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Medial Division Groupoids

T. KEPKA
Department of Mathematics, Charles University, Prague*)

Received 6 Fune 1978

The paper is devoted to an extensive study of medial division groupoids. A special attention
is paid to subdirectly irreducible medial division groupoids.

CTaThsl MOCBALIEHA U3YYEHHIO MEAMAJIbHBIX TPYIIIONAOB C JeJIeHMeM. B uacTHocTH, McCle-
IYIOTCA TIORNPAMO HEPa3JIOKUMBbIE MEIHAJIBHBIC IPYINOUBI C CJICHHEM.

Clanek je vénovén rozsdhlému studiu medidlnich grupoidd s d&lenim. Zvld3tni pozornost je
vénovéna subdirektng ireducibilnim medi4lnim grupoidiim s délenim.

f. Introduction

Let G bea groupoid. For every a € G, define two mappings Ls and Rs of G
into G by Ls(x) = ax and Rs(x) = xa. Further, let r be an equivalence on G.
We shall say that r is

- left compatible if xar xb forall x,a,beG,arb,

- right compatible if axr bx for all x,a,b€G,arb,

- left cancellative if ar b, whenever a,b,ce G and car cb,

- right cancellative if ar b, whenever a,b,c€G, acr bc,

- cancellative if it is both left and right cancellative. A groupoid G is said to be
- cr-simple if G X G is the only right cancellative congruence of G,
- cl-simple if G X G is the only left cancellative congruence of G,
- crl-simple if G is both cr and cl-simple,

- c-simple if G X G is the only cancellative congruence of G,

- left regular if R, = Ry, whenever a,b,c€ G and ca = cb,

- right regular if L, = Lp, whenever a,b,c€G and ac = b,

- regular if it is both left and right regular,

— medial if ab.cd = ac. bd for all a,b,c,deG,

- unipotent if aa = bb for all a,be G,
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- left distributive if a.bc = ab . ac for all a,b,ceG,
- right distributive if bc.a = ba .ca forall a,b,c€G,
— distributive if it is both left and right distributive.

Clearly, every idempotent medial groupoid is distributive. Further, every
groupoid satisfying the identity x.yz = z.yx is medial.

Let f be an endomorphism of an abelian group G(+). Then we put Ker f =
= (xeG|f(x) = 0}.

Let S beaset. Then |S| is the cardinal number corresponding to S and ds is
the identical relation on S. If f is a mapping of S into T then kerf is the
equivalence on S defined by ake®fb iff f(a) = f(b).

Some informations concerning division groupoids may be found in [1], [2], [3]
and [4].

2. Medial Division Groupoids

Throughout this paragraph, let G be a medial division groupoid.

For every natural number 0 < »n, we shall define two relations pe,» and
ge,n on G as follows: pgo =de = qg,0; if 1 <n then apgab and cqgend
iff ((ax1)...)xn = ((bx1)...)xn and xa(...(x1¢)) = xa(... (x1d)) for all xi,...,

xn € G. It isvisible that pgo S pe,1 S Pe2 S ...5 96,0 S ga,1 S ge,2 S
and we put p¢ = U pe,n §e = U ga,n. Further, we put pe = pe,1 and ¢¢ =
= 4G,1.

The groupoid G is said to be right (left) faithful if pe = de (¢¢ = dg). Itis
said to be faithful if it is both left and right faithful.

2.1 Lemma. (i) For every natural », pg,n and ge,»n are congruences of G
and pe,a+1/Pe,n = P6/py > 96,0+1/96,n = 4G,qn-
(ii) pe(ge) is the least congruence of G such that the corresponding factorgroupoid
is right (left) faithful.
(iii) p¢ = (ker Rz, x € G and apgb iff Lo= L.
@iv) If G is right faithful then pg¢ = deg.

Proof. (i) It is obvious that p is a right compatible equivalence. It remains to
show that p is left compatible. For, let a,b,c€G and apb. Then ca.xy =
=cx.ay =cx.by=cb.xy forall x,yeG. However G = GG, hence cap cb
and we have proved that p is a congruence. The rest is clear.

(ii) It suffices to show that G/p is right faithful. For, let a,b€ G be such that
ax p bx for every x € G. Then aa p ba and aa py ba for some 1 < n. From this
we see that (((ax . ay)x2)...) xn = (((aa . xy) x2)...) xn = (((bx . ay) x2)...) xa for
all x,y, x2,..., xn € G. Taking into account that G is a division groupoid, we see
that a pn+1 b, and hence a p b.

(iii) and (iv). These assertions are obvious.
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2.2 Proposition. (i) For every natural number 1 <n, the factorgroupoid
G/pn is regular.
(ii) G/p is a regular right cancellation groupoid.
(iii) p is the least right cancellative congruence of G.

Proof. (i) With respect to 2.1(i), it is enough to show that G/p is regular,
First, we prove that G/p is right regular. Let a, b, c € G and acp bc. Then
ac.x = bc.x for every x € G. In particular, ay.cz =by.c2z, and so ay.u =
= by.u forall y,z,u. Hence ay p by forevery y and G/p is right regular. Indeed
if a,b,c€ G are such that capch, then ca.x =cb.x, and so cy.az =cy.bz
for all x,y, 2€ G. Consequently, u.az = u.bz and vw.az = vw.bz for all
u,v,w, 2€G. Thus va.wz = vb.wz, ie., vapvb for every v.

(ii) Using (i), it is easy to show that G/p is regular. On the other hand, G/ is
right faithful, and hence it is a right cancellation groupoid.
(iii) Apply (ii) and 2.1(ii).

2.3 Corollary. The following conditions are equivalent:
(i) G id cr-simple.
(i) pe =G X G.
(iii) For all a,b € G, there is a natural number 1 < n such that ((ax1)...) xn =
= ((bx1)...) xn for all x1,...,x, €G.

2.4 Proposition. The following conditions are equivalent:
(i) There is a natural number 0 < n such that pg,n = pe,a+1.
(ii) There is a natural number 0 < m such that pe,n = pe.
(iii) There is a natural number 0 < %2 such that pg,x is right cancellative.
(iv) G is right faithful.
(v) G is a right cancellation groupoid.
(vi) pe = dg.

Proof. Only the implication (ii) implies (iii) needs a proof. Let a,b€ G and
apr b. Thereare ¢,de G with ca = a and da = b. Since pi is right cancellative,
cprd, and so a = ca px-1da = b. The rest is clear.

2.5 Corollary. G is a cancellation groupoid iff it is faithful.

2.6 Lemma. The following conditions are equivalent for a, b€ G:
(i) x.ay =x.by forall x,yeG.
(ii) xa.y =xb.y forall x,y eG.

Proof. Obvious.

For every natural number 0 < n, define arelation og,» as follows: o¢,0 = dg¢;
aogn+1 b iff x.ayognx.by for all x,ye€ G. Further, put o¢ = 0¢,1 and
oc = o¢,n-
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2,7 Lemma. (i) aogb iff xa.y =xb.y forall x,yeG.
(ii) og is a congruence of G, pe, g¢ S 06> 0¢/pe = qa/p and og/qe¢ = payq-
(iii) For every natural 0 < n, o¢,» is a congruence of G and o0g,n+1/06,n = 0¢,0p-

Proof. Easy.

2.8 Lemma. Let 1 <# and a,b5€G. The following conditions are equi-
valent:
(i) aognb.
(1) x1(... (xen(((@y1)..) yn)) = x1(... (xa(((by1)...) ya))) forallv x1, ..., X5, ¥1,5...
yn €G.

Proof. (i) implies (ii). By induction on n. If n = 1, the assertion is obvious.
Let 2<n and x,y€G. Put c=x.ay and d =x.by. Then cog,n-1d, and
so we have the equality x1(... (xz-1(((cy1)...) yn-1))) = x1(...(xn-1(((dy1)...) ¥n-1)))
for all x1,..., Xn-1,y15...,yn-1€G. Let wui,...,un-1,v1,...,9n-1 be arbitrary
elementsfrom G and y1 = u1v1,...,Ya-1 = Un_-19n-1. Then cy1 4-«: (x.ay) (u1v1) =
= (xur) (ay . 01)s..., (1)) yn-1 = ((x1)...) un-1) (@9 . ©1)...) vn1). The
rest as well as the converse implication are clear.

29 Lemma. (i) For every 0 <mn, pe,n go,n S 0g,n and og,n/pe,n =

= 46/pmn> 0G,n/qG,n = PGlan.n- .
(ii) For every 1 < n, Glon is regular.

Proof. (i) This follows easily from 2.8.
(ii)) Let H = G/pn. By (i), GJon is isomorphic to H/qH,n. Accordmg to the left
hand form of 2.2(i), G/on is regular.

2.10 Proposition. (i) ¢ is the least cancellative congruence of G.
(i) pe> de¢ < 0¢ and o¢/pe = Ga/p» 0¢/3¢ = Peyq.

Proof. It follows from 2.7(iii) and 2.9(i) that é¢ is a congruence containing p¢
and gg. Further, we show that G/o is faithful. For, let a,b€ G and ax o bx for
every x€G. Then aaonba for some 1 < n. By 2.9(ii), G/on is regular, and so
ax oy bx for every x. However, o, is a congruence, and hence y .ax o,y . bx for
all x,yeG, ie, aob. We have proved that G/o is right faithful. Similarly the
other case and G/o is a cancellation groupoid by 2.5. Further, let » be a cancellative
congruence of G. It is an easy task to show by induction on m that o, < r. Thus
o is the least cancellative congruence of G. Finally, let H = G/p and s be equal to
6/p. Itfollows from 2.8 that s < gu. On the other hand, H/s is isomorphicto G/o,
therefore it is a cancellation groupoid and gy < s. Similarly, we can show that
/9 = Pz

2.11 Corollary. The following conditions are equivalent:

(i) G is c-simple.
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(i) 5 =G x G.
(iii) For all a,b€ G, there exists 1 <n such that xi(... (xa(((ay1)...) yn))) =
= x1(... (xa(((by1)...) yn))) for all x1,..., Xn, ¥1,..., Y €G.

2.12 Proposition. The following conditions are equivalent:
(i) Thereis 0 <n with o¢,n = 0g,n+1.
(ii) Thereis 0 <m with og¢,m = O¢.
(iii) There is 0 < k such that og,r is cancellative.
(iv) G is faithful.
(v) G is a quasigroup.
(vi) 0¢ = dg.
(vii) pe = de¢ = §ge-

r

Proof. Similar to that of 2.5.

Put t¢,0 = d¢ and for every 0 < n, let tg,n+1 be the congruence of G such
that tg,n S te,n+1 and the factorcongruence t¢,n+1/te,n is equal to peyey, () ge/ty «
Further, put i¢ =) te,n and tg = tq,1 (hence t¢ = pe () 40).

We shall say that G is semifaithful if z¢ = dg.

2,13 Lemma. (i) The congruence z¢ is equal to pe () ge-
(ii) Every equivalence contained in z¢ is a congruence of G.
(ili) For every 0 <m,t¢,n+1/te,n = tet, and atea+1 b iff axtenbx and
xa tg,n xb for every x €G.
@iv) Forall 0 <mn,m with 1 < m—+ m, pe,n() 96¢,m < t@,n+m-1.
(v) For every 0 <m,te,n S pe,n () 96,n.

Proof. Only (iv) needs be proved. We shall proceed by induction on #n + m.
If n + m =1 theneither pg,n = d¢ or g¢,m = de, andso pe,n () g¢,m = d¢ =
=1go. Let 2<n+m and a,beG be such that a pg,n () ge,mb. We can
assume that 1 < n, the other case being similar. Then ax pg,n-1bx for every x.
However, g¢,m Is a congruence, and therefore ax g¢,m bx. Hence ax tg,n+m-2 bx
for every x. The rest is clear.

2.14 Proposition. (i) For every 1 < n, G/t, is regular.
(ii) GJt is regular.
(iii) Z¢ is the least congruence of G such that the corresponding factor is semifaith-
ful.
(iv) ic = pe N go.
(v) G is semifaithful iff i¢ = dg.
Proof. (i) By 2.2(i) and its left hand form, G/t = G/p () q is regular. The
general case follows from the fact that G/[tn+1 is isomorphic to (G/tn)/t.
(ii) This is an easy consequence of (i).
(iii) First, we show that G/i is semifaithful. For, let a,b€ G and ax i bx, xa I xb
for every x€G. Then aatnba for some 1 <n, and so ax t, bx for every x,
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since Gftn is regular. Similarly, xatm xb for some 1 <m and every x. Now,
aty b, where k2 = max (n, m), a £ b. Finally, let r be a congruence of G such that
G/r is semifaithful. By induction on #, we can show that ¢, < 7.

(iv) Apply 2.13(iv), (v).
(v) This follows from (iii).

2.15 Corollary. Let G be semifaithful. Then G is regular and G is
a subdirect product of a left quasigroup and a right quasigroup.

2.16 Lemma. t¢,2 = o¢ () a2 () ge,2.

Proof. Obvious.
2.17 Lemma. Let ac = bc for some a, b,ce G. Then apgz2 () ogb.

Proof. We can write ax .cy =ac.xy =bc.xy =bx.cy and xa.yc=
xy.ac = xy.bc =xb.yc for all x,y €G. The rest is clear.

2.18 Lemma. Let aq,b,c,d€ G be such.that ac = bc and da = db. Then
atg,2 b.

Proof. Use 2.16 and 2.17.

219 Lemma. G is right regular, provided at least one of the following
(equivalent) conditions is satisfied:
@ pe=pe2 oc.
(i) pe2oc < po.
(iii) G/p is semifaithful.
(iv) pelte = pot-

Proof. Apply 2.17.

2.20 Corollary. Suppose that every regular factorgroupoid of G is semifaith-
ful. Then G is regular.

2.21 Lemma. The congruences p¢ and g¢ commute.

Proof. Let a,b,c€G, apb and b qc. There are d,e,f€ G with b = db,
a=¢e¢b and c=df. We have xd.a=xd.eb=xe.db=xe.b=xe.c=
=xe.df = xd . ef for every x€G, and so a gef. Similarly, ef .bx = eb . fx =
=a.fx=>b.fx=db.fx =df.bx = c.bx and ef p c. The rest is clear.

2.22 Lemma. The congruences pe and ge¢ commute.

Proof. Let a,b,c€G,apb and b Gc. There are d,e,f€G with a = ad,
b =ed and c = ¢f. However, p is right and § is left cancellative. Therefore, we
have ape,dgf,c =ef paf Gad = a.
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2.23 Theorem. (i) pe, e 96> do 0a, Oc, ta, ¢ are congruences of G and
the corresponding factorgroupoids are regular.

(ii) pe is the least right cancellative congruence of G.
(iii) o¢ 1is the least cancellative congruence of G.

(iv) ig is the least congruence of G such that the corrésponding factorgroupoid is
semifaithful.

(v) The congruences pe¢ and g¢ commute.
(vi) The congruences pe and §¢ commute and g = pe () Je.

Proof. See 2.2, 2.10, 2.14, 2.21, 2.22.

2.24 Proposition. Let r be a congruence of G such that r ()¢ = de.
Then r n te = dg. .

Proof. Suppose, on the contrary, that r () fg 7~ de. Then there is a natural
number n which is the least with the property 7 () tn 7% dg. Obviously, 2 < n.
There are a, b€ G such that a % b and ar()txb. Then axr () tn-1 bx and
xar () ta-1xb for every x€ G. Consequently, ax = bx and xa = xb, i.e
ar()tb. Thus n =1, a contradiction.

2.25 Lemma. The following conditions are equivalent:
(i) G is crl-simple.
(ii) pe =G x G = ge.
(iii) ¢ = G X G.
(iv) No non-trivial factorgroupoid of G is semifaithful.

Proof. Obvious.

2.26 Proposition. Suppose that G is crl-simple. If r is a congruence of G
such that r ) t¢ = d¢ then r = dg.

Proof. Use 2.24 and 2.25.
We shall say that G satisfies the condition (Cl) if o¢ is contained in p¢ o ge¢

(then o¢ = ¢¢ 0 p¢ = pe 0 ga). Further, we shall say that G satisfies the condition
(C2) if ateb, whenever a,be G, apeo geab and aa = bb.

2.27 Lemma. Consider the following two conditions:
(i) G satisfies (C1).
(i) If a,b,c,deG,apeb and cd = a, then there exists e€ G with dpge
and ce = b.

Then (i) implies (ii). Moreover, if G is left regular, then (ii) implies (i).

Proof. (i) implies (ii). There is fe G with b = ¢f. We have cd =apb =
=c¢f, and so cx.dy=cd.xy=cf.xy=cx.fy for all x,y€G. From this,
dof and thereis e€ G such that dpe and eqf. Then ce = ¢f = b.

(ii) implies (i). Let a,5€ G, ao0b. Then xap xb for every x € G. In particular,
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aap ab and thereis c€ G with apc and ac = ab. Since G is left regular, c g b.
Now, we see that apo gb.

2.28 Lemma. Let G/t satisfy (Cl). Then G is semifaithful.

Proof. Let a,b€G,atb and f be the natural homomorphism of G onto
H = GJt. Thereare x,y,u,v,2€ G suchthat xy.uv = a and z.uv = b. Since
fla) = f(b) and H isregular, f(xy) pu f(2). However, H satisfies (Cl). According
to 2.27, there is w € G suchthat f(y) pu f(w) and f(2) = f(xw). Hence 2zt xw and
ycrwe for every ce€G. Now, b=z.uv =xw.uv = xu.wv = xu.yv =
=xy.uv = a.

2.29 Lemma. The following conditions are equivalent:
(i) G satisfies (C2).
Gi) If a,b,c€G,apgc,cqeb and ca = bc, then atgb.

Proof. (i) implies (ii). We have apo ¢b and aa = ca = bc = bb. Therefore
atb.
(ii) implies (i). Let a,b,c€G,apc,cqb and aa = bb. Then ca = aa = bb =
=bc and atb.

2.30 Lemma. Suppose that G is commutative. Then:
(1) pe = qe¢ =te, 0¢ = pg,2 and pe¢ = ¢ = o¢ = ic.
(ii) G satisfies (C1) iff it is semifaithful iff it is a quasigroup.
(ili) G satisfies (C2).

Proof. Easy.

2.31 Lemma. Let G satisfy the identity x.yz = z.yx. Then:
(i) te=4g¢ S pe¢ = q¢2 and pe = J¢ = o¢ = ic.
(i) G satisfies (C1) iff it is semifaithful iff it is a quasigroup.
(ili) G satisfies (C2), provided G is left regular.

Proof. (i) First, let x,y€G and x¢2y. Then x. wv =v.ux =v.uy =
=y .uv and wesee that x p y. Similarly the converse and we have t = ¢ < g2 = p.
The rest is clear.

(ii) First, let G be semifaithful. Then p¢ = d¢ = §e¢ by (i), and so G is a quasi-
group by 2.12. Further, let G satisfy (Cl). Then o =pog=p and hence
ge/p = o/p = dg/p and GJp is left faithful. Hence G/p is a quasigroup and p is
cancellative. By 2.4, p = d¢ and G is semifaithful.

(iii) Let a,b,c€ G besuch that apb gc and aa = cc. Since ¢ < p, apc. On
the other hand, ca = aa = ac. Hence aa = ac and a g ¢, since G is left regular.

2.32 Lemma. Let G be unipotent. Then:
(i) pe = q¢ = te, provided G is regular.
(i) pe = gc = tc = d¢.
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(iii) G satisfies (Cl) iff it is semifaithful iff it is a quasigroup.
(iv) G satisfies (C2), provided G is regular.

Proof. Easy.

2.33 Proposition. Suppose that G satisfies the identity x . y2 = 2 . yx
Then G is a quasigroup, provided G is either commutative or unipotent.

Proof. Taking into account 2.28 and 2.31(ii), we can assume that G is regular.
Then, by 2.31 and 2.32, ¢ = g2, and so G is semifaithful. By 2.31, G is a quasi-
group.

3. Regular Medial Division Groupoids

3.1 Lemma. Let f,g be two surjective endomorphisms of an abelian group
G(+) such that fg = gf. The following conditions are equivalent:
(i) If x,yeG and f(x) + g(y) = 0 then x = g(2), y = f(— 2) for some z€G.
(ii) f(Kerg) = Kerg.
(iii) g(Kerf) = Ker f.
(iv) Ker fg = Ker f + Kerg.

Proof. Easy.

3.2 Proposition. Let G(+) bean abelian group, f and g be two surjective
endomorphisms such that fg = gf and let a € G be an element. Put xy = f(x) +
+g(») + a forall x,yeG. Then:

(i) G is a regular medial division groupoid.

(i) pe = kerf, g¢ = kerg and o¢ = ker fg.

(iii) G is semifaithful iff Ker f () Kerg = 0.

(iv) G satisfies (Cl) iff the equivalent conditions of 3.1 hold.
(v) G satisfies (C2) iff g(x) = 0, whenever x € Ker f,
y€Kerg and g(x) = f(y)-

(vi) G is commutative iff f = g.

(vii) G is left distributive iff f + g =1 and f(a) = 0.

(viii) G is unipotent iff g = — f.

(ix) G satisfies the identity x.yz = z.yx iff f = g2

Proof. Easy.

3.3 Example. Let G(+) be a vector space (over a field) with basis {x21,64>
x2¢+1,4+7+1 | 0 < 4,7}. Define two endomorphisms f,g of G(4) as follows:

f(xo,j) =0 and f(xzt,u.j) = X2{-2,{+f forall 1<z O S] R
f(x2e+1,641) = 21,65 f(X21041,04541) = Xo41,847, 0<17, 1<j,
g(x1,741) = 0, glxor+1,045+1) = X2-1,44941, 1 <17, 0<j,
g(x0,0) =0 and g(x2i,i45) = x26,4+51 forall 0 <s, 1<j,
g(x2i,1) = x21-1,4 forevery 1<7.
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It is easy to check that f, g are surjective, fg = gf and Ker fg = Ker f 4 Kerg,
Ker f () Kerg ## 0. Hence the corresponding regular medial division groupoid
G(xy = f(x) + g(»)) satisfies (Cl) and is not semifaithful. Moreover, G does not
satisfy (C2) and G is crl-simple.

3.4 Example. Let G(+) be a vector space with basis {xi,5}, where 7, are
integers such that either 0 <7 or 0 <j. Define f, g as follows: f(xo,7) = 0 for
-< 0 and f(xi,7 )= x4-1,; otherwise; g(xi,0) =0 for 1 <0 and g(x1,s) = xi,71
otherwise. It is easy to see that the corresponding gruopoid is semifaithful but does
not satisfy (Cl1).

3.5 Proposition. Let G be a regular medial division groupoid. Let b€ G
be an element and a = bb. Then there exist an abelian group G(+) and two sur-
jective endomorphisms f, g of G(4) such that fg = gf, b = 0 is the zero of G(+)
and xy = f(x) + g(y) + a forall x,y€G.

Proof. See [1].

3.6 Lemma. Let G be a regular medial division groupoid. Then:
(i) If G is semifaithful then G satisfies (C2).
(ii) If G satisfies (C2) then either G is semifaithful or G does not satisfy (Cl).
(iii) Every factor of G is semifaithful iff every factor of G satisfies (Cl).

Proof. By 3.5, there are an abelian group G(+), two surjective endomorphisms
f-& of G(+) andan element a € G suchthat fg = gf and xy = f(x) + g(y) + a
for all x,y €G.
(i) Since G issemifaithful, Ker f () Ker g = 0. Further,let x e Kerf, y € Kerg
and g(x) = f(y). Then fg(x) = gf(x) =0 and gg(x) = gf(y) = fe(y) = 0. Hence
g(x) =0 and G satisfies (C2).
(ii) Let G be not semifaithful and let G satisfy (C1). There are x,y, 2 € G such
that x,yeKerf, x,2€Kerg, x 40 and g(y) = x = f(2z). Hence G does not
satisfy (C2).
(iii) First, let every factor of G be semifaithful. Let 2 € Kerg and K(4) be the
subgroup of G(+) generated by {f*(z) | 1 < n}. Obviously, f(K) < K < f(Ker g)
and g(K) = 0. K < Kerg. Hence the relation r definedby xry iff x —ye K
is a congruence of G. Let /4 be the natural homomorphism of G onto H = GJr.
It is easy to see that A(z) ty h(0). Consequently, A(z) = #(0) and ze K. In
particular, z = f(4) for some u€Kerg. Thus G satisfiies (Cl). Now, let every
factor of G satisfy (Cl). Let weKerf () Kerg and L(+) be the subgroup
generated by w. Then L g Ker f () Ker g and the relation s, xsy iff x —yelL,
is a congruence of G. Further, let u€G be such that w = g(u). Since Gfs
satisfies (Cl1), there is v€ G with u — f(v) e L and g(v) e L. Now, w = g(u) =
= g(u — f(v)) = 0.

3.7 Corollary. Every semifaithful medial division groupoid satisfies (C2).
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3.8 Proposition. There exists a cardinal number « such that |G| <« for
every subdirectly irreducible regular medial division groupoid G.

Proof. Let G be a subdirectly irreducible regular medial division groupoid.
Denote by r the least non-trivial congruence of G. By 3.5, there are an abelian
group G(+), two surjective endomorphisms f,g of G(+4) and an element a€ G
such that fg = gf and xy = f(x) + g(») + a forall x,y € G. Let R be the ring
of polynomials with two commuting indeterminates 4, o over the ring of integers.
We can define an R-module structure on G(+) by Ax = f(x) and px = g(x) for
every x € G. Let H(+) be a non-zero submodule of G(+). Therelation s defined
by xsy iff x —y e H is obviously a congruence of the groupoid G. Hence r < s
and we see that the R-module G(:f-) is cocyclic (with respect to 3.5, we can assume
that Or ¢ for some 0 # ¢).

39 Lemma. Let G be a left (right) regular medial division groupoid. Let
A, B be two blocks of t¢. Then |A4| = |B|.

Proof. It suffices to show that there is an injective mapping # of A into B.
Let ae€ A, b € B be arbitratry. There are ¢ € G and two transformations f, g of
G such that a = ca, Raf = 1 = Leg. Put h(x) = f(b)g(x) for every xe€ A. We
have ¢y .g(x) 2 = cg(x) .y2=x.yz=a.yz =ca.yz = cy.az, andso g(x)oa.
In particular, f(b)g(x).az =f(b)a.g(x)z=>b.g(x)z=">b.az for every z€G.
From this, f(b)g(x) p b. Further, zc . f(b)g(x) = 2f(b) . cg(x) = 2f(b) . x =
= 2f(b) .a = 2f(b) .ca = zc.f(b)a = =zc. b for every z€ G and we have proved
that f(b)g(x) ¢ b. Hence k is a mapping of A into B. It remains to show that % is
injective. For, let x,ye€ A and h(x) = h(y). Then f(b)g(x) = f(b)g(y), and so
g(x) gg(y), since G is left regular. In particular, x = cg(x) = cg(y) = y.

4. Primitive Medial Division Groupoids

Let G be a medial division groupoid. We shall say that G is primitive if there
are two different elements a, b€ G such that t¢ = {(a, b), <b, ad} | de.

4.1 Lemma. The following conditions are equivalent for a medial division
groupoid G:
(i) G is primitive.
(ii) te¢ # de and t¢ is a minimal congruence of G.

Proof. Obvious.

4.2 Proposition. Every subdirectly irreducible medial division groupoid is
either semifaithful or primitive.

Proof. Apply 2.13(ii).

4.3 Proposition. A primitive medial division groupoid is neither left nor
right regular.
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Proof. This is an immediate consequence of 3.9.

4.4 Proposition. A non-trivial crl-simple medial division groupoid is sub-
directly irreducible iff it is primitive.

Proof. The direct implication follows from 2.25 and 4.2. The converse implica-
tion is an easy consequence of 2.25, 2.26 and 4.1.

4.5 Lemma. Let G be a primitive medial division groupoid and a,beG
be such that a % b and ate¢b. Let r # d¢ be a congruence of G. Then there is
ceG with as# ¢ and arc.

Proof. If r < r, we can put ¢ = b. Suppose that ¢ is not contained in r.
Then ¢ ) r = dg and thereare x,y € G with x #% y, xry and {x,y)> ¢ t. Hence
{x,y} # {a, b} and we can assume that {x,y> ¢ g (the other case is similar).
Further, a = zx for some z€G. We have a = 2x r gy and we can put 2y = c,
provided zx # zy. In the opposite case, vxtvy for every v € G (since G/t is
regular). But, vx r vy, too, and so vx = vy, i.e., x ¢y, a contradiction.

4.6 Proposition. The following conditions are equivalent for a medial divi-
sion groupoid G:
(i) Every factorgroupoid of G is semifaithful.
(ii) No factorgroupoid of G is primitive.

Proof. (i) implies (ii). Apply 4.1.
(ii) implies (i). By 4.2, every subdirectly irreducible factor of G is semifaihful.
However, semifaithful groupoids are closed under subdirect products.

4.7 Proposition. Let G be a regular medial division groupoid. Then there
exists a congruence r < tg¢ of G such that the factorgroupoid G/r is primitive.

Proof. There is a block 4 of ¢ containing at least two elements. Let a € 4,
B=A\ {a} and r = (\ (4 x 4A)U (B x B)Udg. Then r is a congruence
of G and we denote by f the natural homomorphism of G onto H = G/[r. Let
x,y€G and f(x)tmf(y). Then xzryz and zxrzy forevery z€G. Let ueG
be such that a = xu. We have a = xu r yu, consequently xu = yu and x p¢y,
since G is regular. Similarly, x ge¢y. Thus xt¢y and the rest is clear.

4.8 Proposition. Let G be a primitive medial division groupoid. Then:
(i) Gjt satisfies (C2) and does not satisfy (Cl).
(ii) G/p and G/q are not semifaithful.

Proof. (i) Let x,y,2€Gt =H,xpuy qu 2, xx =2z and let f be the
natural homomorphism of G onto H. There are ¢, d,e€ G with f(c) = x,
f(d) =y, f(e) = 2. From this, yx = xx = 2z = 2y and dc tgcc tg ee tg ed. Furt-
her, cutgdu and udtgue for every ueG. Now, it is visible that cu.cv =
du.cv=dc.uv =ed.uv = eu.dv = eu . cv and wv.cu =wv.eu for all
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u, v, w € G. Therefore cu tg eu for every u. Similarly, uc t¢ ue, and consequently
x tg 2. We have proved that H satisfies (C2). Finally, H does not satisfy (C1), as
it follows from 2.28.

(ii) Apply 2.19 and 4.3.

4.9 Construction. Let G be a medial division groupoid, a € G be an ele-
ment and M = M(a, G) = {{x,y) | x,y €G, xy = a}. Let N be a subset of M
and .« be an element not belonging to G. We shall define a groupoid G(a, «, N) =
= H(x) asfollows: H= G| {a}; xxy = xy forall x,yeG,<{x,y) ¢ M;x*xy =a
for every <(x,y>EN;xxy =a for every <{x,y> e M\ N;x*a =x%a and
axx =axx forevery xeG;a*xa =axa.

49.1 Lemma. atu)« and G is isomorphic to H(x)/r for a congruence
rct H(x)-

Proof. Obvious.

49.2 Lemma. Let x,y€G. Then xpr) y iff x pey and for every z€G,
{x,2) e N iff {y,2)>€N.

Proof. Use 4.9.1.

4.9.3 Lemma. H(x) is a division groupoid iff the following two conditions are
satisfied :

(i) Forevery x €G thereare y, z € G suchthat {x,y) € N and {x,2) € M\ N.
(i) Forevery x €G thereare y, z € G such that (y,x)» € N and {2, x) € M\ N.

Proof. Easy.

494 Lemma. H(x) is medial iff {(xu, yv> € N, whenever x,y, u, v are from
G and <{xy,uv) € N.

Proof. Let x,y,u,v€ G be arbitrary. Taking into account that a zx () «,
itis easy to verify that (x xy) x (4 % ) = (xy) * (¥v). Now, the assertion is evident.

49.5 Lemma. H(x) is commutative iff G is and <{x,y> e N iff {y,x) e N.
Proof. Obvious.

49.6 Lemma. H(x) satisfies the identity x.yz = z.yx iff G satisfies the
identity and H(x) is medial.

Proof. The direct implication is clear. As for the converse implication, let
x,y, 2 € G besuchthat (x,y2) e N. Thereare u,v€ G with x = uv and z = uy
Then <{uv,yz) €N, and so {uy,vz) =<2, v2)€N. But vz2=0.uy=y.uv =
= yx. The rest is clear. '

4.10 Proposition. Let H be a medial division groupoid, a, b € H be such
that a # b,atg b. Put r = {<a, b),<b,a)}|) du and G = Hjr. Then there is
asubset N < M(a/r, G) such that H is isomorphic to G(a/r, «, N).
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Proof. Easy.

4.11 Construction. Let G(+) be an abelian group, f, g be two surjective
endomorphisms of G(+) such that fg = gf and a € G be an element. Put xy =
=f(x) + g(y) + a forall x,y € G. Then G is a regular medial division groupoid.
Further, let K be the set of all ordered pairs <{x,y> with x,y €G and f(x) +
+ g(y) = 0 and L be the set of all ordered pairs {g(x), f(— x)>, x € G. Obviously,
L = K and both L(+) and K(+) are subgroups of G(+) X G(+). Finally, let
I be asubset of K and b, ce G be such that f(b) + glc) = — a.

4.11.1 Lemma. {b,c¢) + K= M(0,G) =M and N =<b,¢) + ] = M.

Proof. Obvious.

Let « be an element not belonging to G. Put H = G|J {«} and define an
operation % on H as follows: xxy = xy = f(x) + g(y) + a forall x,y € G with
{x—byy —c)¢K;xky =0 forall x,yeG with (x — b,y —cdel;xxy =a
for all x,yeG with {(x — b,y —c)eK\ [;axx=0xx and x*xa =x%0
for every x€ G; a ko = 0% 0.

4.11.2 Lemma. H(x) = G(0, o, N).
Proof. Obvious.
4.11.3 Lemma. H(x) is medial iff /= ¥ + L for a subset ¥ of K.

Proof. First, let H(x) be medial, <{x,y> €/ and <{u,v> € L. Then f(x) 4+
+g(y) =0 and u = g(2),v = f(— 2) for some z€e€G. Since {(x,y>e€l,{x +
+ b,y + ¢> € N. Further, there are r,s€ G such that f(r) + a=x 4+ b and
f(z) +g(s) +a=y +c. Now, <r0,2s) =<{x + b,y + c) €N, and so {rz,0s) €
€N. Then <{x + u,y 4+ v> = {rz, 0s) — <{b,c> € I. We have proved that / + L
is contained in /. Consequently, / = ¥ + L for asubset ¥ of L. Conversely, let
I=%+ L and <(xy,uv) e N. Then {xu, yv> = {f(x) + g(y) + a, f(u) + g(v) +
+a) + <{glu — ), f(y —u)) €N.

4.11.4 Lemma. H(x) is a medial division groupoidiff /# K and /= ¥+ L
for a non-empty subset ¥ of K.
Proof. Easy (apply 4.11.3 and 4.9.3).

411.5 Lemma. Let /= L # K and the groupoid G satisfy (C2). Then
H(x) is a primitive medial division groupoid.

Proof. H(x) is a medial division groupoid by 4.11.4. Let x,y€G and
Xt y.- Thereis u € G with g(u) = x. Then the pair <{x, f(— u)) belongsto L,
and so <y, f(— %)) is contained in L. Then y = g(v), f(— u) = f(— v) for some
veG and we have f(v — u) =0,y = g(v) = glv — u) + gu) = g(r) + x, where
r = v — u. Similarly, there is s€G such that g(s) =0 and y = f(s) + x.
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Thus f(r) = 0 = g(s) and g(r) = f(s). But G satisfies (C2), and therefore g(r) =
= 0. From this, x = y and the rest is clear.

4.12 Proposition. Every primitive medial division groupoid can be constructed
in the way described in 4.11.

Proof. Apply 2.14(i), 3.5, 4.10 and 4.11.

4.13 Construction. Let f be a surjective endomorphism of an abelian group
G(+) and a€ G be an element. Let b€ G be such that f()) = — a and T be
a non-empty subset of Kerf such that T 7% Kerf. Let a be an element not
belongingto G. Put H = G {a}, xy = f(x +y — b) forall x,y €G. Let N be
the set of all ordered pairs <{x,y) with x,y€G and x +y —beT. We shall
define an operation % on H asfollows: x xy = xy = f(x +y — b) forall x,ye G -
with x +y —b¢Kerf;xxy =0 forall x,yeG with x +y —beT;xxy =a
forall x,yeG with x +y —beKerf\ T;x*%a =x%0 and axx=0%x
forevery xe Gy ko = 0% 0.

4.13.1 Lemma. H(x) = G(0, «, N) is a commutative medial division groupoid.
Proof. Obvious.

4.13.2 Lemma. H(x) is primitive iff 7' A + B for every non-zero sub-
group A of Kerf and every non-empty subset B of Ker f.

Proof. First, let H(x) be primitive. Suppose that T = 4 + B, where 4 is
a subgroup of Kerf and B is a non-empty subset of Kerf. Then S = Ker f\
N\.T = A4 + C for a non-empty subset C of Kerf. Assume that 0T (the
other case, when 0 € S, is similar). Let ce€ A be arbitrary. If ¢ + x€ T for some
x€G then xeT. Conversely, if x€ T then ¢ + x € T. From this, it is easy to
verify that 0ty ¢, andso ¢ =0 and A = 0. Conversely, let the condition from
the lemma be satisfied. Let x,y€G and xtm)y. Then 2 =x — yeKerf.
For ueT,y+ (u+b—y)—beT, and hence x+(u+b—y)—b=2+u
is contained in 7. Consequently, 2 + T < T. Similarly, if 2 + % is in T, then
x+u+b—y)—beT, andso ue€T. Thus T — 2 < T. Denote by D the
subgroup generated by 2z and assume that 0 € T (the other case is similar). We
have ze€ T and it is easy to check that D = T. On the other hand, if € D and
v €T then u = nz for some integer » and we have u + v =nz + ve T. Thus
T = D + E for a non-empty subset E of Kerf and D =0, x = y.

4.13.3 Lemma. H(x) is primitive, provided neither T nor Kerf NT
contains a non-zero subgroup.

Proof. Obvious.

4134 Lemma. H(x) is unipotent, provided 2x = 0 =a for every x€G
and 0eT.



Proof. Easy.

4.14 Proposition. Every primitive commutative medial division groupoid can
be constructed in the way described in 4.13.

Proof. Evident.

4.15 Proposition. The following conditions are equivalent for a medial divi-
sion groupoid G:
(i) G is regular, satisfies (C2), and does not satisfy (C1).
(ii) There exists a primitive medial division groupoid H such that G is isomorphic
to Hjty.

' Proof. (i) implies (ii). G is regular, and hence there are an abelian group
G(+), two surjective endomorphisms f,g of G(+) and an element a € G such
that fg = gf and xy = f(x) + g(y) + a for all x,yeG. Let L be the set of all
ordered pairs <{g(x),f(— %)), x€G, and let b€ G be such that f(b) = — a.
Consider the groupoid H(x) = G(0, «, N), where a¢ G and N = <b,0> + L.
Since G does not satisfy (Cl), thereare x, ye G with {x,y>¢ L and f(x) +
+ g(y) = 0. By 4.11.5, H(x) is a primitive medial division groupoid. Obviously, G
is isomorphic to H(x)/z.
(ii) implies (i). See 2.14 and 4.8.

4.16 Proposition. Let G be a crl-simple regular medial division groupoid
such that G satisfies (C2) and does not satisfy (C1). Then there exists a subdirectly
irreducible primitive medial division groupoid H such that G is isomorphic to
Hjty.

3

Proof. By 4.15, G is isomorphic to H/t for a primitive medial division grou-
poid H. Since tuy < pu, gu and G is crl-simple, H has the same property, and
therefore H is subdirectly irreducible by 4.4.

4.17 Proposition. The following conditions are equivalent for a commutative
medial (unipotent) division groupod G:
(i) G isregular and G is not a quasigroup.
(ii) There exists a primitive commutative medial (unipotent) division groupoid H
such that G is isomorphic to H/ty.

Proof. Similar to that of 4.15 (use 4.13 and 2.30).

4.18 Proposition. Let G be a division groupoid satisfying the identity
x .yz = 2z .yx. The following conditions are equivalent:
(i) G isregular and G is not a quasigroup.
(ii) G is isomorphic to Hjtg for a primitive division groupoid H satisfying the
identity x.yz = z.yx.

Proof. Apply 4.15, 4.9.6 and 2.31.
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5. Main Results

5.1 Theorem. The following conditions are equivalent for a medial division
groupoid G:
(i) Every factorgroupoid of G is regular.
(i) Every factorgroupoid of G is right regular.
(iii) Every factorgroupoid of G is left regular.
(iv) No factorgroupoid of G is primitive.
(v) Every factorgroupoid of G is semifaithuful.
(vi) Every regular factorgroupoid of G is semifaithful.
(vii) Every factorgroupoid of G satisfies (Cl).
(viii) Every regular factorgroupoid of G satisfies (Cl1).
Moreover, if G is commutative, then these conditions are equivalent to:
(ix) G is a quasigroup and every congruence of G is cancellative.

Proof. The implications (i) implies (ii), (i) implies (iii), (v) implies (vi), (vii)
implies (viii) and (ix) implies (i) are trivial. The remaining implications follow from
2.2(i), 2.143), 2.19, 2.28, 2.30, 3.6(iii), 4.3 and 4.6.

5.2 Corollary. The following conditions are equivalent for a variety V of
groupoids:
(i) Every medial division groupoid from V is regular.
(ii)  Every regular medial division groupoid from ¥ is semifaithful.
(iii) Every regular medial division groupoid from V satisfies (Cl).

5.3 Proposition. Let G be a subdirectly irreducible medial division group-
poid. Then at least one of the following conditions is satisfied:
(i) G is a left quasigroup (and hence regular).
(ii) G is a right quasigroup (and hence regular).
(iii) G is primitive (and hence neither left nor right regular).

Proof. Apply 2.2(i), (iii), 2.14(iv), 4.2, 4.3.

5.4 Theorem. (i) There exists a cardinal number « such that |G| <« for
every subdirectly irreducible regular medial division groupoid G.
(ii) For every cardinal number pJ, there exists a commutative unipotent medial
dividsion groupoid G such that G is subdirectly irreducible, primitive, c-simple
and |G| > 6. »
(iii) For every cardinal nubmer g, there exists a division groupoid G satisfying the
identity x.yz = z.yx such that G is subdirectly irreducible, primitive, crl-simple
and |G| > p.

Proof. (i) See 3.8

(i) Let R be the ring of polynomials with one indeterminate A over the two-
element field. Then R is a commutative principal ideal domain. Further, let M(4)
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be an abelian group such that M contains at least § elements and 2x = 0 for
every x € M. Then M(+4) is an R-module and we can consider the injective hull
G(+) of M(+). Then |G| > B, AG =G and for every x€G thereis 1 <n
with A%x = 0. Put x%y = M(x + y) for all x,y e G. It is visible that G(x) is
a commutative unipotent medial division groupoid. Moreover, G(x) is c-simple and
it is not a quasigroup. By 4.17, G(x) is isomorphic to H/: for a primitive commuta-
tive unipotent medial division groupoid H. Clearly, |[H| > f and H is c-simple.
Hence H is subdirectly irreducible.

(iii) Let M(+) be an abelian group such that |M|>f and 2x = 0 for every
x € M. Denote by G(+) the divisible hull of M(+4) and put x %y = 4x + 2y
for all x,y € G. In the rest, we can proceed similarly as in the proof of (ii).

5.5 Proposition. Every left distributive medial division groupoid is regular,
semifaithful and satsifies (Cl), (C2).

Proof. Let G be a left distributive medial division groupoid. If G is regular
then G is semifaithful as it follows easily from 3.2(iii), (vii). Now, it remains
to use 5.1.

5.6 Theorem. The following conditions are equivalent for a groupoid G:
(i) G is a left distributive medial division groupoid.
(i) There exist an abelian group G(+), a surjective endomorphism f of G(+)
and an element a € G such that f(a) = 0, the endomorphism 1 — f is surjective
and xy =f(x —y) +y + a forall x,yeG.

Proof. Apply 5.5 and 3.5.

5.7 Proposition. The following conditions are equivalent for a medial divi-
sion groupoid G:
(i) G is left distributive.
(i) The factorgroupoid G/p is idempotent.
(iii) Every block of pg is a subgroupoid.
(iv) For every x € G, x pg xx.

Proof. (iv) implies (i). Let x,y,2€G. Since xpxx, x.yz = xx.y2z =
= xy .x2.

5.8 Corollary. The following conditions are equivalent for a groupoid G:
(i) G is a distributive medial division groupoid.
(ii) There exist an abelian group G(+) and a surjective endomorphism f of G(+)
such that 1 — f is surjective and xy = f(x —y) +y forall x,y €G.
(iii) G is an idempotent medial division groupoid.
(iv) G is a medial division groupoid and the factorgroupoid G/t is idempotent.

5.9 Theorem. A medial division groupoid G is regular, provided at least one
of the following conditions is satisfied:
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(i) G is semifaithful.

(ii) The factorgroupoid G/t satisfies (Cl).

(i) The factorgroupoids G/p and G/gq are semifaithful.
(iv) G is a left quasigroup.

(v) G is a right quasigroup.

(vi) G is left distributive.

(vii) G is right distributive.

(viii) G is idempotent.

Proof. Apply 2.15, 2.19, 2.28, 5.5 and 5.8.

5.10 Lemma. Let G be a medial groupoid and aq, b, ¢, d, e, f € G. Then for
all x,y, z € G, the following equalities hold:
((x.yd)(¥b . 2)) (@ . bc) (de . ) = ((x . yd) (¥b . 2)) ((a . dc) (be . f))
((a.bc)(de.f)) ((x . cy) (ey . 2)) = ((a . dc) (be . ) (x . cy) (ey . 2)) .

Proof. ((x.yd)(yb.2))((a.bc)(de.f)) = ((x.yd)(a.bc))((yb.2)(de.f)) =
= ((xa) (yd . bc)) (¥b . de) (2f)) = ((xa) (¥b . do)) ((vd . be) (2f)) =
= ((x.yb)(a.dc)) (yd. 2) (be .f)) = ((x . yb) (yd . 2)) (@ . dc) (be . ) =
= ((x.yd)(yb.2))((a.dc)(be.f)) and ((a.bc)(de.f))(x.cy)(ey.2) =
=((a.de)(bc.f))(x.cy)(ey.2) =...=((a.dc)(be.f)) (x.cy)(ey.2).

5.11 Proposition. A medial groupoid G satisfies the identity (x.yz) (v . w) =
= (x . uz) (yv . w), provided at least one of the following conditions holds:
(i) G is regular and semifaithful.
(i) G is a cancellation groupoid.
(ili) G is a division groupoid.

Proof. Apply 5.10, 3.5, 4.11, 4.12.

5.12 Corollary. (i) The variety of medial groupoids is not generated by the
class of medial cancellation groupoids.
(ii) The variety of medial groupoids is not generated by the class of medial divi-
sion groupoids.

5.13 Example. Let Q(+) be the additive group of rational numbers. Put
xxy =2x + 2y forall x,y € Q. Then Q(*) is a commutative medial quasigroup.
Define a relation » on Q by arb iff a — b is an integer. Obviously, r is a con-
gruence of Q(x). Denote by f the natural homomorphism of Q(x) onto Q(x)/r.
We are going to show that f is a monomorphism in the category of medial division
groupoids. For, let G be a medial division groupoid and g, # be homomorphisms
of G into Q(x) suchthat fg = fh. We have g(ab) = 2g(a) + 2g(b) forall a, b€ G
Similarly for h. Put k(a) = g(a) — h(a) for every a € G. It is easy to check that %
is a homomorphism of G into Q(x). Since fg = fh, k(G) = Z, Z being the set of
integers. However, k(G) is a subgroupoid of Q(*) and k(G) is a division groupoid.
Consequently, #G) =0 and g = hA.
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5.14 Corollary. The category of medial division groupoids possesses non-
injective monomorphisms.
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