}, \ldots, y_{q}\right) ;
$$

as $\left\langle F_{1}, 0\right\rangle$ is cancellative, $h\left(x_{2}, \ldots, x_{p}\right)=h\left(y_{2}, \ldots, y_{q}\right)$ and the induction assumption can be applied.
2.5. Lemma. The groupoid $\left\langle F_{1}, 0\right\rangle$ is free in \mathscr{G}; it is freely generated by the set $\{0,1\}=\left\{e_{0}^{1}, e_{1}^{1}\right\}$.

Proof follows from 2.2, 2.3 and 2.4.
Now we shall prove by the induction on n that $\left\langle F_{n}, 0\right\rangle$ is freely generated by $\left\{e_{0}^{n}, e_{1}^{n}, \ldots, e_{n}^{n}\right\}$ in \mathscr{G}. The case $n=1$ is settled by 2.5 . Let $n \geq 2$.

We do not know yet that $\left\langle F_{n}, 0\right\rangle$ is free. However, there exists a free groupoid in \mathscr{G}, freely generated by $\left\{e_{0}^{n}, e_{1}^{n}, \ldots, e_{n}^{n}\right\}$; one such groupoid denote by $\left\langle G_{n}, *\right\rangle$.

For every $i=0,1, \ldots, n$ define a binary relation Θ_{i} in G_{n} by $\langle x, y\rangle \in \Theta_{i}$ iff $x * e_{i}^{n}=y * e_{i}^{n}$.
2.6. Lemma. Every Θ_{i} is a congruence relation of $\left\langle G_{n}, *\right\rangle$.

Proof is easy.
2.7. Lemma. The congruence $\Theta_{0} \cap \Theta_{1} \cap \ldots \cap \Theta_{n}$ is trivial.

Proof. Suppose $\langle x, y\rangle \in \Theta_{0} \cap \Theta_{1} \cap \ldots \cap \Theta_{n}$. Denote by D the set of all $a \in G_{n}$ such that $x * a=y * a$. By the definition of Θ_{i} we have $\left\{e_{0}^{n}, e_{1}^{n}, \ldots\right.$, $\left.e_{n}^{n}\right\} \subseteq D$. It is easy to see that D is a subgroupoid. Hence $D=G_{n}$, so that $x, y \in D$ and consequently

$$
x=x * x=y * x=x * y=y * y=y .
$$

Lemma is thus proved.
As $\left\langle F_{n-1}, 0\right\rangle$ is free (by the induction assumption), there exists a homomorphism α of $\left\langle F_{n-1}, 0\right\rangle$ into $\left\langle G_{n}, *\right\rangle$ such that $\alpha\left(e_{0}^{n-1}\right)=e_{0}^{n}, \alpha\left(e_{1}^{n-1}\right)=e_{1}^{n}, \ldots$, $\alpha\left(e_{n-1}^{n-1}\right)=e_{n-1}^{n}$. By 2.5 there exists a homomorphism β of $\left\langle F_{1}, 0\right\rangle$ into $\left\langle G_{n}, *\right\rangle$ such that $\beta(0)=e_{0}^{n}$ and $\beta(1)=e_{n}^{n}$. Define a mapping γ of F_{n} into G_{n} by

$$
\gamma\left(x_{1}, \ldots, x_{n}\right)=\alpha\left(x_{1}, \ldots, x_{n-1}\right) * \beta\left(x_{n}\right)
$$

2.8. Lemma. γ is a homomorphism of $\left\langle F_{n}, 0\right\rangle$ into $\left\langle G_{n}, *\right\rangle$.

Proof.

$$
\begin{aligned}
& \gamma\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle \circ\left\langle y_{1}, \ldots, y_{n}\right\rangle\right)= \\
& \gamma\left(\frac{1}{2}\left(x_{1}+y_{1}\right), \ldots, \frac{1}{2}\left(x_{n}+y_{n}\right)\right)= \\
& \alpha\left(\frac{1}{2}\left(x_{1}+y_{1}\right), \ldots, \frac{1}{2}\left(x_{n-1}+y_{n-1}\right)\right) * \beta\left(\frac{1}{2}\left(x_{n}+y_{n}\right)\right)= \\
& \alpha\left(\left\langle x_{1}, \ldots, x_{n-1}\right\rangle \circ\left\langle y_{1}, \ldots, y_{n-1}\right\rangle\right) * \beta\left(x_{n} \circ y_{n}\right)= \\
& \left(\alpha\left(x_{1}, \ldots, x_{n-1}\right) * \alpha\left(y_{1}, \ldots, y_{n-1}\right)\right) *\left(\beta\left(x_{n}\right) * \beta\left(y_{n}\right)\right)= \\
& \left(\alpha\left(x_{1}, \ldots, x_{n-1}\right) * \beta\left(x_{n}\right)\right) *\left(\alpha\left(y_{1}, \ldots, y_{n-1}\right) * \beta\left(y_{n}\right)\right)= \\
& \gamma\left(x_{1}, \ldots, x_{n}\right) * \gamma\left(y_{1}, \ldots, y_{n}\right) .
\end{aligned}
$$

Denote by F_{n}^{\prime} the set of all $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in F_{n}$ such that $x_{1}+\ldots+x_{n} \leq \frac{1}{2}$. Evidently, F_{n}^{\prime} is a subgroupoid. Define a mapping φ of F_{n} into F_{n}^{\prime} by $\varphi\left(x_{1}, \ldots, x_{n}\right)=$ $=\left\langle\frac{1}{2} x_{1}, \ldots, \frac{1}{2} x_{n}\right\rangle$.
2.9. Lemma. φ is an isomorphism of $\left\langle F_{n}, 0\right\rangle$ onto $\left\langle F_{n}^{\prime}, 0\right\rangle$.

Proof is easy.
Define an endomorphism ψ of $\left\langle G_{n}, *\right\rangle$ by $\psi(x)=x * e_{0}^{n}$.
2.10. Lemma. ψ is a homomorphism of $\left\langle G_{n}, *\right\rangle$ onto the subgroupoid G_{n}^{\prime} of $\left\langle G_{n}, *\right\rangle$ generated by $\left\{e_{0}^{n}, e_{1}^{n} * e_{0}^{n}, \ldots, e_{n}^{n} * e_{0}^{n}\right\}$.

Proof is easy.
As $\left\langle G_{n}, *\right\rangle$ is free, there exists a homomorphism δ of $\left\langle G_{n}, *\right\rangle$ into $\left\langle F_{n}, 0\right\rangle$ such that δ is identical on $\left\{e_{0}^{n}, e_{1}^{n}, \ldots, e_{n}^{n}\right\}$. Denote by δ_{0} the restriction of δ to G_{n}^{\prime}, so that δ_{0} is a homomorphism of $\left\langle G_{n}^{\prime}, *\right\rangle$ into (and, evidently, onto) $\left\langle F_{n}^{\prime}, 0\right\rangle$.
2.11. Lemma. δ_{0} is injective.

Proof. The homomorphism $\gamma \varphi^{-1} \delta_{0}$ of $\left\langle G_{n}^{\prime}, *\right\rangle$ into $\left\langle G_{n}, *\right\rangle$ is identical on the generating set $\left\{e_{0}^{n}, e_{1}^{n} * e_{0}^{n}, \ldots, e_{n}^{n} * e_{0}^{n}\right\}$ of $\left\langle G_{n}^{\prime}, *\right\rangle$ and consequently identical on G_{n}^{\prime}.
2.12. Lemma. For every $i=0,1, \ldots, n$ the factor-groupoid G_{n} / Θ_{i} is cancellative.

Proof. As the role of free generators is symmetrical, it is sufficient to prove that G_{n} / Θ_{0} is cancellative. As Θ_{0} is just the kernel of ψ, the homomorphism theorem gives an isomorphism of G_{n} / Θ_{0} onto G_{n}^{\prime}; by 2.11, G_{n}^{\prime} can be embedded into the cancellative groupoid $\left\langle F_{n}, 0\right\rangle$.
2.13. Lemma. The groupoid $\left\langle G_{n}, *\right\rangle$ is cancellative.

Proof. By 2.7 and 2.12, G_{n} is isomorphic to a subdirect product of cancellative groupoids.

Now we are able to finish the induction. By 2.13 and the definition of ψ, ψ is evidently an isomorphism of $\left\langle G_{n}, *\right\rangle$ onto $\left\langle G_{n}^{\prime}, *\right\rangle$. By $2.11, \delta_{0}$ is an isomorphism of $\left\langle G_{n}^{\prime}, *\right\rangle$ onto $\left\langle F_{n}^{\prime}, 0\right\rangle$. The mapping $\varphi^{-1} \delta_{0} \psi$ is thus an isomorphism of $\left\langle G_{n}, *\right\rangle$ onto $\left\langle F_{n}, \star\right\rangle$; it maps $\left\{e_{0}^{n}, e_{1}^{n}, \ldots, e_{n}^{n}\right\}$ identically onto itself.

We have proved:
2.14. Theorem. The groupoid $\left\langle F_{n}, 0\right\rangle$ is free in \mathscr{G} for any $n \geq 1$; it is freely generated by $\left\{e_{0}^{n}, e_{1}^{n}, \ldots, e_{n}^{n}\right\}$.
\mathscr{G}-free groupoids of finite ranks are thus described. The case of infinite ranks is now easy:
2.15. Theorem. Let a cardinal number α be given. Denote by F the set of all mappings f of α into P such that $f(j) \neq 0$ holds only for a finite number of elements $j \in \alpha$. For any $f, g \in F$ put $f \circ g=h$ where $h(j)=\frac{1}{2}(f(j)+g(j))$. The groupoid $\langle F, 0\rangle$ is free in \mathscr{G}; it is freely generated by the set E of all $f \in F$ such that $f(j) \in\{0,1\}$ for all $j \in \alpha$ and $f(j)=1$ for at most one j.

Proof. F is the union of all subgroupoids generated by finite subsets of E.

References

[1] C. D'Adhémar: Quelques classes de groupoides non-associatifs. Math. Sci. Humaines No. 31 (1970), 17-31.
[2] T. Howroyd: Cancellative medial groupoids and arithmetic means. Bull. Austral. Math. Soc. 8 (1973), 17-21.
[3] T. Kepka, P. Němec: T-quasigroups II. Acta Univ. Carolinae Math. et Phys. 12 (1971), 31-49.
[4] D. Merriell: An application of quasigroups to geometry. Amer. Math. Monthly 77 (1970), 44-46.
[5] J. Morgado: Entropic groupoids and abelian groups. Gaz. Mat. (Lisboa) 27 (1966), 8-10.
[6] J. Morgado: A theorem on entropic groupoids. Portugal. Math. 26 (1967), 449-452.
[7] P. Němec, T. Kepka: T-quasigroups I. Acta Univ. Carolinae Math. et Phys. 12 (1971), 39-49.
[8] K. Toyoda: On axioms of linear functions. Proc. Imp. Acad. Tokyo 17 (1941), 221-227.

