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Department of Mathematics, Faculty of Mathematics and Physics, Charles University, Prague*)

Recetved 10 March 1977

A groupoid is called quasitrivial if for every pair x, y of its elements xy is either x or y; it is
called nearly quasitrivial if this is not true for exactly one pair x,y. We describe all quasitrivial
and nearly quasitrivial semigroups and all quasitrivial and nearly quasitrivial distributive grou-
poids. Further, we study extensions of a given groupoid G which are quasitrivial up to G; in the
distributive idempotent case we describe such extensions and prove that they are medial if G
is medial.

T pynnou g HasbIBAcTCA KBa3UTPHBHAJIBHBIM, €CJIM UL BCEX AP €ro 3JIEMEHTOB CIIPaBEIJINBO
WIM Xy = X HJIA Xy = Y; OH Ha3bIBa€TCA ITOYTH KBa3UTPUBHAJIBHBLIM, €CJIM 3TO HE IIpaBAa TOJIBKO
INA OTHOM IIapel X, y. OnucbIBalOTCA BCE KBa3UTPUBHAJIBHBIC H IIOUTH KBAa3HTPHBHAJIBHBIC I10-
JIYTPyIIbl 1 BCE Ka3UTPHUBHAJIBHBIC N IIOUTH KBa3WTPUBHAJIbBHbBIC I[HCTPHﬁYTHBHblC rpynmnoyabl.

Grupoid se nazyv4d kvazitrividlni kdyZ pro kaZdou dvojici x,y jeho prvka budto xy = x
nebo xy = y; nazyv4d se skoro kvazitrividlni kdyZ toto neplati pro piesné jednu dvojici x,y.
V préci jsou popsdny viechny kvazitrividlni a skoro kvazitrividlni pologrupy a viechny kvazitri-
vidlni distributivni grupoidy. D4le se studuji extenze daného grupoidu G které jsou kvazitrividlni
aZ na G; v distributivnim idempotentnim pfipadé jsou popsdny takové extenze a je dokdzino, Ze
jsou medidlni, jestlize G je medidlni.

The present paper is a continuation of the study of distributive groupoids, begun
in [1], [2], [3], [4]; however, it is self-contained.

To be able to anticipate properties of distributive groupoids, one must have a suffi-
ciently large supply of examples. We get a class of examples if we add a strong condi-
tion to the distributive laws and describe all corresponding groupoids. In the present
paper we are concerned with two strong conditions, namely quasitriviality and near
quasitriviality. The methods used in the description of quasitrivial and nearly quasi-
trivial distributive groupoids enabled to describe !quasitrivial and nearly quasitrivial
semigroups, too.

*) 186 72 Praha 8, Sokolovska 83, Czechoslovakia
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. Preliminaries

A groupoid G is said to be
— distributive if a . b¢c = ab .acand bc.a = ba . ca for all a, b, c € G,
quasitrivial if ab € {a, b} for all a, b € G,
an L-semigroup if ab = a for all ¢, b € G,
an R-semigroup if ab = b for all a,b€G,
a chain if G is a commutative quasitrivial semigroup.
It is clear that every L-semigroup (R-semigroup, resp.) is quasitrivial and every
chain is distributive. Moreover,
1.1. Lemma. Let G be a quasitrivial groupoid. Then (i) G is idempotent.
(ii) Every non-empty subset of G is a subgroupoid.

Proof. It is evident.

If G is a groupoid, then we define two binary relations a¢ and ¢ on G as follows:
{a, by eag iff a = ab; <{a, b) € f¢ iff b = ab. Furthermore, we denote by z¢ the least
congruence of G such that the corresponding factor is a commutative groupoid. (The
existence of such a least congruence is well-known.) The groupoid G is called anti-
commutative if z¢ = G X G.

Let G be a groupoid, a € G and let 4 be the block of z¢ containing a. We shall say
that a is an L-element (R-element, resp.) of G if A is a subgroupoid of G and, moreover,

A is an L-semigroup (R-semigroup, resp.). We shall say that a is an isolated element
of G if A = {a} is a one-element set.

Let G be a groupoid and a, b € G. We shall say that a covers & if the following three
conditions are satisfied:

@ <ab)ére.
(ii) ab=b = ba (i.e. (a,b) € B¢ and (b, a) € ag).
(i) IfceG,ac=c = caand bc = b = cb, then eithera = cor b = .

A groupoid G is said to be nearly quasitrivial if there exists exactly one pair {a, &) of
elements of G such that ab ¢ {a, b}. Let Gbe a nearly quasitrivial groupoid and a, b € G,
ab ¢ {a, b}. If a = b, then we say that G is of type I; if a 7 b, then we say that G is
of type II.

1.2. Lemma. Let G be a nearly quasitrivial groupoid and let x,y € G be the
elements such that xy ¢ {x,y}. Then
(i) If H is a non-empty subset of G such that {x,y} & H, then H is a quasitrivial

subgroupoid of G.

(i) If H is a subset of G such that {x,y, xy} = H, then H is a subgroupoid of G.
(iii) The set {x,y, xy} is a subgroupoid of G.

(iv) G is of type I, provided G is commutative.

(v) G is idempotent, provided G is of type II.

Proof. It is evident.

Let G be a groupoid and x, y, z€ G. Then we define a groupoid G(o) = G (x, y, 2)
as follows: xoy = 2; aob = ab whenever a, b € G and either a #4 x or b % y.
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1.3, Lemma. Let G be a nearly quasitrivial groupoid and let x, ¥, z € G be elements
such that x # 2 # y and xy = 2. Put G(0o) = G(x,¥,x) and G(*) = G (x,y,9).
Then G (0) and G (*) are quasitrivial groupoids, G = G (0) (x, 9, 2) and G = G (*)
(x5, 9, 2).

Proof. Obvious.

2. Relations and quasitrivial groupoids

.. Let M be a set. We put idy = {{a, a); acM}. A relation r on M is said to be
— reflexive if idp; < 71,
— symmetric if {a, b) €r implies <b, a) €7,
— transitive if <a, by €r and <b, ¢) er imply {a, c) €T,
— complete if for all a, be M, either <{a, b)>€r or (b, a)€Er,
— antisymmetric if V' (r) = 0, where V (r) = {aeM; (a, b)er and <b, a)er for some
beM\ {a}),
— an equivalence if it is reflexive, symmetric and transitive,
— a pseudoordering if it is reflexive, antisymmetric and complete,
— a quasiordering if it is reflexive and transitive,
— aregular quasiordering if it is a complete quasiordering and

{a, by €r for all aeG and be V(r),

— a linear ordering if it is a transitive pseudoordering.

Let r be a quasiordering of a set M. We shall say that r is semiregular, provided

there exists an equivalence s on M with the following two properties:
(i) If A is a block of s then either r (A X A) =A X Aorr( (A X A) =ida.
(i) If a,be M and <a,b) ¢s, then either {a,b) er and <b,a) ¢ r or <{b,a) €r and

{a, b ¢r.

Let r be a reflexive relation on M. Then we define a relation # on M as follows:
{a,by e iff a,b € M and either a = b or <{a, b ¢ r.

2.1. Lemma. Let r be a reflexive relation on M. Then:

(i) If s =, then s is reflexive, too, and 5 = r.

(ii) If both r and 7 are complete, then both r and 7 are pseudoorderings.

(iii) If V (#) = ¢, then r is complete.

(iv) If r is an equivalence and 7 is transitive, then either r = M X M or r = idy.

Proof. It is easy.

2.2 Lemma. Let r be a regular quasiordering on M. Then the restriction of r
to V(r) is equal to V(r) X V(r) and the restriction of r to M\ V(r) is a linear ordering.
Moreover, r is semiregular.

Proof. It is easy.

2.3. Lemma. The relation M X M and every linear ordering of M are regular
quasiorderings of M. The relation idys is a semiregular quasiordering of M.

Proof. It is easy.
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Let r be a reflexive relation on a set G. Define two binary operations * and o on G
as follows:

a*b=aifla,bper;a*b=>if (a,b) €F;
aob=>bifla,byer;aob =aifa,b)er.

The groupoid G(*) is called the left derived groupoid of » and G(0) is called the right
derived groupoid of 7.

2.4. Lemma. Let r be a reflexive relation on a set G and let G be the left (right,

resp.) derived groupoid of r. Then:

(i) G is quasitrivial.

(i) ag =rand ¢ =7 (ag¢ = 7and g = r, resp.).
(iii) If r is a pseudoordering, then G is commutative.
(iv) If r is a linear ordering then G is a chain.

Proof. It is evident.

2.5. Lemma. Let G be a quasitrivial groupoid. Then:
(1) Both ag and f¢ are reflexive.

(i) B¢ = we.
(iii) G is the left derived groupoid of o and the right derived groupoid of f¢.
(iv) a.ab=ab=ab.band ab.a =a.ba for all 2,0 €G.

Proof. It is easy.

2.6. Corollary. There is a one-to-one correspondence between quasitrivial
groupoids and reflexive relations.

2.7. Lemma. Let G be a commutative quasitrivial groupoid. Then both a¢ and
B¢ are pseudoorderings.

Proof. With regard to 2.5(ii) and 2.1(ii), it suffices to show that &, B¢ are complete.
Let a,b €G. If ab = a, then ba = a, {a, b) cag, (b, a) € f¢. In the opposite case we
have ab = b = ba, so that {a, b) € i¢ and <b, a) € ag.

2.8. Corollary. There is a one-to-one correspondence between quasitrivial
commutative groupoids and pseudoorderings.

2.9. Lemma. Let G be a quasitrivial groupoid and let 4 be a block of ¢¢. Then 4
is an anticommutative groupoid.

Proof. Put z4 = r and s = (t¢\ (4 X A))Jr. It is visible that s is an equivalence
on G. We are going to show that s is a congruence. Let {a,b> €s and c € G. Then
{a, by etgand {ac, bc) € t¢. If ac ¢ A, then evidently {ac, bc) €s. Suppose that ac, bc € 4.
Further, we may assume that ac 5= bc. Then either a € {ac, bc} or b € {ac, bc}. However,
we have <a, b)> €t¢ and so a, b € A. Since <a, b) €s, we have {a, b) €r. If c € 4, then
ac, by € r and so <{ac, bc) €s. Let ¢ ¢ A. In this case ac = a, bc = b and so {ac, bc) €s.
Similarly we can show that {ca, cb) €s. This shows that s is a congruence of G. Now
we shall prove that the groupoid G/s is commutative. For, let a, b € G. We have {ab, ba) €
€tg. If ab¢ A, then <{ab, ba) €s. In the opposite case ab, ba belong to 4. We have
either ab = ba or ab # ba. In the first case {ab, ba) € s evidently. In the second case
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it is easy to see that a, b € 4, so that {ab, ba) € r and consequently <{ab, ba) €s. Thus
G/s is commutative, ¢ is contained in s and r = 4 X A.

Let H be a quasitrivial groupoid and G;, i € H, be pairwise disjoint groupoids.
We define a groupoid K, denoted by 4 (G, i € H), as follows: K is the union of the
family Gi, ¢ € H; the groupoids G; are subgroupoids of K; if 7, j € H, i #j, gi € Gy,
&1 € Gy, then gig; = gij.

2.10. Lemma. Let H be a quasitrivial groupoid and G;, i € H be pairwise disjoint
groupoids. Then A(G;, i € H) is quasitrivial iff each G; is quasitrivial.

Proof. It is trivial.

2.11. Proposition Let G be a quasitrivial groupoid. Then:

(1) GJtg is a quasitrivial commutative groupoid.
(ii) Every block of t¢ is a quasitrivial anticommutative groupoid.
(i) G = A4(@,1e€GJte).

Proof. (i) is obvious and (ii) follows from 2.9. (iii): Let ¢, j € G[tg, i #j,a €1, b €j.
Assume that ij = 7 (the other case is similar). Then ab €7 and hence ab = a. The rest
is clear.

Let G, H be two groupoids such that G | H = ¢. We define a groupoid K = G AH
in the following way: K = G () H; G and H are subgroupoids of K; gh = h = hg for
all g€ G, ke H. It is clear that K = A(G, i € C) where C = {0, 1} is the two-element
chain, Go = H and G1 = G.

3. Quasitrivial semigroups

3.1. Lemma. Let G be a quasitrivial semigroup. Then {a, b) €t¢ iff eithera = b
or ab # ba. Hence <a, b) €t iff {a, b} = {ab, ba}.

Proof. Define a relation r on G by {a, b) €r iff {a, b} = {ab, ba}. It is visible that r
is reflexive and symmetric. Further, let a,b,c€G and <a, b) €r, {b,c) €r; we shall
prove {a,c) €r. It is enough to prove this in the case a 7 b, b 7 ¢, a 7 ¢. We shall
distinguish the following four cases:

(1) ab=a,ba =b,bc =b,chb =c. Then ac = abc = ab = a and ca = cba = cb = c.
Hence {a,c) €.

(2) ab=a, ba = b, bc = ¢, cb = b. Then bac = bc = ¢ and ca = cab. If ac = a then
b = ba = bac = ¢, a contradiction. If ca = ¢ then ¢ = ca = cab = ¢b = b, a con-
tradiction. Thus ac = ¢, ca = a and so {a,c) €.

(3) ab = b, ba = a, bc = ¢, cb = b. This case is dual to (1).

(4) ab = b, ba = a, bc = b, cb = c. This case is dual to (2).

We have proved that r is an equivalence. Now we are going to show thar r is a con-
gruence. For, let a, b, c € G and <a, b) €r; let us prove {ca, cb) €r. We may assume
that @ # b, ca  cb, {ca, cb} # {a, b}. If cach # cbca, then {ca, cb) €r. Suppose, on the
contrary, that cach = cbca. The following cases can arise:

(5) ab=a, ba =b,ca = c. Then cb = b and b = cb = cab = ca = ¢, a contradiction.

(6) ab = a,ba = b, ca = a. Then cb = c and a = ca = cha = ¢cb = ¢, a contradiction.
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(7) ab = b, ba = a, ca = c. Then cb = b. The equality bc = b implies a = ba = bca =
= bc = b, a contradiction. Therefore bc = ¢ #~ b, cachb = ¢b = b # ¢ = bc = cbca,

a contradiction.

(8) ab =b,ba = a, ca = a. Then ¢b = c and ¢ = ¢b = cab = ab = b, a contradiction-

We have proved {ca, cb) €r. Similarly <ac, bc) €r and r is a congruence. On the
other hand, if @, b € G then either ab = ba and <{ab, ba) €r or <a, by €, (b, a) €r. and
so {ab, bay €r, since r is a congruence. We see that G/r is commutative and conse-
quently ¢¢ contained in r. Conversely if {a, b) €, then {a, b} = {ab, ba} and (a, b> €1,
since {ab, bay € tz. Thus r = t¢.

3.2, Lemma. Let G be a quasitrivial semigroup. Then both «¢ and f¢ are quasi-
orderings.

Proof. Only the transivitivity needs to be proved. If <{a, b) €ag and <{b, c) €ag
then a = ab, b = bc, a = ab = abc = ac and (a, ¢) € ag. Similarly for f¢.

3.3. Lemma. Let G be a quasitrivial semigroup and a € G. The following are
equivalent:

(i) ais both an L-element and R-element of G.

(ii) a is an isolated element of G.

(iii) ab = ba for every b € G.

@iv) If b € G then either ab = a = ba or ab = b = ba.

Proof. The lemma is an easy consequence of 3.1. ,

3.4. Lemma. (i) A groupoid G is an L-semigroup iff it is the left (right, resp.)
derived groupoid of G X G (of idg, resp.).

(ii) A groupoid G is an R-semigroup iff it is the right (left, resp.) derived groupoid of

G X G (of idg, resp.).

Proof. (i) is evident and (ii) is dual to (i).

3.5. Lemma. Let G be a quasitrivial anticommutative semigroup. Then G is
either an L-semigroup or an R-semigroup.

Proof. We have z¢ = G X G and hence {a, b} = {ab, ba} for all a.b€G, as it
follows from 3.1. If <a,b) €a¢ then a = ab and therefore b = ba. New it is visible
that «¢ is symmetric and «¢ is an equivalence by 3.2. Similarly B¢ is an equivalence.
But ¢ = «¢. Taking 2.1 (iv) into account, we see that either a¢ = idg or ag = G X G.
The rest follows from 3.4.

3.6. Lemma. Let G be a quasitrivial semigroup. Then:

(1) Every block of ¢¢ is either an L-semigroup or an R-semigroup.
(ii) Every element of G is either an L-element or an R-element.

Proof. The lemma follows from 2.9 and 3.5.

3.7. Lemma. Let G be a quasitrivial semigroup. Then every element from V(o)
(from V(B¢), resp.) is an L-element (an R-element, resp.).

Proof. Let a € V(ag). Suppose, on the contrary, that a is an R-element. Then the
block A4 of t¢ containing a is an R-semigroup. Further, there is an element, b € G different
from a such that a = ab and b = ba. By 3.1, {a,b) €t¢, a,b €A and b = ba = a, a
contradiction.
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3.8. Lemma. Let G be a chain. Then both a¢ and f¢ are linear orderings.

Proof. By 3.2, a¢ and f¢ are quasiorderings. On the other hand, G is commuta-
tive and ag, f¢ are pseudoorderings.

3.9. Lemma. The following are equivalent for a groupoid G:

(i) G is a chain.
(ii) G is the left derived groupoid of a linear ordering.
(iii) G is the right derived groupoid of a linear ordering.

Proof. Apply 2.4(iv), 3.8 and 2.5.

3.10. Corollary. There is a one-to-one correspondence between chains and linear
orderings.

3.11. Lemma. Let G be a quasitrivial semigroup. Then both «¢ and B¢ are semi-
regular quasiorderings.

Proof. Put r = a¢ and s = 7¢. By 3.2 r is a quasiordering. Moreover, if 4 is a
block of r then the restriction of r to A is either A X A or id4, as it follows from 3.6(i).
Finally, let a, b € G, <{a, b) ¢ s. By 3.1 we have ab = ba. If ab = a then {a, b) €r and
<b,ay ¢r. If ab = b then {a, b) ¢ r and <b, a) €r. Similarly for f¢.

3.12. Lemma. Let C be a chain and G; ( € C) be semigroups such that each G;
is either an L-semigroup or an R-semigroup. Then A(G;, i € C) is a quasitrivial semi-
group.

Proof. The lemma can be verified in a mechanical way.

3.13. Lemma. Let r be a semiregular quasiordering of a set G and let G be the
left (or right) derived groupoid of . Then G is a quasitrivial semigroup.

Proof. There is an equivalence s on G having the properties (i) and (ii) from the
definition of semiregular quasiorderings. Let C = G/s and G; (i € C) be the blocks of s.
It is easy to see thatsisacongruenceof G, C is a chainand each G; is either an L-semi-
group or an R-semigroup. Moreover, G = A(G;, i € C). By 3.12, G is a quasitrivial
semigroup.

3.14. Corollary. There is a one-to-one correspondence between quasitrivial
semigroups and semiregular quasiorderings.

3.15. Theorem. A groupoid G is a quasitrivial semigroup iff there are a chain C
and semigroups S; (Z € C) such that every S; is either an L-semigroup or an R-semi-
group and G = A(S;, 7 € C). In this case C is isomorphic to G/z¢ and S; are the block of z¢

Proof. Apply 3.12, 2.11 and 3.5.

3.16. Lemma. Let G be a quasitrivial semigroup, a, b € G, C = G/t¢ and let f be
the natural homomorphism of G onto C. The following are equivalent:

(i) a covers b.
(i) fla) = f(b), {f(b),f(a)> exc and there exists no x € C with f(b) ## x # f(a),

{f(b), x> €ac and <x, f(a)) Eac.

Proof. It is an easy exercise.

3.17. Lemma. Let G be a quasitrivial semigroup and x,y € G be two isolated
elements such that x covers y. Let a € G, a # x. Then xa = a iff ya = a.

Proof. First, assume that xa = a. Then ax = a and ya = ay, since x, y are iso-
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lated. If ya = y thena = y, since x covers y. Next, let ya = a. Thenxa = xya = ya =a

3.18. Lemma. Let G be a quasitrivial semigroup; let x,¥, 2 €G be such that x
is isolated, x covers y, y # z are L-elements and <y, 2> €t¢. Then:
(i) Ify #aeG and ay =y then xa = x.

(i) If x 2 a€G and ax = a then ay = a = az.

Proof. (i) Since y is an L-element and ay = y # a, we have ya = y (otherwise
ya =a,y € V(f¢)is an R-element and y = 2). If xa = athenax = aand a = x, since x
is isolated and x covers y. We see that xa = x at all events.

(ii) We have xa = a. If {a,y) €t¢ then ay = a = az. If (&, y) ¢ t¢ then ay = ya.
However, x covers y and the equality ay =y implies a = x, a contradiction. Thus
ay = a. Similarly az = a.

3.19. Lemma. Let G be a quasitrivial semigroup and x, y € G be such that (x, y)> €
Etg; let x, y be L-elements. If x # a € G and xa = a then ya = a.

Proof. Let ya = y. Then either (y, a) € t¢ and hence <{x, a) €t¢, xa = x, a contra-
diction, or ya = ay = y and xa = xya = xy = x, a contradiction.

4. Nearly quasitrivial semigroups

Consider the following two groupoids 4, B defined on the set {1, 2}:

4.1. Lemma. (i) Both 4 and B are nearly quasitrivial commutative semigroups
of type 1. Moreover, A and B are not isomorphic.

(i) If G is a nearly quasitrivial semigroup defined on {1, 2} with 1.1 = 2 then
either G = A or G = B.

Proof. (i) is evident.

(ii) We have 2 = 1.(1.1) = (1.1) . 1 = 2.1, provided 1.2 = 2.
Similarly, 2.1 =1if 1.2 = 1.

4.2. Lemma. Let G be a nearly quasitrivial semigroup of type I and x € G be

such that xx =y  x. Then {x, y} is a subgroupoid of G and it is isomorphic either
to A or to B.

Proof. Apply 1.2(iii) and 4.1.

We shall say that G is of subtype IA (of subtype IB, resp.) if {x,y} is isomorphic
to 4 (to B, resp.).

4.3. Lemma. Let G be a nearly quasitrivial semigroup of type I; let x, y € G be
such that xx = y # x. Put G(o) = G(x, x, x). Then:
(i) G(o) is a quasitrivial semigroup and G = G(o) (x, x, y).
(ii) x is an isolated element of G(o).
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(iii) y is an isolated element of G(o).

(iv) x covers y, provided G is of subtype IA.

(v) y covers x, provided G is of subtype IB.

Proof. (i) Only the associativity of G(o) needs to be proved. For, let a, 5, c€G.
The following cases can arise:

(1) a#x5#b.Thenaob=ab#xandao(boc)=a.bc=ab.c=(aob)oc.

(2) b # x # c. This case is dual to the preceding one.

3) a=x=c¢b+#x,xb =x. Thenao(boc) =x0bx,(@aob)oc=xand x.bx =
=xb.x = xx =y. If bx = b then y = xb = x, a contradiction. Hence bx = x and
xobx =x.

4 a=x=c¢b#x,xb =>b.Thenao(boc) =xobxand(aob)oc=bx.Ifbx =x
then y =xx =x.bx =xb.x = bx = x, a contradiction. Hence bx = b and
x0bx = xb =b = bx.

(5) a=x=b,c#x. Thenao (boc)=xo0xcand (ao b)o c = xc. However,

X 0 xc = Xxc in every case.

(6) a #~ x, b =x = c. This case is dual to (5).

(7) a=b=c=x Thenao(doc)=x=(aob)oc.

(if) Let S be the block of z¢(o) containing x. Assume that there is an a € S with
a # x. As we know, S(0) is either an L-semigroup or an R-semigroup. In the first case,
ax =ao0x=a,xX0a=Xxa==Xx,X=Xxa=X.ax =Xxa.x = xx =Y, a contradiction.
In the other case ax = aox =x,x0a=xa =a,x =aXx =%Xa.X =X.aXx = XX =,
a contradiction.

(iii) Let a € G, x # a. Since x is an isolated element of G(0),ax =aox =x0a =
= xa. Henceaoy =ay =a.xx =ax.x =%xa.x =X.ax =X .Xa=XxX.a =ya =
=yoa. Finally, xoy = xy = x.xx = xx.x = yx =y o x and y is isolated by 3.3.

(iv) Let G be of subtype IA. Then {x, y} is isomorphicto Aand xoy = xy =y =
= yx = y o x. Moreover, if aeG,a #x,yand aox =a=x0a,a0y =y =y0a
thenax =a =xa,ay =y =ya,y =ya = xx.a = x . Xxa = xa = a, a contradiction.

(v) We can proceed similarly as in (iv).

4.4. Lemma. Let G be a quasitrivial semigroup, x,y € G be isolated elements
such that x covers y (y covers x, resp.). Then G(o) = G(x, x, y) is a nearly quasitrivial
semigroup of subtype IA (of subtype IB, resp.).

Proof. We shall prove that G(o) is a semigroup, the rest being easy. Let a, b, c € G.
We shall distinguish the following cases:

(1) a#x#b.Thenao(boc)=a.bc=ab.c=(@ob)oc.

(2) b # x # c. Similarly.

(3) a=x=¢,b # x,xb = x. Then bx = x, since x is isolated, and henceao (boc) =
=xo0bx=x0x=y=_(aob)oc.

4) a=x=c¢, b7#x,xb =5b. Then ao(boc) =x0bx =x0b=box=xbox =
=(xob)ox =(aob)oc.

(5) a=x=b,c#x,y, xc=x. By 3.17, yc =y, and so ao(boc) =x0x =y =
=yoc=1(aob)oc.
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6) a=x=0b,c#xy,xc=c By317,yc=candao(boc) =c=(aob)oc.
(7) a=x=b,c=y.Thenao(boc)=y = (aob)oc.
8) a=b=c=x.Thenao(boc)=x0y=yox=(aob)oc.
(9) a5 x,b = x = c. This case is dual to (5), (6), (7).

4.5. Theorem. (i) Every nearly quasitrivial semigroup of type I is either of sub-
type IA or of subtype IB.

(ii)) A groupoid G is a nearly quasitrivial semigroup of subtype IA iff there are
a quasitrivial semigroup G(o) and two isolated elements x, y of G(o) such that x covers
v in G(o) and G = G(o)(x, x, ¥).

(iif) A groupoid G is a nearly quasitrivial semigroup of subtype IB iff there are
a quasitrivial semigroup G(o) and two isolated elements x, y of G(o) such that y covers
x in G(0) and G = G(0) (x, x, y).

Proof. Apply 4.2, 4.3 and 4.4

Consider the following two groupoids P, Q with the underlying set {1, 2, 3}:

Pl1|2]3 ol1|2]3
11|33 1l1]3/3
20222 2(1]213
30333 30133

4.6. Lemma. (i) Both P and Q are nearly quasitrivial semigroups of type II. Mo-
reover, P and Q are not isomorphic.

(ii) If G is a nearly quasitrivial semigroup with the underlying set {1, 2, 3} such
that 1.2 = 3, then either G=Por G = Q.

Proof. (i) This assertion can be verified mechanically.

(ii) Gis idempotentand 1.3 =1.(1.2)=(1.1).2=1.2=3,3.2 = 3. Fur-
thermore, if 2.1 =1then2.3=2.(1.2)=2.1).2=3and3.1=(1.2).1=
=1.(2.1)=1. Hence G = Q. Similarly, if 2.1 = 2, then G = P.

4.7. Lemma. Let G be a nearly quasitrivial semigroup of type II and x,y, z be
three different elements such that xy = z. Then {x,y, 2} is a subgroupoid isomorphic
to Por to Q.

Proof. Apply 1.2(iii) and 4.6.

We shall say that G is of subtype IIP (of subtype I1Q, resp.) provided {x,, 2} is
isomorphic to P (to Q, resp.). ’

4.8. Lemma. Let G be a nearly quasitrivial semigroup of subtype 1IP (I1IQ, resp.),
x,y, 2 be the three different elements of G with xy = z and put G(o) = G(%,y,)
(put G(o) = G(x, y, x), resp.). Then:

(1) G(o) is a quasitrivial semigroup and G = G(0) (x, ¥, 2).

(ii) The element x (the element y, resp.) is an isolated element of G(o).

(iii) {y,2) €t and ¥,z are L-elements of G(0) ({x, 2> €tg and x, z are R-ele-
ments of G(o), resp.).

(iv) x covers y in G(o) (¥ covers x in G(0), resp.).

34



Proof. We shall assume that G is of subtype IIP; in the other case we could proceed
similarly.

(1) It suffices to show that G(o) is associative. Let a, b, c € G. The following cases
can arise:

(1) as#x7#b. Thenx =ab#aobandao(boc)=a.bc=ab.c=(aob)oc.

(2) b #y 5 c. Similarly.

(3)a=2x, b=y. Then a o(boc) =xo0ycand (aob)oc—yc If yc=y then
xoyc=x0y=y=yc If yce=c#ythenxoyc=x0c=xc=x.yc=xy.
.¢=zcand so xc = c.

(4) a ==x,c=y. Ifb=xthenao(boc) =y=(aob)o c. Hence we may assume that b #x.
Thenao (boc)=xobyand (@aob)oc=(xob)oy.Ifb=ythenxoby =y =
= (xob)oy. Let b#y. Then (x ob) oy =xboy and the equality by = y yields
z2=x.by=2xb.y,xb=x,x0by =y =2xboy. Finally, if by = b then xb.y =
=x.by=xb,xb=band xoby = b =xboy.

(5) b=x, c=y. Then ao(boc)=aoy and (aob)oc=axoy. If a=x then
aoy=y=axoy Assumea #~ x.Ifay = ythenz =xy =x.ay =xa.y,2 =a
aoy =2zy,axoy = 2xoy. However,zy = xy.y =x.yy = xy = 2 = zo yand
zxoy = zin every case. Let ay =a #y. Then ax =ay.x =a.yx =ay =a
(since G is of subtype IIP) andaoy = a = ax o y.

(if) We are going to show that x o a = a o x for every a € G. Since G is of subtype
IIP, we can assume that a % x, y. Let, on the contrary, x 0 @ # a o x. Then xa # ax
and we have one of the following two cases:

(6) xa=a,ax =x.If ay =a then a =ay =a.yx = ay.x = ax = x, a contradic-
tion. Hence ay =y and 2 = x.ay = xa.y = ay =y, a contradiction.

(7) xa=1x,ax =a.Thenz =xz=xa.2 =x.a2,a2 =a.xy = ax.y = ay. Hence
az = a and 2 = x . az = xa = x, a contradiction.

(iii) Since G is of subtype IIP, yoz =yz =1y, 20y = 2y = 2, ¥,2 € V(xe(o))
and y,z are L-elements of G(o). Moreover, y 0 z = z 0 y and {y, 2> € t¢(o).

(iv)LetaeG,x #a #y,x0oa=a=aoxandyoa=y =aoy.Thenxa =a =
=ax,ya=y =ay, az =a.xy = ax.y = ay =Y, a contradiction. Finally, xoy =
=y =y o x. Thus x covers y in G(o).

4.9. Lemma. Let G be a quasitrivial semigroup and let x, y, 2 € G be three ele-
ments such that x (y, resp.) is an isolated element, y # 2 (x # 2, resp.), {¥, 2> €t¢
({x, 2> €tg, resp.), y, 2 are L-elements (x, z are R-elements, resp.) and x covers y
(¥ covers x, resp.). Then G(o) = G(x, y, 2) is a nearly quasitrivial semigroup of subtype
ITP (of subtype 1IQ, resp.).

Proof. Only the first case. We shall show that G(o) is a semigroup (the rest is
easy). Let a, b, c € G. Consider the following cases:

(1) as#x+#b.Thenao(boc)=a.bc=ab.c=(aob)oc.

(2) b5y # c. Similarly.

(3) a==x,b=y,yc=y. Thenao (boc) =z, (aob)oc= zc. However, z = zy and
Zc=z.yc=2y=2.
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(4) a==x,b=y,yc=cF#Yy. By 3.19, 2c = c and therefore a o (b o ¢) = xc, (a0 b) o
oc¢ = 2c = ¢. However, xc = x.yc =xy.c =yc = .
(5) a=x,c=y,b=y.Thenao(boc)=2z=(aob)oc.
(6) a=x,c=y,by =y #b.By3.18,xb =xandao(boc) =z=x0y =xboy =
(@aob)oc.
(7) b=x,c=y,ax =x. Then ao (boc) =az and (a 0b)o z = 2. However, az =
=a.x¥z =ax.2z = X2 = 2.
8) b==x,c=y,ax =a*x By3.18,a0(oc)=az=a=ay = (aob)oc.
4.10. Theorem. (i) Every nearly quasitrivial semigroup of type II is either of
subtype IIP or of subtype IIQ.
(if) A groupoid G is a nearly quasitrivial semigroup of subtype IIP iff there are
a quasitrivial semigroup G(o) and elements x, y, 2 € G such that x is an isolated element
of G(o), x covers y in G(0), y #~ 2z, {¥,2) Etcl), ¥, 2 are L-elements of G(o) and
G = G)x:, 2).
(iii) A groupoid G is a nearly quasitrivial semigroup of subtype IIQ iff there are
a quasitrivial semigroup G(o) and elements x, y, 2 € G such that y is an isolated element
of G(0),y covers x, x 7 2,{x,2) Elg(o), X, 2 are R-elements of G(o) and G = G(0) (x, ¥, 2).
Proof. Apply 4.7, 4.8 and 4.9.

5. Quasitrivial distributive groupoids

5.1. Lemma. Every quasitrivial distributive groupoid is a semigroup.

Proof. Let G be a quasitrivial distributive groupoid and a, b, c € G. With respect
to 2.5(iv), we may assume that a b, a #~ ¢, b~c. f ac =cthena.bc =ab.ac =
= ab . c. The remaining case ac = a yields ab.c =ac.bc =a . be.

5.2. Lemma. Let C be a chain and G; (i € C) be pairwise disjoint quasitrivial
groupoids. Suppose that 4(G, 7 € C) is a distributive groupoid and let 7 € C. Then either
7 is the unit of C or G; is commutative.

Proof. Let i, kcC be such that : 2k =ik =ki and let a, beGr, ceGi.
Suppose ab = a (the other case is similar). Thena =ab=ca.b=cb.ab="5b.ab =
= ba. The rest is clear.

5.3. Lemma. Let G be a distributive groupoid and C be a chain such that
G (N C =¢. Then G A C is a distributive groupoid. Moreover, G A C is quasitrivial,
provided G is.

Proof. The lemma can be checked easily.

5.4. Lemma. Let G be a quasitrivial distributive groupoid and C = G/t¢. Then:
(i) C is a chain.

(ii) Ifie€C and S; is the corresponding block of z¢ then either 7 is the unit of C or S;
is a one-element set.

(iif) Ifj € C is the unit and Sy is the corresponding block of z¢ then S; is either an L-se-
migroup or an R-semigroup. Moreover, either S; = V(ag) or Sy = V(f¢), provided

S; is non-trivial.
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Proof. (i) follows from 5.1, (ii) and (iii) follow from 5.1, 3.6, 3.15 and 5.2.

5.5. Theorem. A groupoid G is a quasitrivial distributive groupoid iff at least
one of the following statements holds:

(1) G is a chain.

(ii) G is an L-semigroup.

(iii) G is an R-semigroup.

(iv) There is a chain C and an L-semigroup S such that G = S A\ C (then S is the set

of all left units of G, G/t¢ contains the unit j and Cis isomorphic to(G/r¢)\ {j}).
(v) There is a chain C and an R-semigroup S such that G = S A C (then S is the

set of all right units of G, G/t contains the unit j and C is isomorphic to(G/ze) \ {7 }).

Proof. Let G be a quasitrivial distributive groupoid. Suppose that G is not a chain
and put K = GJz¢. By 5.4, K is a chain containing the unit j. Moreover, the correspon-
ding block S of ¢ is either an L-semigroup or an R-semigroup. If K = {j} then either
(i) or (iii) holds. Let I = K | {j} be non-empty. If i € I then the corresponding block S,
of ¢¢ is a one-element set and we see that C = G\ Sy is a chain. Clearly, G = S; A C,
since G = 4(Si, 7 € K). The converse assertion follows from 5.3.

In the remaining part of this section we give an alternative proof of 5.5, independent
on 5.1.

5.6. Lemma. Let G be a quasitrivial distributive groupoid. Then ag, fi¢ are
quasiorderings.

Proof. Let <{a,b) € and <b,c) €ag. If {a,c) €fe then ac =c and a = ab =
=a.bc=ab.ac=ac=c{a,c)eag If{a,c)¢ e then {a, c) € ag. Similarly we can
show that 8¢ is transitive.

5.7. Lemma. Let G be a quasitrivial distributive groupoid. Then {a, b) € a¢ for
all 2 € G and b € V(a¢); we have (a, b> € f¢ for all a € V(8¢) and b € G, too.

Proof. We shall prove only the first assertion. There exists an element ¢ € G such
that b = ¢, bc = b and cb = c. Suppose, on the contrary, that ab -~ a. Then ab = b # a,

=bc=ab.c=ac.bc=ac.b. If ac = c then b = ac . b = cb = ¢, a contradiction.
Therefore ac = a and {a, ¢) eag. However, {c,b)> exg and ag is transitive by 5.6.
Consequently, <a, b) €a¢ and a = ab, a contradiction.

5.8. Lemma. Let G be a quasitrivial distributive groupoid. Then either a¢ or B¢
is a regular quasiordering.

Proof. Suppose that both V(xg) and V(f¢) are non-empty. Let a € V(x¢) and
¢ € V(Be). There is an element b € G such that a # b, {a, b) € ag and <{b, a) € ag. Clearly,
b e V(ag) and {c, a) € ag, {c, b) €ag, {c, a) € fa, {c, b) € B by 5.7. Hence a = ¢ = b,
a contradiction. We have proved that either V(x¢) or V(f¢) is empty. As it follows from
2.1(iii), 5.6 and 5.7 if V(B¢) is empty then o is a regular quasiordering and if V(a¢) is
empty then f¢ is a regular quasiordering.

5.9. Lemma. Let r be a regular quasiordering on a set G and G be the left (right,
resp.) derived groupoid of r. Then at least one of the following three cases takes place:
(i) G is a chain.

(ii) G is an L-semigroup (an R-semigroup, resp.).
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(iii) There exists a chain C and an L-semigroup (an R-semigroup, resp.) S such that
G=SAC
Proof. Put S = V(r)and C = G\ V(r).If S = g thenrisalinear ordering and G is
a chain. If C = ¢ then r = G X G and G is an L-semigroup. The rest follows from 2.2.
5.10. Proposition A groupoid G is a quasitrivial distributive groupoid iff it is
either the left derived or the right derived groupoid of a regular quasiordering.
Proof. Apply 5.9, 5.3 and 5.8.
Now one can see that 5.5 is an easy consequence of 5.10 and 5.9.

6. Nearly quasitrivial distributive groupoids

6.1. Let G be a nearly quasitrivial distributive groupoid of type I and let x,y € G
be elements such that xx =y # x. Thenxa = a = axand ya = a = ay foreverya e G
different from x. '

Proof. Wehave xa . xa = x . aa = xa and hence xa 7 x. Consequently xa = a and
ya = xx.a = xa.xa = xa = q. Similarly ax = a = ay.

6.2. Lemma. Let G be a nearly quasitrivial distributive groupoid of type I and
x,y €G be elements such that xx =y 7 x. Then {x, y} is a subgroupoid isomorphic
to A (the groupoid defined in section 4).

Proof. Apply 6.1.

6.3. Theorem. The following are equivalent for a groupoid G:

(i) G is a nearly quasitrivial distributive groupoid of type I.
(ii) There exists a chain G(0) and two elements x, y € G such that x is the unit of G(o),

x covers y in G(o) and G = G(o)(x, x, ¥).

(iii) There exist elements x,y € G such that H = G\ {x} is a chain, y is the unit of H,

xx =yand xa =a =axforallaeH.

Proof. It is easy to see that (ii) is equivalent to (iii) and (iii) implies (i). (i) implies
(iii): Let x,y € G be such that xx = y 7 x. Put H =G\ {x}. By 1.2(i) and 6.1, H is
a quasitrivial distributive groupoid, y is its unit and xa = a = ax for every a € H. Since
H contains a unit, H is a chain, as it follows from 5.5.

6.4. Corollary. Let G be a nearly quasitrivial distributive groupoid of type I and
%,y € G be such that xx = y 7 x. Then:

(i) G is a commutative semigroup.
(ii) G(x, x, x) is a chain.
Consider the following two groupoids R, T with the underlying set {1, 2, 3}:

T’l 2|3
101(3/3
7'77?
30123
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6.5. Lemma. (i) All the groupoids P, Q, R, T are nearly quasitrivial distributive
groupoids of type II. Moreover, the groupoids are pairwise non-isomorphic.

(i) If G is a nearly quasitrivial distributive groupoid with the underlying set {1, 2, 3}
such that 1.2 = 3 then eitherG =PorG=QorG=RorG=T.

Proof. (i) This assertion can be checked easily.

(i) First, let 3.1=3. Then3=3.1=(1.2).1=(1.1).2.1)=1.(2.1)
and hence 2.1 =2. Moreover, 2.3=2.(1.2)=(2.1).(2.2)=2.1).2=
=2.2=21If1.3=1thenl.(3.2)=(1.3).(1.2)=1.3=1andhence3.2 =
=3and G=R.If1.3=3then3=(1.2).3=(1.3).(2.3)=3.2and G=P.
Next, let 3.1 = 1. Similarly, we can show that either G = T or G = Q.

6.6. Lemma. Let G be a nearly quasitrivial distributive groupoid of type II and
%, ¥, 2 € G be such that xy = z and x 7 z # y. Then {x, y, 2} is a subgroupoid of G and
it is isomorphic to exactly one of the groupoids P, Q, R, T.

Proof. Apply 1.2 (iii) and 6.5.

We shall say that G is of subtype IIP (IIQ, IIR, IIT, resp.) if {x, y, 2} is isomorphic
to P (to Q, R, T, resp.).

6.7. Lemma. Let G be a nearly quasitrivial distributive groupoid of subtype ITPor IIQ
and x,y,z €G be the three different elements with xy = z. Then C =G\ {x,y, 2}
is either empty or achain. Moreover, G = {, y, 2} AC, provided C is non-empty.

Proof. We shall consider only the case IIP. Put H = G\ {y}, K = G\ {x} and
assume that C is non-empty. Then H, K are quasitrivial distributive groupoids. Since G
is of subtype IIP, yz =y, 2y = 2, 3, 2 € D = V(ax), D is an L-semigroup and K\ D
is a chain (apply 5.5). Let aeD. Then xa =x.ay =xa.xy =xa.2 = x2.az =
= 2z .az = za = z and we see that eithera =y ora = 2. Hence D = {y,z},K\D =C
and K = {y,2} A C.Finally,a =2a =xa.ya =xa.aanda =az=ay.ax =a.ax
for every a € C. Hence xa = a = ax and G = {x,y, 2} A C.

6.8. Theorem. A groupoid G is a nearly quasitrivial distributive groupoid of sub-
type IIP (IIQ, resp.) iff at least one of the following two cases takes place:

(i) G is isomorphic to P (to Q, resp.).
(ii) There exists a chain C and a groupoid S isomorphic to P (to Q, resp.) such that

G=SAC.

Proof. The “only if” part follows from 6.7. The “if” part is easy (see 5.3).

6.9. Corollary. If G is a nearly quasitrivial distributive groupoid of subtype
IIP or IIQ, then G is a semigroup.

6.10. Lemma. Let G be an L-semigroup (an R-semigroup, resp.) and x,y,2€G
be three different elements. Then G(o) = G(x, y, 2) is a nearly quasitrivial distributive
groupoid of subtype IIR (IIT, resp.).

Proof. We shall show that G(o) is distributive (the rest is easy). Let a, b, c €G-
The following cases can arise:

(1) a#x.Thenaob=ab=a#xandao(boc) =a=(aob)o(aoc)
(2) a=x,b#y#c. Thenaoc=a=x#yandboc#y. We have ao (boc) =
=x=(aob)o(aoc).
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(3) a=x,b=y.Thenao(boc)=x0y==zand (@aob)o(aoc)=2z0(x0c) =2z
(4) a=2x,b#y=c. Thenao(boc)=xand (aob)o(aoc)=x02=x.

We have proved ao (boc) = (aobd)o (aoc) Further, we are going to prove

(boc)oa=(boa)o (co a). We have the following cases:

(5) b#x.Then(boc)oa=>b= (boa)o(co a).

(6) b=x,a#y7#c. Then (boc)oa=x=(boa)o(coa)

(7) b=x,a=y#c.Then(boc)oa==zand (boa)o(coa) =20(coa) ==z
8 b=x,c=y+#a.Then(boc)oa=z=(boa)o(coa).

(9) b=x,c=y=a. Then (boc)oa=2z=(boa)o(coa).

6.11. Theorem. A groupoid G is a nearly quasitrivial distributive groupoid of
subtype IIR (IIT, resp.) iff at least one of the following two cases takes place:

(i) There exists an L-semigroup (R-semigroup, resp.) G(o) and three different elements

%, ¥, 2 € G such that G = G(o)(x, ¥, 2).

(i) There exists a chain C, an L-semigroup (R-semigroup, resp.) S(o) and three diffe-

rent elements x, y, z € S such that G = S A C, where S = S(0)(x, y, 2).

Proof. The “if” part is an easy consequence of 5.3 and 6.10. Now assume that G
is a nearly quasitrivial distributive groupoid of subtype IIR; let %, y, 2 € G be the three
different elements with xy = z. Put H = G \_{y} and K = G\ {x}. Then H, K are
quasitrivial distributive groupoids. Since G is of subtype IIR, we have xz = x, 2x = 2,
¥z =73,2y = 2, %, 2 € V(ag) and y, z € V(ax). Put S = V(ag) U V(exk). Let a € V(en),
a # x. Then az = a, za = z and we see that a € V(xx). Similarly, V(ax)\{¥} = V(o).
Now it is clear that ab = a whenever a, b € S and either a 4 x or b %£y. We see that
S(0) = S(x, y, x) is an L-semigroup and S = S(0)(x, ¥, 2). Finally, G\ S = C is either
an empty set or a chain.

6.12. Corollary. A groupoid G is a nearly quasitrivial distributive groupoid of
subtype IIR (IIT, resp.) iff there are a quasitrivial distributive groupoid G(o) and three
different L-elements (R-elements, resp.) x, ¥, 2 such that G = G(o)(x, ¥, 2).

7. Distributive idempotent groupoids quasitrivial up to a subgroupoid

Let H be a groupoid and G be its subgroupoid. We say that H is quasitrivial up
to G if the following holds: if x, y € H and xy ¢ {x, y}, then x, y € G. By a subuniverse
of H we mean any subset which is either empty or a subgroupoid of H. If G is idempo-
tent, then an extension H of G is quasitrivial up to G iff every subset of H whose inter-
section with G is a subuniverse of G is a subuniverse of H. In the present section we
shall study such extensions in the distributive case.

7.1. Lemma. The following are equivalent for a groupoid G:

(i) G is a semilattice, i.e. G satisfies xx = x, xy = yx, xy . 2 = x . yz.
(ii) G is a distributive commutative idempotent groupoid satisfying xy = xy . x.
(iii) G is a distributive idempotent groupoid satisfying xy = xy . x =y . xy.

Proof. The implications (i) = (ii) <> (iii) are easy. Let us prove (ii) = (i).

x.yz=2xy.x2 = (xy.x)(xy.2) = (®)(xy.2) =(*xy.2)(xy) ==xy.2
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7.2, Lemma. The following are equivalent for a groupoid G:
(i) G satisfies xx = x, x . y2 = xy.
(ii) G is a distributive idempotent groupoid satisfying x = x . xy, xy = xy . .
(iii) G isamedial idempotent groupoid satisfyingx = x . xy,xy = xy . x,xy . 2 = x2 . y.
Proof. (i) = (iii): xy.2 =xz.yz2 = (x.y2)(2.y2) = xy .2y = x2.y and
xy.zu =xy.z =x2.y=x2.yu. (iii) = (ii) is evident. (ii) = (i):
x.yz2=2xy.x2 = (xy.x)(xy.2) = (xy)(xy.2) = x.
7.3. Lemma. The following are equivalent for a groupoid G:
(1) G satisfies xx = x, xy . 2 = yz.
(ii) G is a distributive idempotent groupoid satisfying x = yx . x, xy =3y . xy.
(iii) Gis a medial idempotent groupoid satisfyingx = yx . x,xy =y .xy,x.y2 =y . x2.
Proof. The lemma is dual to 7.2.
Let G be a groupoid and 4, B be its two subsets. Then we define a groupoid
04,8(G) as follows: Q4,8(G) = G |J {a} where a is an element not belonging to G;
G is a subgroupoid of Q 4,8(G);

aa = a;
ax =aforxeAandax = xforx e G\ 4;
xa = afor x € Band xa = x forx € G\ _B.

Evidently, QO 4,8(G) is an extension quasitrivial up to G and every extension quasitrival
up to G and containing only one additional element is of such a form.

7.4. Theorem. Let G be a distributive idempotent groupoid and 4, B be its two
subsets. Put H = Q4 8(G) = G | {a}. Then H is distributive iff one of the following
three cases takes place:

(1) A = B, A and G\ 4 aresubuniverses of G, G\ 4 is a semilattice and if x € 4 and
y€eG\ A then xy =y = yx.
(2) A4 = ¢, B and G\ B are subuniverses of G, B satisfies xy . 2 = yz, GB is\\_a semi-

lattice and if x € B and y € G\ B then xy = yx = y.

(3) B = ¢, 4 and G\ 4 are subuniverses of G, 4 satisfies x . yz = xy, G\ A4 is a semi-

lattice and if x € 4 and y e G\ 4 then xy = yx = y.

Proof. Let H be distributive. If x,y€ A then a.xy = ax.ay = aa = a and so
xy€A. If x,y € G\ A then a.xy =ax.ay =xy and so xye G\ 4. Hence 4 and G\ 4
are subuniverses of G. Similarly, it follows from xy . =a xa . ya that B and G\ B are
subuniverses of G.

IfxedandyeG\Athena.xy =ax.ay = ay =y and soxy = y.

IfxeG\Band ycBthen xy.a = xa.ya = xa = x and so xy = x.

Suppose that neither 4 = B nor B< A. Then there exists an element x € A\ B
and an element y € B\ 4. We have xy = y and xy = x, a contradiction.

We have proved that either 4 < Bor B < A.

Suppose that A ¢, B+# ¢, A # B. If A < B then there exists an element
x€B\ A4 and an element y € 4; we have xy=ax.y =ay.xy =a.xy =ax.ay =
xa = a, a contradiction. If B = A then there exists an element x € B and an element
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yeANB; we have xy = x.ya = xy . xa= xy . a = xa . ya = ay = a, a contradiction
again.

We have proved that either A = Bor A = ¢ or B = §.

Suppose 4 = B. Letx,ye G\ 4 = G\ B.Wehavexy=x.ya=xy.xa =xy.x
andxy =ax.y=ay.xy =y.xy; by 7.1, G\ 4 is a semilattice. Thus (1) takes place.

Suppose 4 =¢. If x,yeG then xy =ax.y =ay.xy =y .xy. If x,y €B then
y=ay==xa.y =xy.ay =xy.y; by 1.3, B satisfies xy . z =yz. If x,y € G\ B then
xy =x.ya=xy.xa=xy.x; by 7.1, G\ B is a semilattice. If xeB and yc G\ B
then xy.a =xa.ya = ay =y and so xy = y. Thus (2) takes place.

Suppose B =¢. If x,yeG then xy = x.ya =xy.xa =xy.x. If x,y € 4 then
X=2xa=2Xx.ay =xa.xy =x.xy; by 7.2, 4 satisfies x . yz = xy. If x, y € G\ 4 then
xy=ax.y =ay.xy=y.xy; by 7.1, G\ 4 is a semilattice. If xe G\ 4 and ye 4
then a . xy = ax . ay = xa = x and so xy = x. Thus (3) takes place.

The direct implication is thus proved. Conversely, suppose that one of the three
cases (1), (2), (3) takes place and let us prove that H is distributive. Since ax.a = a . xa
and xa . x = x . ax are evident, it is enough to prove that if p, g, r are pairwise different
elements of H and one of them equals a, then p . gr = pq.pr and pq.r = pr. gr.

Let (1) take place. If one of the elements p, ¢, r equals a and the other two belong
to A, then evidently p.gr =pg.pr =pg.r =pr.qr =a.

If x,y e G\ 4 then
a.xy==xy=ax.ay,
X.ay =xy =Xx.Xy = Xa.Xxy,
X.ya =xy =2xy.X=xy.xa,
ax.y=xy=y.xy =ay.xy,
Xa.y=xy==xy.y =2xy.ay,
xy.a=zxy=xa.ya.

If xe A and y e G\ 4 then
a.xy =ay=ax.ay,
a.yx =ay =y =ya = ay . ax,
X.ay =xy =3y =ay = xa.xy,
y.ax=ya =y =yy =ya.yx,
X.ya=xy =y =2ya=xy.xa,
y.xa=ya=y=yy =yx.ya,
ax.y=ay=y=yy =ay.xy,
ay.x =yx =3y =ay = ax.yx,
Xa.y=ay=y=yy=2xy.a,
ya.x =yx =y = ya = yx . ax,
Xy.a=3ya=y =ay =xa.ya,
yx.a =ya = ya.xa.

In the cases (2) and (3) the distributivity of H can be proved similarly.
7.5. Lemma. Let G be anidempotent medial groupoid and A4, B be its two subsets.
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Put H = Q4,8(G) = G |J {a} and suppose that H is distributive. Then H is medial.

Proof. It is proved in [5] that in a distributive groupoid every three elements
generate a medial subgroupoid. Hence it is enough to prove that if x,y,2€G then
ax.yz = ay .xz and xa.yz = xy . az. By 7.4 one of the three cases (1), (2), (3) takes
place. Suppose first that (1) takes place.

IfxeAd,yeAd,ze Athenax.yz =a=ay.xzand xa.yz = a = xy . az.

IfxeAd,ycAd,z¢ Athenax.yz =az =ay.xzandxa.yz =az =2 =xy.2 =

= xy . az.

Ifxed,y¢ A,2€Athenax.yz2=ay=y=y.xz2 =ay.xzandxa.yz =ay =
=ya = Xxy.az.

IfxcAd,y¢A,z2¢ Athenax .yz =a.yz2 =yz =ay.xzandxa.yz =a.yz =
=yz=1xy.2 =Xxy.az.

Ifx¢ A,yeAd,zcAthenax.yz =x.y2 =x =ax =ay.xzand xa.yz =
=x.y2=X=2Xa=xy.az.

Ifx¢ A, yeAd,2¢ Athenax .yz2 =x2=a.xz=ay.xzandxa.yz = x.y2z =
xy . az.

Ifx¢ A,y¢ A,zcAthenax.yz =xy=yx=ay.xzandxa.yz =xy =xy.a=
= xy . az.

Ifx¢ A,y¢ A,z2¢ Athenax.yz =x.y2=9y.x2=ay.xzandxa.y2 =x . yz2 =
=xy.z =Xxy.az.

Now suppose that (2) takes place. We have ag = g for all g € G and thus ax . yz =
= gy . xz reduces to x . yz = y . xz; however, this identity can be proved easily from
(2). The equality xa . yz = xy . az can be proved similarly as in the case (1) by conside-
ring the eight cases.

In the case (3) again one proves without difficulty ax . y2 = ay . xz and xa . yz =
= xy . az in all of the eight cases.

7.6. Theorem. Let H be a distributive groupoid and G be its idempotent medial
subgroupoid. Suppose that H is quasitrivial up to G. Then H is idempotent and medial,
too.

Proof. The idempotency is evident and mediality follows easily from 7.5 e.g. by the
transfinite induction.

7.7. Corollary. If G is a distributive groupoid which is either quasitrivial or
nearly quasitrivial, then G is medial.

This follows easily from the results of sections 5 and 6; however, it follows easily
from 7.6, too.
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