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Medial Division Groupoids 

T . KEPKA 

Department of Mathematics, Charles University, Prague*) 

Received 6 June J 978 

The paper is devoted to an extensive study of medial division groupoids. A special attention 
is paid to subdirectly irreducible medial division groupoids. 

GraTBH nocBHineHa H3y^eHHio MeflHajn>Hbrx rpynnoHAOB c ACJICHHCM. B ^acraocTH, Hccne-
ayioTCH no,impHMo HepaanoDKHMbie Me^HajitHbie rpynnoHflbi c flejieHHeM. 

Clanek je v&novan rozsahlemu studiu medialnich grupoidu s dglenim. ZvlaStni pozornost je 
venovana subdirektnfc ireducibilnim medialnim grupoidum s dSlenim. 

I. Introduction 

Let G be a groupoid. For every aeG, define two mappings La and Ra of G 
into G by La(x) = ax and Ra(x) = xa. Further, let r be an equivalence on G. 
We shall say that r is 

- left compatible if xa r xb for all x,a,beG,arb, 
- right compatible if ax r bx for all x,a,beG,arb, 
- left cancellative if arb, whenever a,b,ceG and car cb, 
- right cancellative if arb, whenever a,b,ce G, ac r be, 
- cancellative if it is both left and right cancellative. A groupoid G is said to be 
- cr-simple if G x G is the only right cancellative congruence of G, 
- cl-simple if G x G is the only left cancellative congruence of G, 
- crl-simple if G is both cr and cl-simple, 
- c-simple if G x G is the only cancellative congruence of G, 
- left regular if Ra = Rb, whenever a,b,ceG and ca = cb, 
- right regular if La = L&, whenever a,b,ceG and ac = be, 
- regular if it is both left and right regular, 
- medial if ab . cd = ac . bd for all a, b,c,de G, 
- unipotent if aa = bb for all a,beG, 
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- left distributive if a . be = ab . ac for all a, by c e G, 
- right distributive if be . a = ba . ca for all aybyce G, 
- distributive if it is both left and right distributive. 

Clearly, every idempotent medial groupoid is distributive. Further, every 
groupoid satisfying the identity x . yz = z . yx is medial. 

Let f be an endomorphism of an abelian group G(+) . Then we put Kerf = 
= {xsG\f(x) = 0}. 

Let S be a set. Then |S | is the cardinal number corresponding to S and ds is 
the identical relation on S. If f is a mapping of S into T then kerf is the 
equivalence on S defined by akePfb iff f(a) = f(b). 

Some informations concerning division groupoids may be found in [1], [2], [3] 
and [4]. 

2. Medial Division Groupoids 

Throughout this paragraph, let G be a medial division groupoid. 
For every natural number 0 < «, we shall define two relations pG,n and 

qG,n on G as follows: pG,o = dG = qG,o ; if 1 < « then apG,n b and c qG,n d 
iff ((axi) ...) xn = ((bx±) ...) xn and xn(... (x±c)) = xn(... (x\d)) for all x\. ... y 

xn eG. It is visible that pG,o --- PG,I --- PG,2 ^ . . . , qG,o -̂  qG,i ^ qG,2 -̂  . . . 
and we put pG = U pG,n, QG = U qG,n. Further, we put pG = PG,I and qG = 
= qG,i. 

The groupoid G is said to be right (left) faithful if pG = dG (qG = dc). It is 
said to be faithful if it is both left and right faithful. 

2.1 Lemma, (i) For every natural w, pG,n and qG,n are congruences of G 
and pG,n+l\pGtn = pG/pn , qG,n+l\qG,n = qG,qn-

(ii) PG($G) is the least congruence of G such that the corresponding factorgroupoid 
is right (left) faithful. 
(iii) pG = 0 k e r Rx> xeG and apGb iff La= Lb. 
(iv) If G is right faithful then pG = dG* 

Proof, (i) It is obvious that p is a right compatible equivalence. It remains to 
show that p is left compatible. For, let aybyceG and a p b. Then ca. xy = 
= ex . ay = ex .by = cb . xy for all xyy eG. However G = GGy hence ca p cb 
and we have proved that p is a congruence. The rest is clear. 
(ii) It suffices to show that Gjp is right faithful. For, let aybeG be such that 
ax p bx for every x eG. Then aa p ba and aa pn ba for some 1 < n. From this 
we see that (((ax . ay)x2)...) xn = (((aa . xy) X2)...) xn = (((bx . ay) X2)...)xn for 
all xy yy X2y..., xn e G. Taking into account that G is a division groupoid, we see 
that a pn+i by and hence a p b. 
(iii) and (iv). These assertions are obvious. 
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2.2 Proposition, (i) For every natural number 1 < n, the factorgroupoid 
G/pn is regular. 
(ii) G\p is a regular right cancellation groupoid. 
(iii) p is the least right cancellative congruence of G. 

Proof, (i) With respect to 2.1(i), it is enough to show that G\p is regular. 
First, we prove that G/p is right regular. Let a, b, c e G and acpbc. Then 
ac . x = be . x for every x e G. In particular, ay . cz = by . cz, and so ay . u = 
= by.u for all y, z, u. Hence ay p by for every y and G/p is right regular. Indeed 
if a,b,ceG are such that capcb, then ca . x = cb . x, and so cy . az = cy . bz 
for all x, y, z e G. Consequently, u . az = u .bz and vw . az = vw . bz for all 
u, v, w,zeG. Thus va . wz = vb . wz, i.e., va p vb for every v. 
(ii) Using (i), it is easy to show that G/p is regular. On the other hand, G\p is 
right faithful, and hence it is a right cancellation groupoid. 
(iii) Apply (ii) and 2.1(H). 

2.3 Corollary. The following conditions are equivalent: 
(i) G id cr-simple. 
(ii) pG = G x G. 
(iii) For all a,b eG, there is a natural number 1 < n such that ((a*i)...) xn = 
= ((bx\)...) xn for all xi, ..., xneG. 

2.4 Proposition. The following conditions are equivalent: 
(i) There is a natural number 0 < n such that pG,n = pG,n+i. 
(ii) There is a natural number 0 < m such that pG,n = PG. 
(iii) There is a natural number 0 < k such that pG,k is right cancellative. 
(iv) G is right faithful. 
(v) G is a right cancellation groupoid. 
(vi) pG = dG. 

Proof. Only the implication (ii) implies (iii) needs a proof. Let a,beG and 
a pk b. There are c,deG with ca = a and da = b. Since pk is right cancellative, 
cpk d, and so a = capk-i da = b. The rest is clear. 

2.5 Corollary. G is a cancellation groupoid iff it is faithful. 

2.6 Lemma. The following conditions are equivalent for a,beG: 
(i) x . ay = x . by for all x,yeG. 
(ii) xa . y = xb . y for all x,yeG. 

Proof. Obvious. 
For every natural number 0 < n, define a relation OG,n as follows: OG,O = d<?; 

aoG,n+ib iff x . ay OG,nX .by for all x,yeG. Further, put OG = OG,I and 
OG = (J OG,n. 
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2.7 Lemma, (i) a OG b iff xa . y = xb . y for all x,y e G. 
(ii) OG is a congruence of G,/>G, qG i- 0c?, 0G//>G = qG/p and OG/^G = />G/«. 

(iii) For every natural 0 < w, OG,n is a congruence of G and OG,n+iloG,n = 0G,O». 

Proof. Easy. 

2.8 Lemma. Let 1 < n and a,beG. The following conditions are equi­
valent : 
(i) a oG,n b. 
(ii) xi(... (xn(((ayi)...)yn))) = xi(... (xn(((byi)...)yn))) for all* x\, . . . , xn,yi,... , 

yneG. 

Proof, (i) implies (ii). By induction on n. If n = 1, the assertion is obvious. 
Let 2 < n and x , y e G . Put c = x . ay and d = # . by. Then c OG,n-i dy and 
so we have the equality xi(... (xn-i(((cyi)...)yn-i))) = xi(...(xn-i(((dyi)...)yn-i))) 
for all # i , . . . , xn-i,yi,...,yn-i e G. Let ui,...,un-i,vi,...,Vn-i be arbitrary 
elements from G and -yi = wn>i,.. .,yn-i = Mw-i^n-i. Then cyi ^= (x. ay) (uivi) = 
= (xui) (ay . vi),..., ((cyi)...)yn_i = (((xui)...)un_i) (((ay .vi)..)) vn-i). The 
rest as well as the converse implication are clear. 

2.9 Lemma, (i) For every 0 < «, />G.«, qG,n --- OG,TI and OG,n\pG,n = 
= qG/pn,n> OG,n/qG,n = pG/qn,n. 

(ii) For every 1 < «, Glon is regular. 

Proof, (i) This follows easily from 2.8. \ 
(ii) Let H = G\pn. By (i), G\on is isomorphic to H\qH,n. According to the left 
hand form of 2.2(i), G\on is regular. 

2.10 Proposition, (i) DG is the least cancellative congruence of G. 
(ii) pG, qG S OG and OG\PG = qG/p, OGJqG = pG/q. 

Proof. It follows from 2.7(iii) and 2.9(i) that oG is a congruence containing PG 
and qG. Further, we show that G/o is faithful. For, let a,beG and axobx for 
every x e G. Then aa on ba for some 1 < n. By 2.9(H), G\on is regular, and so 
ax on bx for every x. However, on is a congruence, and hence j ; . ax on y . bx for 
all x,y eG, i.e., a o b. We have proved that G\b is right faithful. Similarly the 
other case and Gjo is a cancellation groupoid by 2.5. Further, let r be a cancellative 
congruence of G. It is an easy task to show by induction on m that om g r. Thus 
o is the least cancellative congruence of G. Finally, let H = G\p and 5 be equal to 
o/p. It follows from 2.8 that s g qH. On the other hand, H/s is isomorphic to Gjo, 
therefore it is a cancellation groupoid and qn E s. Similarly, we can show that 

d\q = PG/q. 

2.11 Corollary. The following conditions are equivalent: 
(i) G is c-simple. 
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(ii) oG = G x G. 
(iii) For all a, b e G, there exists 1 < n such that xi(... (xn(((ayi)...) yn))) = 
= ^i( . . . (^(( (byi) . . . )^))) for all x i , . . . , xn,yi,...,yn eG. 

2.12 Proposition. The following conditions are equivalent: 
(i) There is 0 < n with OG,n = OG,n+i. 
(ii) There is 0 < m with OG, m = OG. 
(iii) There is 0 < k such that OG,JC is cancellative. 
(iv) G is faithful. 
(v) G is a quasigroup. 
(vi) OG = dG. 
(vii) pG = dG = g/G. 

Proof. Similar to that of 2.5. 
Put tG,o = dG and for every 0 < «, let tG,n+i be the congruence of G such 

that tG,n £ tG,n+i and the factorcongruence tG,n+i\tG,n is equal to pG/tn 0 qG/tn'. 
Further, put iG = (J tG,n and f(? = tG,i (hence tG = PG 0 £<?)• 

We shall say that G is semifaithful if tG = dG. 

2.13 Lemma, (i) The congruence tG is equal to pG f) QG. 
(ii) Every equivalence contained in tG is a congruence of G. 
(iii) For every 0 < n, tG)n\i\tG)n = tG/tn and a tG)7l+i b iff ax tG)U bx and 
xa tG)n xb for every x e G . 
(iv) For all 0 <n,m with 1 < n*+ m,pG,n f] qG)m --- tG)n+m-i. 
(v) For every 0 < w, tG)n g pG>n (] qG>n. 

Proof. Only (iv) needs be proved. We shall proceed by induction on n + m. 
If n + m = 1 then either pG)U = dG or qG)Tn = dG, and so pG)U (] qG)m = dG = 
= tGio. Let 2 < n + m and a,b eG be such that a pG)n f] 4G,m b. We can 
assume that 1 < «, the other case being similar. Then axpG,n-i bx for every x. 
However, qG)Tn is a congruence, and therefore ax qG)Tnbx. Hence ax tG)n+m-ibx 
for every x. The rest is clear. 

2.14 Proposition, (i) For every 1 < «, G\tn is regular, 
(ii) G\i is regular. 
(iii) iG is the least congruence of G such that the corresponding factor is semifaith­

ful. 
(iv) iG = pG 0 qG. 
(v) G is semifaithful iff iG = dG. 

Proof, (i) By 2.2(i) and its left hand form, G\t = G\p f] q is regular. The 
general case follows from the fact that G\tn+i is isomorphic to (G\tn)\t. 
(ii) This is an easy consequence of (i). 
(iii) First, we show that G\i is semifaithful. For, let a,beG and ax i bx> xa i xb 
for every x eG. Then aa tn ba for some 1 < «, and so ax tn bx for every x, 
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since G\tn is regular. Similarly, xatmxb for some 1 < m and every x. Now, 
a tic b, where k = max (n, m), alb. Finally, let r be a congruence of G such that 
Gjr is semifaithful. By induction on n, we can show that tn ---. r. 
(iv) Apply 2.13(iv), (v). 
(v) This follows from (iii). 

2.15 Corollary. Let G be semifaithful. Then G is regular and G is 
a subdirect product of a left quasigroup and a right quasigroup. 

2.16 Lemma. tG,2 = OG f] PG,2 f] <1G,2. 

Proof. Obvious. 

2.17 Lemma. Let ac = be for some a, b, c e G. Then apG,2 0 °G b. 

Proof. We can write ax . cy = ac . xy = be . xy = bx . cy and xa . yc = 
xy . ac = xy .be = xb . yc for all x, y e G. The rest is clear. 

2.18 Lemma. Let a, b, c, d e G be such that ac = be and da = db. Then 
a tG,2 b. 

Proof. Use 2.16 and 2.17. 

2.19 Lemma. G is right regular, provided at least one of the following 
(equivalent) conditions is satisfied: 

(-) PG = pG,2 D OG. 

(--) PG,2 f]0G --- pG. 
(iii) G\p is semifaithful. 
(iv) pG\tG = pGIU 

Proof. Apply 2.17. 

2.20 Corollary. Suppose that every regular factorgroupoid of G is semifaith­
ful. Then G is regular. 

2.21 Lemma. The congruences pG and qG commute. 

Proof. Let a,b,ceG, apb and b qc. There are d, e,f eG with b = db, 
a = eb and c = df. We have xd. a = xd. eb = xe . db = xe . b = xe . c = 
= xe . df — xd . ef for every x eG, and so a q ef. Similarly, ef. bx = eb .fx = 
= a .fx = b .fx = db .fx = df. bx = c .bx and ef p c. The rest is clear. 

2.22 Lemma. The congruences pG and qG commute. 

Proof. Let a, b, c e G, ap b and b qc. There are d, e,feG with a = ad, 
b = ed and c = ef. However, p is right and q is left cancellative. Therefore, we 
have ap e, dqf, c = ef p af q ad = a. 
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2.23 Theorem, (i) pG, pG, qG, qG, oG, oG, tG, iG are congruences of G and 
the corresponding factorgroupoids are regular. 
(ii) pG is the least right cancellative congruence of G. 
(iii) oG is the least cancellative congruence of G. 
(iv) iG is the least congruence of G such that the corresponding factorgroupoid is 
semifaithful. 
(v) The congruences pG and qG commute. 
(vi) The congruences pG and qG commute and iG = pG f] qG. 

Proof. See 2.2, 2.10, 2.14, 2.21, 2.22. 

2.24 Proposition. Let r be a congruence of G such that r f] tG = dG. 
Then rf]iG = dG. 

Proof. Suppose, on the contrary, that r f] iG -^ dG. Then there is a natural 
number n which is the least with the property r f] tn 7-= dG. Obviously, 2 < n. 
There are a,beG such that a =?-- b and ar f] tnb. Then axr f] r n - ibx and 
xar f] tn-i xb for every xeG. Consequently, ax = bx and xa = xb, i.e* 
ar f] tb. Thus n = 1, a contradiction. 

2.25 Lemma. The following conditions are equivalent: 
(i) G is crl-simple. 
(ii) pG = G x G = qG. 
(iii) iG = G x G. 
(iv) No non-trivial factorgroupoid of G is semifaithful. 

Proof. Obvious. 

2.26 Proposition. Suppose that G is crl-simple. If r is a congruence of G 
such that r f]tG = dG then r = dG. 

Proof. Use 2.24 and 2.25. 
We shall say that G satisfies the condition (CI) if oG is contained in pG o qG 

(then oG = qGo pG = pGo qG). Further, we shall say that G satisfies the condition 
(C2) if a tG b, whenever a,b eG, apGo qGb and aa = bb. 

2.27 Lemma. Consider the following two conditions: 
(i) G satisfies (CI). 
(ii) If a, b,c,deG,apGb and cd = a, then there exists eeG with dpG e 
and ce = b. 
Then (i) implies (ii). Moreover, if G is left regular, then (ii) implies (i). 

Proof, (i) implies (ii). There is / e G with b = cf. We have cd = apb = 
= cf, and so ex . dy = cd. xy = cf. xy = ex . fy for all x, y e G. From this, 
d of and there is e e G such that dp e and e qf. Then ce = cf = b. 
(ii) implies (i). Let a, b e G, a o b. Then xapxb for every x e G. In particular, 
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aa p ab and there is c e G with ape and ac = ab. Since G is left regular, c q b. 
Now, we see that a p o qb. 

2.28 Lemma. Let G\t satisfy (CI). Then G is semifaithful. 

Proof. Let a, b e G, a t b and / be the natural homomorphism of G onto 
H = G\t. There are x, y,u,v, zeG such that xy .uv = a and z . uv = b. Since 
/(<0 ==/(*) ar-d H is regular, f(xy)pHf(z). However, H satisfies (CI). According 
to 2.27, there is weG such that f(y)pHf(w) and f(z) =f(xw). Hence ztxw and 
yc t wc for every ceG. Now, b = z . uv = xw . uv = xu . wv = xu . yv = 
= xy . uv = a. 

2.29 Lemma. The following conditions are equivalent: 
(i) G satisfies (C2). 
(ii) If a,b,ceG, a pG c, c qGb and ca = be, then a tG b. 

Proof, (i) implies (ii). We have apo qb and aa = ca = be = bb. Therefore 
a t b. 
(ii) implies (i). Let a,b,ceG, ap c, c qb and aa = bb. Then ca = aa = bb = 
= be and a t b. 

2.30 Lemma. Suppose that G is commutative. Then: 
(i) PG = qG = tG, OG = PG,2 and pG = QG = oG = iG-
(ii) G satisfies (CI) iff it is semifaithful iff it is a quasigroup. 
(iii) G satisfies (C2). 

Proof. Easy. 

2.31 Lemma. Let G satisfy the identity x . yz = z . yx. Then: 
(i) tG = qG c pG = qGf2 and pG = qG = oG = iG. 
(ii) G satisfies (CI) iff it is semifaithful iff it is a quasigroup. 
(iii) G satisfies (C2), provided G is left regular. 

Proof, (i) First, let x, y e G and x q% y. Then x . uv = v . ux = v . uy = 
= y .uv and we see that xpy. Similarly the converse and we have t = q .= q2 = />. 
The rest is clear. 
(ii) First, let G be semifaithful. Then pG = dG = qG by (i), and so G is a quasi­
group by 2.12. Further, let G satisfy (CI). Then o = po q = p and hence 
qG/p = 0\p = dG/p and G\p is left faithful. Hence G\p is a quasigroup and p is 
cancellative. By 2.4, p = dG and G is semifaithful. 
(iii) Let a,b,ceG be such that apb q c and aa = cc. Since q .= p, ape. On 
the other hand, ca = aa = ac. Hence aa = ac and a q c, since G is left regular. 

2.32 Lemma. Let G be unipotent. Then: 
(i) pG = qG = tG, provided G is regular. 
(ii) pG = qG = iG = OG. 
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(iii) G satisfies (CI) iff it is semifaithful iff it is a quasigroup. 
(iv) G satisfies (C2), provided G is regular. 

Proof. Easy. 

2.33 Proposition. Suppose that G satisfies the identity x . yz = z . yx 
Then G is a quasigroup, provided G is either commutative or unipotent. 

Proof. Taking into account 2.28 and 2.31(H), we can assume that G is regular. 
Then, by 2.31 and 2.32, q = q2, and so G is semifaithful. By 2.31, G is a quasi­
group. 

3. Regular Medial Division Groupoids 

3.1 Lemma. Let / , g be two surjective endomorphisms of an abelian group 
G(+) such that fg = gf. The following conditions are equivalent: 
(i) If x,y e G and f(x) + g(y) = 0 then x = g(z\ y = /(— z) for some zeG. 
(ii) / (Kers) = Ker*. 
(iii) g(Kerf) = Kerf 
(iv) Ker fg = K e r / + Ker g. 

Proof. Easy. 

3.2 Proposition. Let G(+) be an abelian group, / and g be two surjective 
endomorphisms such that fg = gf and let aeG be an element. Put xy = f(x) + 
+ g(y) + a f° r a-l ^ ^ e G . Then: 
(i) G is a regular medial division groupoid. 
(ii) pG = kerf qG = kerg and oc = ker/g. 
(iii) G is semifaithful iff K e r / f| Ker# = 0. 
(iv) G satisfies (CI) iff the equivalent conditions of 3.1 hold. 
(v) G satisfies (C2) iff g(x) = 0, whenever x e K e r f 
yeKerg and g(x) =f(y)\ 
(vi) G is commutative iff / = g. 
(vii) G is left distributive iff / + g = 1 and f(a) = 0. 
(viii) G is unipotent iff g = — f. 
(ix) G satisfies the identity x . yz = z . yx iff / = g2. 

Proof. Easy. 

3.3 Example. Let G(+) be a vector space (over a field) with basis {x2i,i+i> 
X2i+i,i+j+i | 0 < i>j}. Define two endomorphisms f,g of G(+) as follows: 

f(xo,j) = 0 and f(x2i,i+i) = x2i-2,i+j for all 1 < *, 0 <j, 
/(*2*+l,i+l) = *2M 5 /(*2*+M+J+l) = *2«+i,c+;, 0 < i, 1 < / , 

#(*!,:/+-l) = 0 , £(x2i+U+m) = *2f-l,i+/+l > 1 < », 0 < / , 
^o ,o ) = 0 and £(*2M+;) = X2i,i+j-i for all 0 < f, 1 < / , 

g(x2i,i) = X2i-i,i for every 1 < i . 
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It is easy to check that / , g are surjective, fg = gf and Ker/g = K e r / + Ker g, 
K e r / f ) Ker^ =7--0. Hence the corresponding regular medial division groupoid 
G(xy =f(x) + g(y)) satisfies (CI) and is not semifaithful. Moreover, G does not 
satisfy (C2) and G is crl-simple. 

3.4 Example. Let G(+) be a vector space with basis {xi,j}, where i,j are 
integers such that either 0 < i or 0 < / . Define / , g as follows: f(xoj) = 0 for 
• < 0 and f(xi,])= Xi-ij otherwise; g(xi,o) = 0 for i < 0 and g(xtj) = Xij-i 
otherwise. It is easy to see that the corresponding gruopoid is semifaithful but does 
not satisfy (CI). 

3.5 Proposition. Let G be a regular medial division groupoid. Let b e G 
be an element and a = bb. Then there exist an abelian group G(+) and two sur­
jective endomorphisms f,g of G(+) such that fg = gf,b = 0 is the zero of G(+) 
and xy = f(x) + g(y) + a for all *, y e G. 

Proof. See[l] . 

3.6 Lemma. Let G be a regular medial division groupoid. Then: 
(i) If G is semifaithful then G satisfies (C2). 
(ii) If G satisfies (C2) then either G is semifaithful or G does not satisfy (CI), 
(iii) Every factor of G is semifaithful iff every factor of G satisfies (CI). 

Proof. By 3.5, there are an abelian group G(+) , two surjective endomorphisms 
/ , g of G(+) and an element aeG such that fg = gf and xy = f(x) + g(y) + a 
for all x,yeG. 
(i) Since G is semifaithful, K e r / f) Ker g = 0. Further, let x e Kerf, y e Kerg 
and g(x) ==/(;y). Then fg(x) = gf(x) = 0 and gg(x) = gf(y) = fg(y) = 0. Hence 

g(x) = 0 and G satisfies (C2). 
(ii) Let G be not semifaithful and let G satisfy (CI). There are x,y,zeG such 
that x, y e Ker/ , x, z e Ker g, x ^ 0 and g(y) = x = f(z). Hence G does not 
satisfy (C2). 
(iii) First, let every factor of G be semifaithful. Let zeKerg and K(+) be the 
subgroup of G(+) generated by {fn(z) \ 1 < n}. Obviously, f(K) £ K c / ( K e r # ) 
and g(K) = 0 £ i \ c Ker g. Hence the relation r defined by xry iff x — y e K 
is a congruence of G. Let A be the natural homomorphism of G onto H = G\r. 
It is easy to see that h(z) tH h(0). Consequently, h(z) = h(0) and zeK. In 
particular, z=f(u) for some ueKerg. Thus G satisfiies (CI). Now, let every 
factor of G satisfy (CI). Let w e K e r / f | K e r ^ and L(+) be the subgroup 
generated by w. Then L g K e r / f | Ker# and the relation s, x sy iff x — y eL, 
is a congruence of G. Further, let ueG be such that w = g(u). Since G/s 
satisfies (CI), there is v e G with u — /(z>) e L and #(z;) e L. Now, a; = g(u) = 
= g(u-f(v)) = 0. 

3.7 Corollary. Every semifaithful medial division groupoid satisfies (C2). 
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3.8 Proposition. There exists a cardinal number a such that |G| < a for 
every subdirectly irreducible regular medial division groupoid G. 

Proof. Let G be a subdirectly irreducible regular medial division groupoid. 
Denote by r the least non-trivial congruence of G. By 3.5, there are an abelian 
group G(+) , two surjective endomorphisms f,g of G(+) and an element aeG 
such that fg = gf and xy = f(x) + g(y) + a for all x,y eG. Let R be the ring 
of polynomials with two commuting indeterminates A, Q over the ring of integers. 
We can define an .R-module structure on G(+) by Xx = f(x) and QX = g(x) for 
every xeG. Let H ( + ) be a non-zero submodule of G(+) . The relation s defined 
by xsy iff x —y eH is obviously a congruence of the groupoid G. Hence r e s 
and we see that the R-module G(+) is cocyclic (with respect to 3.5, we can assume 
that Ore for some 0 -^ c). 

3.9 Lemma. Let G be a left (right) regular medial division groupoid. Let 
A, B be two blocks of r<?. Then \A\ = \B\. 

Proof. It suffices to show that there is an infective mapping h of A into B. 
Let aeAybeB be arbitratry. There are ceG and two transformations / , g of 
G such that a = ca, Raf = 1 -= Leg. Put /*(*) = f(b)g(x) for every x e A We 
have cy . g(x) z = cg(x). yz = x . yz = a . yz = ca . yz = cy . az> and so g(x) o a. 
In particular, f(b)g(x) . az = f(b) a . g(x) z = b . g(x) z = b . az for every zeG. 
From this, f(b)g(x) p b. Further, zc . f(b)g(x) = zf(b) . cg(x) = zf(b) . x = 
= zf(b) . a = zf(b). ca = zc .f(b) a = zc .b for every zeG and we have proved 
that f(b)g(x) t b. Hence h is a mapping of A into B. It remains to show that h is 
infective. For, let x,yeA and h(x) = h(y). Then f(b)g(x) =f(b)g(y), and so 
g(x) qg(y)y since G is left regular. In particular, x = cg(x) = cgCy) = y. 

4. Primitive Medial Division Groupoids 

Let G be a medial division groupoid. We shall say that G is primitive if there 
are two different elements a>beG such that tG = {{a, b>, <b, a}} [) CIG-

4.1 Lemma. The following conditions are equivalent for a medial division 
groupoid G: 
(i) G is primitive. 
(ii) tG ¥" dG and tG is a minimal congruence of G. 

Proof. Obvious. 

4.2 Proposition. Every subdirectly irreducible medial division groupoid is 
either semifaithful or primitive. 

Proof. Apply 2.13(H). 

4.3 Proposition. A primitive medial division groupoid is neither left nor 
right regular. 
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Proof. This is an immediate consequence of 3.9. 

4.4 Proposition. A non-trivial crl-simple medial division groupoid is sub-
directly irreducible iff it is primitive. 

Proof. The direct implication follows from 2.25 and 4.2. The converse implica­
tion is an easy consequence of 2.25, 2.26 and 4.L 

4.5 Lemma. Let G be a primitive medial division groupoid and a,b eG 
be such that a =fi b and a tG b. Let r ^ dc be a congruence of G. Then there is 
ceG with a =£ c and arc. 

Proof. If f £ r, we can put c = b. Suppose that t is not contained in r. 
Then t f] r = dG and there are x,yeG with x ^ y, xry and (x,y} $ t. Hence 
{x> y} ¥^ {<*> b} and we can assume that (x,y}$q (the other case is similar). 
Further, a = zx for some z eG. We have a = zxr zy and we can put zy = c, 
provided zx 7-= zy. In the opposite case, vx tvy for every v eG (since G\t is 
regular). But, vx r vy, too, and so vx = vy, i.e., x qy, a contradiction. 

4.6 Proposition. The following conditions are equivalent for a medial divi­
sion groupoid G: 
(i) Every factorgroupoid of G is semifaithful. 
(ii) No factorgroupoid of G is primitive. 

Proof* (i) implies (ii). Apply 4.L 
(ii) implies (i). By 4.2, every subdirectly irreducible factor of G is semifaihful. 
However, semifaithful groupoids are closed under subdirect products. 

4.7 Proposition. Let G be a regular medial division groupoid. Then there 
exists a congruence r c tG of G such that the factorgroupoid G\r is primitive. 

Proof. There is a block A oi t containing at least two elements. Let aeA, 
B = A\{a} and r = (t\(A x A))\J (B x B)\J dG. Then r is a congruence 
of G and we denote by / the natural homomorphism of G onto H = G\r. Let 
x,yeG and f(x)tHf(y). Then xzryz and zxrzy for every zeG. Let ueG 
be such that a = xu. We have a = xuryu, consequently xu = yu and xpGy, 
since G is regular. Similarly, x qGy. Thus xtGy and the rest is clear. 

4.8 Proposition. Let G be a primitive medial division groupoid. Then: 
(i) G\t satisfies (C2) and does not satisfy (CI). 
(ii) G\p and G/q are not semifaithful. 

Proof, (i) Let x,y, z e G\t = H, xpny qn z, xx = zz and let / be the 
natural homomorphism of G onto H. There are c, d, eeG with f(c) = x, 
f(d) = y, f(e) = z. From this, yx = xx = zz = zy and dc tG cc tG ee tG ed. Furt­
her, cu tG du and ud tG ue for every ueG. Now, it is visible that cu . cv = 
du . cv = dc . uv = ed . uv = eu . dv = eu .'cv and ^^ . cu = &W . eu for all 
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u,v,we G. Therefore cu tG eu for every u. Similarly, uc tG ue, and consequently 
x tH z. We have proved that H satisfies (C2). Finally, H does not satisfy (CI), as 
it follows from 2.28. 
(ii) Apply 2.19 and 4.3. 

4.9 Construction. Let G be a medial division groupoid, a e G be an ele­
ment and M = M(a, G) = {<*, y) \ x, y e G, xy = a). Let N be a subset of M 
and a be an element not belonging to G. We shall define a groupoid G(a, a, N) = 
= If(*) as follows: H= G\J {a}; x*y = xy forall x,yeG,(x,y) $ M',x*y =a 
for every (x,y) eN; x * y = a for every (x,y) e M \ N; x * a = x * a and 
a * x = a * x for every x e G ; a * a = a * a . 

4.9.1 Lemma, a tH(*) a and G is isomorphic to H(*)/r for a congruence 
r e tH(*)-

Proof. Obvious. 

4.9.2 Lemma. Let x,yeG. Then xpH(*)y iff xpGy and for every zeG, 
(x, z)eN iff (y, z) e N. 

Proof. Use 4.9.1. 

4.9.3 Lemma. #(*) is a division groupoid iff the following two conditions are 
satisfied: 
(i) For every xeG there are y,zeG such that <*, y) eN and <x, z) e M\N. 
(ii) For every x e G there are y, z eG such that (y, x) e N and <s, x) e M\N. 

Proof. Easy. 

4.9.4 Lemma. //(*) is medial iff (xu, yv) e N, whenever x, y, u, v are from 
G and (xy, uv) e N. 

Proof. Let x,y,u,veG be arbitrary. Taking into account that a tH (*) a, 
it is easy to verify that (x * y) * (H * v) = (xy) * (uv). Now, the assertion is evident. 

4.9.5 Lemma. H(*) is commutative iff G is and <*,;y>e-V iff <-y, x) e N. 

Proof. Obvious. 

4.9.6 Lemma. //(*) satisfies the identity x . yz = z . yx iff G satisfies the 
identity and //(*) is medial. 

Proof. The direct implication is clear. As for the converse implication, let 
x, y, z e G be such that <x, yz) e N. There are u,veG with x = uv and z = uy 
Then (uv, yz) e N, and so (uy, vz) = <#, vz) e N. But vz = v . uy = y . uv = 
= yx. The rest is clear. 

4.10 Proposition. Let H be a medial division groupoid, a, b e H be such 
that a^b,atHb. Put r = « a , b), (b, a)} (J dH and G = H\r. Then there is 
a subset N c M(a\r, G) such that H is isomorphic to G(a\r, ex., N). 
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Proof. Easy. 

4.11 Construction. Let G(+) be an abelian group, / , g be two surjective 
endomorphisms of G(+) such that fg = gf and aeG be an element. Put xy = 
= /(*) + siy) + a f° r a-- x,y eG. Then G is a regular medial division groupoid. 
Further, let K be the set of all ordered pairs <x,y) with x,y eG and f(x) + 
+ g(y) = 0 a n d L be the set of all ordered pairs <#(*),/(—- *)>, x e G. Obviously, 
L c K and both L (+ ) and K(+) are subgroups of G(+) x G(+) . Finally, let 
/ be a subset of K and b,ceG be such that /(b) + g(c) = — a. 

4.11.1 Lemma. <b, c) + K = M(0, G) = M and N = <b, c) + I <=> M. 

Proof. Obvious. 
Let a be an element not belonging to G. Put H = G (J {a} and define an 

operation * on H as follows: A: *.y = x-y = /(*) + g(y) + a for all x,y eG with 
<x — b, y — c> £ -rv; x * -y = 0 for all x> y e G with <x — b, y — c) e I; x * y = a 
for all *, -y e G with <* — b,y — c} eK\I; OL*X = 0 * x and x * a = x * 0 
for every x e G ; a * a = 0 * 0 . 

4.11.2 Lemma. //(*) = G(0, a, AT). 

Proof. Obvious. 

4.11.3 Lemma. H(*) is medial iff I = J + L for a subset J of K. 

Proof. First, let //(*) be medial, <*,y) el and <w, a> e L . Then f(x) + 
+ ^(.v) = 0 a n d M = g(z)> v =f(— z) for some # e G. Since <x, >>> e I, <x + 
+ b5y + c> eN. Further, there are r,seG such that f(r) + a = x + b and 

f(z) + g(s) + a = y + c. Now, <r0, zs} = <x + b, y + c> e 2V, and so <*•#, 05> e 
e N. Then <x + w, -y + *;> = <rz, Os) — <b, c> e I. We have proved that I + L 
is contained in / . Consequently, I = J + L for a subset J of L. Conversely, let 
I=J + L and <xy, wz;> e IV. Then <xw, -yz;> = </(*) + #(.v) + a,f(u) + g(v) + 
+ a) + <g(u- y),f(y - u)) e N. 

4.11.4 Lemma. H(*) is a medial division groupoid iff / =£ K and I = J + L 
for a non-empty subset J of K 

Proof. Easy (apply 4.11.3 and 4.9.3). 

4.11.5 Lemma. Let I = L ^ K and the groupoid G satisfy (C2). Then 
//(*) is a primitive medial division groupoid. 

Proof. //(*) is a medial division groupoid by 4.11.4. Let x,yeG and 
xtH(*)y. There is ueG with #(w) = x. Then the pair <x,f(— u)) belongs to L, 
and so <y>f(— u)) is contained in L. Then y = g(v),f(— u) = / ( — z>) for some 
w e G and we have f(v — u) = 0,y = g(v) = g(v — u) + g(u) = g(r) + x, where 

u. Similarly, there is seG such that g(s) = 0 and y = f(s) + x. 
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Thus f(r) = 0 = g(s) and g(r) = f(s). But G satisfies (C2), and therefore g(r) = 
= 0. From this, x = y and the rest is clear. 

4.12 Proposition. Every primitive medial division groupoid can be constructed 
in the way described in 4.11. 

Proof. Apply 2.14(i), 3.5, 4.10 and 4.11. 

4.13 Construction. Let / be a surjective endomorphism of an abelian group 
G(+) and aeG be an element. Let b eG be such that f(b) = — a and T be 
a non-empty subset of K e r / such that T 7-= Ker / . Let a be an element not 
belongingto G. Put H = G(J {a}, xy =f(x + y — b) for all xyyeG. Let N be 
the set of all ordered pairs <*,y) with xyyeG and # + y — ft e T. We shall 
define an operation * on H as follows: x * y = xy = f(x + y — b) for all x j e G 
with x + y — fc£ Ker / ; x*.y -= 0 for all xyyeG with X + -y — be T; x*y =oc 
for all xyy eG with x + y — b e K e r / \ T; X*OL = x*0 and a * x = 0 * * 
for every x e G ; a * a = 0 * 0 . 

4.13.1 Lemma. //(*) = G(0, a, ./V) is a commutative medial division groupoid. 

Proof. Obvious. 

4.13.2 Lemma. //(*) is primitive iff T 7-- ^ + _B for every non-zero sub­
group A of K e r / and every non-empty subset B of Ker / . 

Proof. First, let //(*) be primitive. Suppose that T = A + By where A is 
a subgroup of K e r / and B is a non-empty subset of Kerf Then 5 = K e r / \ 
\ T = A + C for a non-empty subset C of Kerf Assume that OeT (the 
other case, when 0 e Sy is similar). Let ceA be arbitrary. If c + x e T for some 
x e G then xeT. Conversely, if x e T then c + xeT. From this, it is easy to 
verify that 0 tH(*) cy and so c = 0 and A = 0. Conversely, let the condition from 
the lemma be satisfied. Let x>y eG and x tH(*)y. Then z = x — y eKerf 
For u e T, y + (u + b — y) — b e T, and hence x + (u + b — y) — b = z + u 
is contained in T. Consequently, z + T ^ T. Similarly, if z + u is in Ty then 
x + (u + b - y) - b e F, and so u e T. Thus T - z e T. Denote by D the 
subgroup generated by z and assume that OeT (the other case is similar). We 
have zeT and it is easy to check that D s T. On the other hand, if u e D and 
v e T then u = nz for some integer n and we have u + v = nz + veT. Thus 
T = D + E for a non-empty subset E of Kerf and D = 0, x = y. 

4.13.3 Lemma. //(*) is primitive, provided neither T nor K e r f \ T 
contains a non-zero subgroup. 

Proof. Obvious. 

4.13.4 Lemma. //(*) is unipotent, provided 2x = 0 = a for every x eG 
and OeT. 
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Proof. Easy. 

4.14 Proposition. Every primitive commutative medial division groupoid can 
be constructed in the way described in 4.13. 

Proof. Evident. 

4.15 Proposition. The following conditions are equivalent for a medial divi­
sion groupoid G: 
(i) G is regular, satisfies (C2), and does not satisfy (CI). 
(ii) There exists a primitive medial division groupoid H such that G is isomorphic 
to H\tH. 

Proof, (i) implies (ii). G is regular, and hence there are an abelian group 
G(+) , two surjective endomorphisms / , g of G(+) and an element aeG such 
that fg = gf and xy = f(x) + g(y) + a for all x>yeG. Let L be the set of all 
ordered pairs <#(*),/(— *)% x e G , and let beG be such that f(b)= —a. 
Consider the groupoid I/(*) = G(0, a, N), where a £ G and N = <b, 0> + L. 
Since G does not satisfy (CI), there are x, yeG with <^,jv>^L and f(x) + 
+ g(y) = 0. By 4.11.5, i/(*) is a primitive medial division groupoid. Obviously, G 
is isomorphic to H(*)/r. 
(ii) implies (i). See 2.14 and 4.8. 

4.16 Proposition. Let G be a crl-simple regular medial division groupoid 
such that G satisfies (C2) and does not satisfy (CI). Then there exists a subdirectly 
irreducible primitive medial division groupoid H such that G is isomorphic to 
H\tH. 

Proof. By 4.15, G is isomorphic to H\t for a primitive medial division grou­
poid H. Since tH --- PH> QH and G is crl-simple, H has the same property, and 
therefore H is subdirectly irreducible by 4.4. 

4.17 Proposition. The following conditions are equivalent for a commutative 
medial (unipotent) division groupod G: 
(i) G is regular and G is not a quasigroup. 
(ii) There exists a primitive commutative medial (unipotent) division groupoid H 
such that G is isomorphic to H\tH. 

Proof. Similar to that of 4.15 (use 4.13 and 2.30). 

4.18 Proposition. Let G be a division groupoid satisfying the identity 
x . y z = z .yx . The following conditions are equivalent: 
(i) G is regular and G is not a quasigroup. 
(ii) G is isomorphic to H\tn for a primitive division groupoid H satisfying the 
identity x . yz = z . yx. 

Proof. Apply 4.15, 4.9.6 and 2.31. 

56 



5. Main Results 

5.1 Theorem. The following conditions are equivalent for a medial division 
groupoid G: 
(i) Every factorgroupoid of G is regular. 
(ii) Every factorgroupoid of G is right regular. 
(iii) Every factorgroupoid of G is left regular. 
(iv) No factorgroupoid of G is primitive. 
(v) Every factorgroupoid of G is semifaithuful. 
(vi) Every regular factorgroupoid of G is semifaithful. 
(vii) Every factorgroupoid of G satisfies (CI). 
(viii) Every regular factorgroupoid of G satisfies (CI). 
Moreover, if G is commutative, then these conditions are equivalent to: 
(ix) G is a quasigroup and every congruence of G is cancellative. 

Proof. The implications (i) implies (ii), (i) implies (iii), (v) implies (vi), (vii) 
implies (viii) and (ix) implies (i) are trivial. The remaining implications follow from 
2.2(i), 2A4(i), 2.19, 2.28, 2.30, 3.6(iii), 4.3 and 4.6. 

5.2 Corollary. The following conditions are equivalent for a variety V of 
groupoids: 
(i) Every medial division groupoid from V is regular. 
(ii) Every regular medial division groupoid from V is semifaithful. 
(iii) Every regular medial division groupoid from V satisfies (CI). 

5.3 Proposition. Let G be a subdirectly irreducible medial division group-
poid. Then at least one of the following conditions is satisfied: 
(i) G is a left quasigroup (and hence regular). 
(ii) G is a right quasigroup (and hence regular). 
(iii) G is primitive (and hence neither left nor right regular). 

Proof. Apply 2.2(i), (iii), 2.14(iv), 4.2, 4.3. 

5.4 Theorem, (i) There exists a cardinal number a such that \G\ < a for 
every subdirectly irreducible regular medial division groupoid G. 
(ii) For every cardinal number /?, there exists a commutative unipotent medial 
dividsion groupoid G such that G is subdirectly irreducible, primitive, c-simple 
and \G\ > p. 
(iii) For every cardinal nubmer /S, there exists a division groupoid G satisfying the 
identity x . yz — z . yx such that G is subdirectly irreducible, primitive, crl-simple 
and |G| > 0. 

Proof, (i) See 3.8 
(ii) Let R be the ring of polynomials with one indeterminate A over the two-
element field. Then R is a commutative principal ideal domain. Further, let Af(+) 

57 



be an abelian group such that M contains at least /3 elements and 2x = 0 for 
every xeM. Then Af(+) is an _R-module and we can consider the injective hull 
G(+) of M ( + ) . Then \G\ > /?, AG = G and for every * e G there is 1 < n 
with Xnx = 0. Put x * /y = A(JC + y) for all x ,3 /eG. It is visible that G(*) is 
a commutative unipotent medial division groupoid. Moreover, G(*) is c-simple and 
it is not aquasigroup. By 4.17, G(*) is isomorphic to Hjt for a primitive commuta­
tive unipotent medial division groupoid H. Clearly, \H\ > ft and H is c-simple. 
Hence H is subdirectly irreducible. 
(iii) Let Af(+) be an abelian group such that \M\ > /? and 2x = 0 for every 
xeM. Denote by G(+) the divisible hull of M(+) and put * * y = 4* + 23; 
for all x,yeG. In the rest, we can proceed similarly as in the proof of (ii). 

5.5 Proposition. Every left distributive medial division groupoid is regular, 
semifaithful and satsifies (CI), (C2). 

Proof. Let G be a left distributive medial division groupoid. If G is regular 
then G is semifaithful as it follows easily from 3.2(iii), (vii). Now, it remains 
to use 5.1. 

5.6 Theorem. The following conditions are equivalent for a groupoid G: 
(i) G is a left distributive medial division groupoid. 
(ii) There exist an abelian group G(+) , a surjective endomorphism / of G(+) 
and an element a e G such that f(a) = 0, the endomorphism 1 — / is surjective 
and xy = f{x —- y) + y + a for all x,yeG. 

Proof. Apply 5.5 and 3.5. 

5.7 Proposition. The following conditions are equivalent for a medial divi­
sion groupoid G: 
(i) G is left distributive. 
(ii) The factorgroupoid Gjp is idempotent. 
(iii) Every block of pG is a subgroupoid. 
(iv) For every xeG, xpG xx. 

Proof, (iv) implies (i). Let x, y, z e G. Since x p xx, x . yz = xx . yz = 
= xy . xz. 

5.8 Corollary. The following conditions are equivalent for a groupoid G: 
(i) G is a distributive medial division groupoid. 
(ii) There exist an abelian group G(+) and a surjective endomorphism / of G(+) 
such that 1 — / i s surjective and xy = f{x — y) + y for all x,yeG. 
(iii) G is an idempotent medial division groupoid. 
(iv) G is a medial division groupoid and the factorgroupoid G\t is idempotent. 

5.9 Theorem. A medial division groupoid G is regular, provided at least one 
of the following conditions is satisfied: 
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(i) G is semifaithful. 
(ii) The factorgroupoid G\t satisfies (CI). 
(iii) The factorgroupoids G\p and G\q are semifaithful. 
(iv) G is a left quasigroup. 
(v) G is a right quasigroup. 
(vi) G is left distributive. 
(vii) G is right distributive. 
(viii) G is idempotent. 

Proof. Apply 2.15, 2.19, 2.28, 5.5 and 5.8. 

5.10 Lemma. Let G be a medial groupoid and a, b, c, d, e,feG. Then for 
all * ,y , z e G, the following equalities hold: 
((* . yd)(yb . *)) ((a . be) (de . /)) = ((* . yd) (yb . z)) ((a . dc) (be . / ) ) , 
((a . be) (de . /)) ((* . cy) (ey . z)) = ((a . dc) (be . / )) ((* . cy) (ey . z)). 

Proof. ((* . yd) (yb . z)) ((a . be) (de . / )) = ((* . yd) (a . be)) ((yb . z) (de . /)) = 
= ((xa) (yd . be)) ((yb . de) (zf)) = ((xa) (yb . dc)) ((yd. be) (zf)) = 
= ((x.yb) (a . dc)) ((yd . z) (be . / )) = ((* .yb) (yd . z)) ((a . dc) (be . / )) = 
= ((* . yd) (yb . z)) ((a . dc) (be . / ) ) and ((a . be) (de . / ) ) ((* . cy) (ey . z)) = 
= ((a . de) (be . / )) ((* . cy) (ey.z)) = ... = ((a . dc) (be . / ) ) ((* . cy) (ey . z)) . 

5.11 Proposition. A medial groupoid G satisfies the identity (* .yz) (uv . w) = 
= (* . uz) (yv . w), provided at least one of the following conditions holds: 
(i) G is regular and semifaithful. 
(ii) G is a cancellation groupoid. 
(iii) G is a division groupoid. 

Proof. Apply 5.10, 3.5, 4.11, 4.12. 

5.12 Corollary, (i) The variety of medial groupoids is not generated by the 
class of medial cancellation groupoids. 
(ii) The variety of medial groupoids is not generated by the class of medial divi­
sion groupoids. 

5.13 Example. Let Q(+) be the additive group of rational numbers. Put 
x * y = 2* + 2y for all x,y eQ. Then Q(*) is a commutative medial quasigroup. 
Define a relation r on Q by a r b iff a — b is an integer. Obviously, r is a con­
gruence of Q(*). Denote by / the natural homomorphism of <2(*) onto Q(*)/r. 
We are going to show that / is a monomorphism in the category of medial division 
groupoids. For, let G be a medial division groupoid and g, h be homomorphisms 
of G into Q(*) such that fg = fh. We have g(ab) = 2g(a) + 2g(b) for all a,beG 
Similarly for h. Put k(a) = g(a) — h(a) for every aeG. It is easy to check that k 
is a homomorphism of G into Q(*). Since fg = //z, k(G) £ Z, Z being the set of 
integers. However, k(G) is a subgroupoid of Q(*) and k(G) is a division groupoid. 
Consequently, k(G) = 0 and g = h. 
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5.14 Corollary. The category of medial division groupoids possesses non-
injective monomorphisms. 
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