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Every countable quasigroup with at least three elements is isotopic to a quasigroup without
proper subquasigroups.

Bcesikass cuetHas KBasurpymnima Mmeruias 1o Kpai»'meﬁ MEpE TPpH IJIEMEHTA, U30TOIIHA KBa3u-
rpynmne, KoTopasi HE HMEET HHMKaKuX COOCTBEHHBIX IIOAKBa3UTPYIIIT.

Kazd4 kvazigrupa o aspon tfech prvcich je izotopni kvazigrupé, kterd nemd Z4dné vlastni
podkvazigrupy.

Let O be a quasigroup. We shall say that Q is a 1-simple quasigroup if Q has no
non-trivial normal congruences. Further we shall say that Q is a 2-simple quasigroup
if O has no proper subquasigroup. Finally, we shall say that Q is a 3-simple quasigroup
if Q has no proper subquasigroup containing at least two elements.

The following lemma is obvious.

Lemma 1. (i) Every 2-simple quasigroup is 3-simple.

(ii) Every 3-simple quasigroup containing at least one idempotent is 1-simple.
(iii) Every 3-simple quasigroup is countable.

Let Q be a left loop with left unit j. Suppose that Q is 3-simple and contains at
least three elements. Let j % x € Q, g(j) = %, g(x) =j and g(a) = a for every aec Q,
a#x,j.Putaxb=a.gb)forall a, b € Q. Finally, we shall assume that xj 7= x.

Lemma 2. Q(x) is a 2-simple quasigroup.

Proof. Let P(x) be a subquasigroup of Q(x). If x € P then xj = x * x € P. However,
asitis easy tosee, xj = xand xj % j. Ifce P and a # x,j then b € P, where b x a = a,
But b x @ = ba and b = j. Finally, if j € P then j x j = x is contained in P. We have
proved that j, x € P. Now it is easy to check that P is a subquasigroup of Q, and conse-
quently P = Q.

Proposition 3. Let O be a 3-simple countable left loop such that Q is not a right
loop. ’Then Q is isotopic to a 2-simple quasigroup.
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Proof. It is evident that Q contains at least three elements and there is x € Q with
x #j and xj 7 x. Now we can apply Lemma 2.

Let Q be a countable loop containing at least three elements. Let j be the unit of Q
and P = {a € Q| a #j}. We shall define a permutation f of the set Q.

First, let Q be finite. Then there are an integer » > 2 and a biunique mapping A
of {1,2,...,n} onto P. Put f(j) =j, f(a) = h(h~1 (a) + 1) if acP and k-1 (a) < n and
fla) = k(1) if a € P and a = h(n).

Next, let O be infinite and P = {ay, az,...}. We shall define a biunique mapping 4
of the set of all integers onto P. Put #(0) = a; and A(1) = a2. Since P is infinite, there
is a natural number ¢ > 3 such that aia; ¢ {j, a1, a2, a;}. Then we put h(2) = a; and
h(—1) = a1 a;. Further, h(3) = a;, where j is the least natural number with a; ¢ {a1, a2, a,
ai a;}. Similarly, there is a natural number % such that & £ 1, 2, 4, , ax # a1ai, aa ¢
¢ {j, a1as, a1, az, ai, ax} and we put h(4) = ax, h(—2) = aiax. Further, h(5) = am, where
m is the least natural number with an ¢ {a1, as, ai, aj, ax, a1ai, aiax}. We can proceed
further in a similar way and we get a biunique mapping 4. Now f(j) = and f(a) =
= h(h~1(a) 4 1) for every a € P.

We shall define a new binary operation on Q by aob = f(a). b for all a,b€ Q.
The following lemma is obvious.

Lemma 4. Q(0) is a left loop and Q(o) is not s right loop.

Lemma 5. If K(o) is a subquasigroup of Q(o) then f(K) = K.

Proof. Q(o)is a left loop, and hence je K. If ae K then f(a) =aoj is con-
tained in K.

Lemma 6. Q(o) is a 3-simple quasigroup.

Proof. Let K(o) be a proper subquasigroup of Q(o) such that K(o) contains at
least two elements. With respect to Lemma 5 and the definition of f, we can assume that Q
is infinite. Similarly we can assume that there exists x € K () P such that 2-1(x) < h-1(a)
for every a € K (| P. However, this is contradiction with the construction of 4.

Corollary 7. Every countable quasigroup containing at least three elements is
isotopic to a 2-simple quasigroup.

Remark. The preceding corollary gives a positive solution of the problem 1.7
formulated in [1].

Corollary 8. Every countable quasigroup is isotopic to a 3-simple quasigroup.

Corollary 9. Every countable quasigroup is isotopic to a 1-simple left loop.

Remark. As itis easy to see, every quasigroup isotopic to a 1-simple loop is 1-simple.
On the other hand, the author does not know whether the preceding corollary remains

true for arbitrary quasigroups.
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