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Effect of the AN= 2 and phonon-phonon interaction on the Coriolis interaction in 
deformed nuclei is examined. An attempt is doně to explain by the phonon admixture the ob-
served reduction of the Coriolis interaction matrix elements, calculated from Nilsson model. 
Effect of change of deformation parameters on nuclear structure is also considered. Obtained 
results are applied to the one nucleon transfer reactions and corresponding relations for dif-
ferential cross sections are given. The possibility of exploitation of the standard DWBA codes for 
computation is also discussed. 

npOBOAHTCH aHajIH3 BJIIWHHÍI AN = 2 H <j)OHOH-(j)OHOHHOrO B3aHMOfleHCTBH5I Ha B3aHMOAeíí-
CTBHe Kopnoj iHca. H3BecTHaa peAyKUHfl MaTpHHHbix aneMeHTOB K B , pacHHTaHHbix n o MOflejra 
HHJICCOHa, 06flCH5ieTC5I HpHCyTCTBHeM <J>OHOHOBbIX BOJIHOBblX 4>yHKUHŽ B BOJIHOBOH (frVHKUHH B03-
6y*fleHHbix COCTOHHHH. BHHMaHne y^ejMeTca TaK»ce H3MeHeHHio napaMeTpoB fle<t>opMainiH n a p a 
H a ocHOBe nojiy-ieHHbix pe3yjn>TaTOB BHBOJIHTCH (fcopMyjibi fljra n o n e p e n H o r o ce-iemm peaiciniH 
c nepeHOCoM OCHOTO HyKJioHa B paMKax npHCiyna MeTOfla npH6jiH5KeHHH BopHa c HCKajKeHHbíMH 
BOJiHaMH ( M H B ) . B 3aKjnoneHHe noKa3biBaeTcm B03MO»HOCTb n e p e n n c a T b ýopMyjibi nnn ceneHH« 
peaKHHH Ha 4>opMy, no3BOJiHK)nryio BOcno.nb30BaTb min HncneHHbix pacneTOB H3BecTHbie nporpaM-
M M .nyím M H B . 

V práci je zkoumán vliv AN = 2 a fonon-fononové interakce na Coriolisovu interakci 
v deformovaných jádrech. Ukazuje se možnost vysvětlit experimentálně pozorovanou redukcí 
maticových elementů Coriolisovy interakce, počítaných na základě Nilssonova modelu, pomocí 
fononových příměsí ve vlnových funkcích vzbuzených stavů, při čemž j e brán také v úvahu možný 
vliv různých hodnot parametrů deformace jádra. N a základě získaných výsledků jsou dále studo­
vány reakce s přenosem jednoho nukleonu. Jsou odvozeny vztahy pro diferenciální účinný průřez, 
zahrnující všechny uvažované efekty a vycházející z přístupu Bornovy aproximace s porušenými 
vlnami (DWBA). Na závěr je diskutována možnost úpravy vztahů do tvarů, umožňujících pro 
numerické výpočty využívat standartní DWBA programy. 

1. I n t r o d u c t i o n 

In last 15 — 20 years the direct reactions became the very useful tool for study of 
structure of deformed nuclei (e.g. [1, 2]). The' Distorted Waves Born Approxima-
tion (DWBA) or more realistic Coupled Chanels (CC) methods are usually ušed 
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for analysis of experimental results. Nevertheless, the CC one needs rather long 
computation time and therefore the DWB A theory, for which the computation codes 
are prepared [3, 4], is mainly used. 

Detail information about the nuclear structure are necessary in both methods. 
In the DWBA one the nuclear structure affects first of all the absolute value of dif­
ferential cross sections through the spectroscopic factors (for the one particle 
transfer reactions) or through the reduced transition probabilities (for inelastic 
scattering of charged particles) [2]. The angular distribution is determined mainly 
by the averaged interaction between incident and outgoing light particles and nucleus,, 
represented usually by the optical potential. 

In the first period the spectroscopic factors for one nucleon transfer reactions 
on deformed nuclei were calculated from simple unified model with Nilsson potential 
[5] (e.g. [6]). Nevertheless, obtained absolute values of cross sections are in bad 
agreement with experimental ones [7, 8] and therefore more accurate description for 
the nuclear structure was used. It was found that pairing effect [1, 9] and Coriolis 
interaction (CI) in deformed nuclei [10] can substantially change intensity of transi­
tions to different members of rotational bands [1, 11], but the CI matrix elements 
calculated from the Nilsson model have to be artificially reduced [11, 12, 13]. More 
fine structural effects (e.g. phonon admixtures [14, 15] or AN = 2 interaction [16> 
17]) complicate substantially the analysis of experimental results by the DWBA 
method. 

We analysed the structure of deformed nuclei including simultaneously the CI> 
AN = 2 and phonon-phonon interactions and partly their competition in dependence 
on nuclear deformation. The results were applied to the one nucleon transfer 
reactions. In present paper we give the ideas of derivation of basic formulas in spirit 
of the DWBA theory. In first part we give scarce analysis of the nuclear structure 
including optimalization of the nuclear deformation parameters. The discussion of 
the differential cross section for the one nucleon transfer reactions and modification 
of general expressions to the form allowing use of the standard DWBA codes is given 
in second part.The examples of application of theoretical analysis to the experimental 
results are shown in last part. 

2. Structure of Deformed Nuclei 

We will assume that the deformed nucleus possess axially symmetric form with 
respect to axis 3. The principal moments of inertia, £Pk, are than &>t = 0>2 = & =¥ 0*3* 
In the unified model the hamiltonian of deformed nucleus can be expressed as [14, 
18, 19, 20] 

H - H i - + T / + ^ { I 2 - I 1 ~ il) - £ ( i + j-+ I J + )• (1) 

Here I and j are the operators of total and intrinsic impuls-moment of nucleus 
respectively, Hin is the part of hamiltonian describing intrinsic motion (including 
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surface vibrations) and I± = I+ + iI2, j ± = j t ± ij2. The last term 

H C o r = - ^ ( / + ; - + I - J + ) (2) 

represents the coupling between intrinsic and rotational motion of nucleus (Coriolis 
interaction - CI). Neglecting this term the wave function of the nuclear states can 
be written [14, 18, 19,20]: 

V(IMKQ) = (^±^^j'2 19'MM XQ + (-lY+Wv-M I- J (3) 

where @MK($k) are the Wigner functions depending on Euler angles and describing 
the rotation of intrinsic coordinate system 1, 2, 3 joined with nucleus with respect 
to external one (x, y, z), M = Iz9 K = 73. Xn is the wave function of intrinsic nuclear 
motion with projection j*'3 = Q (for axially symmetric nucleus Q = j 3 = I3 = K). 

2.L Intrinsic States of D e f o r m e d Nuc leus 

It is convenient to separate Hin into three parts [14, 20, 21] 

# in = Hay + Hp + HQ (4) 

Hav represents motion of individual nucleons in averaged field of nuclear forces. 
Corresponding deformed potential can be expressed through the nuclear sourface 
which can be for axially symmetric nucleus written as [14] 

R{9, <p) = R0[l + a 2 0 y 2 0 (3, <p) + a 4 0 y 4 0 (3, <p) = (5) 

= -R0./(a2 0, a4 0, 3, <p) . 

Here R0 = r0 A
1/3 is average radius of nucleus, $ and <p are polar angles related to 

the intrinsic coordinate system, Y20(99 <p) and y 4 0(3, <p) are spherical functions. 
a 2 0 and a 4 0 are parameters of quadrupole and hexadecapolare deformation of 
nucleus respectively. 

The most often used potentials are that of corrected axially symmetric deformed 
ocillator with / — s interaction included (the expanded Nilsson potential) [5, 22, 23] 

vt,..,)--£ + » = . ( J ( a - ^ - $ + op,) + W - <•'» (,) 
or the Saxon-Woods deformed potential [24] 

Vs_w = V(r, a2 0, a4 0, 9, <p) + Vls(r9 a2 0, a4 0, 9, <p) 

— V 
V(r9 a2 0, a4 0, 3, <p) = — — -f — — (7) 

1 + exp {£[r - R0f(oc209 a4 0, 3, <p)\} 
Vls(r, <x2Q, a4 0, ^, ę) = - í [ ľ x - ] gгаd V(r, cc2Q, a4 0, 9, ę) 

13 



In (6) and (7) p, / and s are impuls, orbital moment and spin of nucleon respectively.. 
co0 is oscillator frequency, C, D, V0, £ and C are numerical parameters of potentials. 
If the single proton states are calculated, the Coulomb potential in form [14] 

W o ^ 3(Z - 1) f d3r 
V*V> ^20* <*40> $> <P) = \ „ 3 1 J7 ' 

4nR3
0 J \r - r'\ 

. {1 + exp {£[r' - K0/(a20, a40, 9, cp)]} (8) 
is added to Eq. (6) or (7). 

The single particle wave functions, |<?„•>> (-2 = -K) c a n De expressed as a super­
position of wave functions \NljQ), the solutions of the Schrodinger equation for 
spherical part of the potential [5, 14, 20] 

\<Pa> = _ CNlj{Q) \NljQ> (9), 
NO' 

N is the principal quantum number, Cmj(Q) are coefficients depending on the form 
of potential and on nuclear deformation. Only the states of given parity are included 
in (9). 

Usually only one N-shell is included in (9), but in some, rather special cases, few 
values of N have to be considered what is interpreted as the AN = 2 interaction. 
(The interaction is important for some N = 4 and 6 even parity and N = 3, 5 and 7 
odd parity states in rare-earth deformed nuclei — e.g. [14, 16, 17, 25]). 

The nucleons in single particle states interact through residual interaction not 
included in average nuclear field. The short-range part, assigned in (4) as Hp, can 
be interpreted as pairing force [14, 26, 27]. Using formalism of second quantization, 
the particle system can be transformed to the quasiparticle one by canonical trans­
formation [14, 20, 21] 

«st = Usas
+

V + TVsas_r 

aST = Us0s-t + TVsa
+ (10) 

Here a+ and aST are the particle creation and annihilation operators, a+ and asr 

are the corresponding operators for creation and annihilation of quasiparticles. As 
the vacuum function for the quasiparticles is used the correlated function *F0 [14, 
26] of even-even nucleus which originates from odd nucleus in mind after removing 
the odd nucleon (proton for odd-Z and neutron for odd-N nucleus). Index " s" 
denotes all quantum numbers of the state related to definite type of nucleon, r = ± 1 
is connected with time reflection. The numbers Us and Vs are the amplitudes of pro­
bability for the state s in even-even nucleus to be vacant or occupied by pair of 
protons or neutrons respectively, so that U2 + Vs

2 = 1. 

The transformation (10) made it possible to consider system of independent 
quasiparticles instead of system particles interacting through short-range (pairing)* 
forces. 
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The long-range residual interaction (HQ in (4)) leads to correlated motion of 
many nucleons interpreted as surface vibration of nucleus. Corresponding potential 
is usually taken in form [14] 

VQ = V(\ri - rk|) + J/flr, - rk|)ffi<rk (11) 

where r{, rk are radius vectors and a{ and <rk represent spins of interacting nucleons. 
Expanding potential (11) into multipol and spin-multipol series it can be shown 
[14, 20] that only the lowest multipoles are important. Therefore the interaction is 
usually interpreted as multipol-multipol one. 

It is possible to construct the quantum of vibrational motion with boson pro-
perties ("phonon") and corresponding operators Q^ and QXfl, creating and annihilat­
ing the phonon with angular momentum A, parity (— 1)A and projection \JL of the 
momentum onto nuclear symmetry axis (A3 = ft). As a vacuum state for phonon 
operators is again taken the ground state function W0 of the neighbour even-even 
nucleus. 

The intrinsic state of odd nucleus with projection K of angular momentum onto 
symmetry axis and parity n can be interpreted as superposition of the quasiparticle 
and phonon states with K = |K0 + y\, where K0 = j 3 is projection of the particle 
impulsmoment. After rather complicated calculations not given here (see e.g. ReL 
[14]) the intrinsic part of wave function (3) for odd axially symmetric deformed 
nucleus can be written as (see Eq. (9.41) in Ref. [14]) 

Xn = X»(K", Qt) = q { < s t + Z Z D£in«s
+ Q,+(^)} W0 . (12) 

A/ii s 

Here Q and T are the quantum numbers of quasiparticle state (for the odd proton or 
neutron system), Cn and D*£in are normalization coefficients, which can be deter­
mined, together with corresponding intrinsic energy %n(o) by minimalizing average 
value of hamiltonian Hin (Eq. (4)) in state (12). The value of (Cn . D^T

in)2 is the pro­
bability of the phonon-quasiparticle admixture a+ Q+(/l/*) *F0 in total intrinsic wave 
function xn(K", Q). 

2.2. The Coriolis Interaction 

If the term HCoT is neglected in (1), the rotational motion of the nucleus as 
whole relative to the external coordinate system gives arise to the rotational bands 
built on each of intrinsic states x(Kn, Q). The energy of different members of the 
band corresponding to the wave function (3) is then given by formula [10, 14, 19] 

£(/, K) = BK(Q) + ^ <x„(K*, Q) \j2\ Xn(K«, C)> + 
20> 

ћ 
+ ~ {[I(I + 1) " 2* 2] + aJL- 1) I + 1 / 2 (I + 1/2) íж.,/2} (13) 

20> 

where aQ is the decoupling parameter 
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From the properties of operators I± and j ± follows that the total hamiltonian 
(l) including HCoT is not diagonalized by function (3) if K > 1/2. The nondiagonal 
matrix elements are [10] 

<¥>(IMK + 1) |HCor| W(IMK)} = ^ AK[(I - K) (I + K + i)]i/2 (14) 

with 
A„ = <Xn(K\ (?) |I-I Xn(K + 1«, (?)> (15) 

For the K = 1/2 states the CI matrix elements are diagonal with respect to function 
(3) and are usually included in E(l, K) (last term in (13)). 

Presence of HCoT in (l) leeds to the mixing of the states (3) and resulting wave 
function can be written as 

T(IMK) = £ 4* V(IMK) (16) 
K' 

where summation includes all states for which CI is considered. Corresponding 
energy and coefficients aK

K, can be obtained by diagonalization of hamiltonian (1). 
Matrix elements AK (15) are calculated from nuclear intrinsic structure. Generally 

it is assumed that intrinsic state is pure quasiparticle one [11, 12, 20, 28], but the 
obtained matrix elements AK are too high and have to be artificially reduced by 
"attenuation factor" rjKK+l so that matrix element (15) can be written in form 

AK = <V0\aJ-\*+x\Y0>riKK+l = 

= (UQUQ. + VQVQ) X CNlj(KQ) CNlj(K + ID) [(; - K) (j + K + l ) ] 1 ' 2 rjKK+ x (17) 
Nj 

All symbols have the same meaning as before. 
We have done attempt to explain the reduction of CI by presence of the phonon 

admixtures in the intrinsic wave function ^(K*, Q) (Eq. (12)). 
For matrix elements of the operators j ± between single particle states hold the 

symmetry relations [14] 

< ^ o o | ^TI + ^+ 'T^oo> = <Q*\j+\Q'T> = 

= - <C'-T|J+|<? - T> = - «? - T|I + |O' " T> (18) 

Here W00 is the particle vacuum function defined by relation aeT|!P00> = 0. Opera­
tors j ± can be expressed through creation and annihilation particle operators as 

j+ =_I<H! '+ lv V><C«vv. (19) 
VT V ' T ' 

After transformation (10) to quasiparticle operators and rearrangement we obtain 
forjV the relation 

I+ = E S < V T | I + |vV> [UvUv,av
+_T<v_T, + TVvUv,aVTav,T, + 

VT V ' T ' 

+ T'UvVv,a+_ta
+

v + TT'VvVv.avta
+.t.] (20) 
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which can be directly used for evaluation of matrix elements AK (Eq. (15)). In the 
Random phase approximation (RPA) [14] the phonon operators Qkfl commute 
with the quasiparticle operators <xVT. Assuming that Qkfi and a v t affect on the same 
vacuum function T0i the application of commutation relations for quasiparticles 
and symmetry relations (18) leed to following expression for AK: 

A* = <Jřn(K", Qt)\j + \Xn{K'Q"\ Q'X') = C%% . 

{Mee.^\j+\e'r'y + £ Z M S S . D ^ " D ^ , < S T | 7 + | s'ť>] . 
Xfii ss' 

(21) 

Here symbol Mkk» = [/kl/k* + VkVk* is used. Similar expression can be obtained for 
matrix elements of;_ operator. 

Selection rules for matrix elements <VT| j±|v'T'> indicate that in (21) are nonzero 
only that matrix elements for which Kv = Ky. ± 1. 

The attenuation factor r\KK+1 can be now obtained, in agreement with Eq. (17) 
by division the AK calculated from (21) by the value AK calculated from the pure 

16І! Table 1. Theoretical and experimental values of fjKK±1 in Dy 

K[Nл3A] K'[N'n'3Л'ì MÊ)N (^кhw *к 
„th 
nKK±l 

nкк±i 

1/2 [530]a) 1/2 [530]a) 0.800 0.659 0.127 0.190 0.125 
1/2 [521] 1/2 [530]a) 1.020 1.016 0.950 0.935 0.280b) 
3/2 [521] 1/2 [530]a) 3.476 3.287 0.447 0.147 0.310 
3/2 [521] 1/2 [521] —0.356 —0.425 —0.349 0.794 0.720 
3/2 [532] 1/2 [521] 1.500 1.420 0.943 0.630 0.750 
5/2 [512] 3/2 [521] 2.803 2.780 2.100 0.755 0.840 
5/2 [512] 3/2 [532] 0.105 0.110 0.285 2.700 0.700c) 
5/2 [523] 3/2 [521] 0.836 0.600 0.393 0.700 0.800 
5/2 [523] 3/2 [532] 2.350 2.400 2.230 0.950 0.830 
1/2 [521] 1/2 [521] 0.650 0.484 0.390 0.600 0.640 
3/2 [651] 1/2 [660] 6.046 6.395 4.830 0.770 0.720 
3/2 [651] 1/2 [400] —0.984 —0.775 —0.300 0.400 0.540 
5/2 [642] 3/2 [651] 5.496 5.670 4.870 0.800 0.700 
5/2 [642] 3/2 [402] 0.420 0.470 0.220 0.470 0.700 
7/2 [633] 5/2 [642] 5.490 5.630 5.330 0.950 0.750 
7/2 [404] 5/2 [642] —0.017 —0.054 0.001 0.015 c) 
1/2 [660] 1/2 [660] —5.594 —5.500 -4.900 0.750 0.640 
1/2 [400] 1/2 [400] —0.380 —0.176 —0.136 0.770 0.440 

a) The states are close to the vibrational ones. 
b ) The extremally big difference between nx

KK±1 and nK

x

K±1 is not clear. 
c) Because intensity of CI is low the energy of mixed states is weakly affected and tiK

xg± x is 
uncertain or cannot be extracted at all. 
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quasiparticle functions: 

ntЬ - - ^ чкк+i — A o 
<y.(K; ,g t ) | y ± | y n (^ .±i ' ,g , ť)> 

<-3 ,o|«^|I±|«,v|- /o> 
(22) 

The calculated values of rjKK+1 for some rare-earth odd deformed isotopes were 
compared with the values obtained by optimalization of the CI matrix elements to 
experimentally observed energies of rotational bands. The results for the 1 6 1 D y 
isotope are shown in Table l.In first two columns the states |g> and \Q'} are given 
in asymptotic notation. In next three columns are the CI matrix elements (A£)N, 
(A£)SW and AK calculated from Nilsson model, from model with deformed Saxon-
Woods potential and from Eq. (21) respectively. The values of rjKK+l, presented in 
next column are that, obtained from Saxon-Woods potential (usually they are not 
remarcably different from values calculated from Nilsson model). The values of 
t]K

x
K+i, given in last column, were calculated from experimental energies taken from 

Ref. [29]. 

Fig. 1. Dependence of the CI matrix element <3/2 [651]|j+|l/2 [660]> on nuclear deformation 
(Overtaken from Ref. [30]) 
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2.3. De formation Parameters 

According to relations (17) and (21) the CI matrix elements AK depend on the 
nuclear deformation only through the coefficients CNlJ(Q) of progress (9). It might 
be shown that the dependence is weak if only one value of principal quantum number, 
N, is substantial in (9). Nevertheless, in some rare earth isotopes the AN = 2 inter­
action become very important [16, 17, 25] and the dependence of the C-coefficients 
on deformation can be substantial. Performed analysis indicates [30] that in such 
cases also the CI matrix elements become strongly dependent on nuclear form in 
narrow region of deformation parameters. This evident from Fig. 1 overtaken from 
Ref. [30] on which the matrix elements between states close to the 3/2 + [651] and 
i/2 + [660] quasiparticle states are given as a function of a 2 0 and a 4 0 parameters. 

Strong dependence of the CI matrix elements on nuclear form indicates that for 
accurate theoretical model calculations a good knowledge of the deformation para­
meters is inevitably needed. The values of the quadrupole deformation parameter a 2 0 

can be determined with a good accuracy from the ground state electric quadrupole 
moment of nucleus, known with sufficient accuracy for many isotopes (e.g. [14, 31]). 

The values of the hexadecapolare deformation parameter a 4 0 are much less 
certain. Therefore we have tried to determine the parameter from experimentally 
known energies of low-lying levels in some rare-earth odd neutron nuclei. Using the 
experimental energies from survey papers [32] and [33], corresponding quasiparticle 
energies, SK(Q), were extracted. For the isotopes, in which many excited states are 
known the CI was taken into account in this procedure while in other cases the 
quasiparticle energy was established by using Eq. (13). The single particle energies, 
corresponding to extracted quasiparticle ones, were then compared with the values, 
obtained for different hexadecapolar deformation by solution of the Schrpdinger 
equation with the Nilsson potential (6). The values of a4 0, for which the best agree­
ment between calculated and experimental energies was achieved, were taken as 
corresponding to the nuclear hexadecapolar deformation. 

The isotopes 1 5 3Sm, 1 5 5 G d , 1 5 7 G d , 1 6 1 Dy , 1 6 3 Dy , 1 6 7Er and 171Yb were 
analysed by this manner. As an example the dependence of difference between cal­
culated and experimental single particle energies on a 4 0 in the 1 5 7 G d isotope is shown 
on Fig. 2, from which the optimal value of a 4 0 = 0.065 can be extracted. (The 
states l/2 — [530] and 3/2 — [523], for which the analysis is bad, are known to be 
of complex structure with substantial phonon admixture [25]). The results for all 

Table 2. Paгameteгs of hexadecapolaг deformation for some rareearth deformed nuclei 

Nucleus 1 5 3 Sm 1 5 5 Gd 1 5 7 Gd i б i D y í ^ o y l б 7 Er 1 7 1Yb 

a 4 0 0.080 0.065 0.065 0.045 0.040 0.020 0.00 
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examined isotopes are collected in Table 2. Obtained values are in good agreement 
with parameters calculated theoretically by Solovjev [14]. 

0.08 

Fig. 2. Dependence of differences between calculated and experimental single particle energies 
on parameter a40 
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The use of the values of the parameter a40 extracted from excitation energies 
made it possible substantially improve agreement between calculated and observed 
energy spectra of deformed rare-earth nuclei. It replaces in some extent artificial 
shifting of principal shells necessary in the Nilsson model calculations [14]. 

3. Nuclear Direct Reaction Cross Section 

As was shown in [2] the nuclear structure is closely connected with direct 
nuclear reactions, the states close to the quasiparticle ones being excited mainly in 
the one nucleon stripping and pick-up processes. If the DWBA theory is used for 
description of the reaction, the differential cross section for reaction on even-even 
nucleus is usually taken in the form [2] 

^ = N .S ) ; . f f , ,(S) (23) 
QU 

where N is normalisation factor, <7//3) is the one particle cross section calculated 
in the DWBA theory and Stj is the spectroscopic factor in which all information 
about nuclear structure is included. Nevertheless, the simple expression (23) must 
be replaced by more complicate one if different N-shell have to be considered 
simultaneously. 

In the present work we have taken into account, in addition to the pairing effect 
and CI, the AN = 2 interaction in deformed odd isotopes and its influence onto 
reaction cross section is examined. We show briefly derivation of corresponding 
expressions keeping the spirit of the DWBA theory. Because the methods for the 
stripping and pick-up reactions are similar, we limit ourselves to the one nucleon 
stripping reaction while the resulting expressions for the pick-up process are given. 

3.L Genera l F o r m u l a s 

In the first order Born approximation the differential cross section for reaction 
a + A -* B + b is [2, 6, 34] 

Ë5 
dfì 

afi _ HaVp A g \ \- 12 / 2 4 \ 

where \ia, nfi are the reduced masses in incident (a) and outgoing (ff) chanels of reac­
tion respectively, ka, kp are corresponding impulses. 

In the DWBA theory the matrix element Tafi can be expressed in form [2] 

Txf = / U3ra j d 3 - , ^ * , , r,) <bB|V| aA> x?\K> *v) (25) 
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where xi+) an(-* ^ _ ) a r e the distorted waves describing relative motion of particles 
in incident and outgoing chanels respectively and / is transformation Jacobian. The 
matrix element <bB|V|aA> represents the transition between states of the nuclei 
in both chanels and can be rewritten as 

<bB| V| aA> = </BMBsbmb| V| I^M^m^ (26) 

where in both chanels / and s are the spins of nucleus and light particle respectively, 
M and m are their projections onto quantum axis. 

If we assume that in the stripping reaction the transfered particle x is captured 
by the target nucleus A we get, after some rearrangement, for the matrix element: 

</BMBsbmb| V|/AMAsama> = £ (IAMJMB - MA | /BMB) . 
Nj 

Í <PNjIMB-MA.(r**> <**) ^ K ) Krbx) ^ „ ( ' • b x , ob, ffx) dffb d(Tx . (27) 

( /AM A J 'M B — MA I /BMB) are the Oebsch-Gordon coefficients, V(rbx) is the inter­
action potential responsible for transition, ^Sbmb(o"b)» ^sama(

rbx* °"t» °"x) a r e the wave 
functions of light particles and ah9 ax are intrinsic coordinates of particles b and 
transfered particle x respectively. 

The function <p5v}MB-MA(rxA» °"x) represents the singleparticle state in which the 
transfered nucleon x is captured. It depends on the model used for description of 
nuclear structure and is in the DWBA theory usually expressed over the single 
particle wave functions <rV/iMB-MA(rxA> a*) °^ ^ e spherically symmetric part of the 
average nuclear potential. The model effects are concentrated to the spectroscopic 
amplitude SN

/2j so that the function (PNJIMB-MA(I'XA> ^X) can be expressed as 

^N/yMB-MA(rxA> °x) = $Nlj • 9N/7MB-MA(rxA> °"x) (28) 

The differential cross section for the one nucleon stripping reaction on even-even 
target nucleus can be obtained by the same method as in the classical DWBA theory. 
But, if we consider the AN = 2 interaction, we have to include different N-shells and 
the cross section in the zero-range approximation is given by formula 

— = 2IB + * y f /uy h y 
ÚQ 2/A + 1 ij \{lnh2)2 kx m (21 + ì)1'2 

ZS .5 tíГЬß. ~ r Rmj(r) Yjß> <P) ń^K ') d3t-
N B 

1 (29) 

2 

D 2 

Here R(r) and Y(S, cp) are the radial and angular parts of the function (28) and D is 
numerical constant. 

Similar expression can be derived for the one nucleon pick-up reaction, in which 
the transferred nucleon, x, is assumed to be extracted from the target nucleus A. 
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It is seen form (29) that if different N-shells are simultaneously considered the 
cross section cannot be written simply as a product of the structural part and part 
describing relative motion as it is in the clasical DWBA theory (Eq. (23)). With 
respect to structure of (29) the described theory represents intermedial state between 
the DWBA and CC methods. 

3.2. The Spectroscopic Factors with the AN = 2 Interaction 

The spectroscopic amplitude defined by Eq. (28) can be written in the following 
form [2]: 

SN?J = I (UMJM* - MA | IBMB) <W(lAMAKA) cpNljM^MA\W(lBMBKB)y (30) 

where *F(IAMAKA) and !P(IBMBKB) are the wave functions of target and residual 
nucleus respectively, including the CI (see Eq. 16)). 

Further we assume that the wave function of deformed nucleus is given by Eq. 
(3) and that the ground state of the target even-even nucleus is not affected by the CI. 
Using the symmetry properties of Clebsch-Gordon coefficients and Wigner functions 
[35] after some rearrangement can be the spectroscopic amplitude written in the form 

ci/2 _ 1 y IBKB 
Nlj [2(2IB + \)Y'2 t K°' ' 

• {<*0A<PNlJKm\ **B'> + <X0A<PNIJ-Km\ X - * B ' > ( - l ) ' B + *B} 8JIU . (31) 

Here W0A is the wave function of quasiparticle vacuum (ground state wave function 
of nucleus A) and XKB is the quasiparticle part of the intrinsic wave function (12). 
Using the Nilsson model or model with Saxon-Woods potential for description of the 
nucleus and the properties of creation and annihilation operators (10) [35] the final 
form of SN{* is: 

s™" wa.tia"' £ v0-*-™'- • (32) 

By the same method the expression for the one nucleon pick-up process on even-
even deformed target nucleus is obtained in the form 

(Sy/})P-u = {If* £ ^^VKB.CNIJ(K'B) 5JIB . (33) 
KB' 

In (32) and (33) the symbols aj^, UK, VK and CNlj(K) have the same meaning as in 
section 2.1. 

3.3. Approximate formulas 

If the general formula (29) for differential cross section is used, the standard 
DWBA computation codes cannot be applied to the numerical calculations because 
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the terms with mixed m-values cannot be evaluated. Nevertheless, if the mixed terms 
in (29) may be neglected the expression can be replaced by approximate relation 

do_ _ 2I__+ 1 
dQ " 

with 
2IA+íij 

Z E-íiS « » ) ] a (34) 

tfo (*) 
JW*J 1 

Y^ X/ř ^Nij^imXa d r 
(27tft2)2 fc, I - (2/ + 1) 

For the pick-up reaction the approximate relation is: 

_ 2sb + 1 ťda\ 

W P 
I E(Ä-u *ДО)ľ 

(35) 

(36) 
2sa + 1 // 

with (S^ 2 .) p_ u given by Eq. (33). 
The formulas (34) and (35) are similar to that used in Ref. [16, 17]. 
The validity of approximate relations can be expected for small values of transfer­

red angular momentum, /, [36]. In other cases in which the AN = 2 interaction is 
substantial the more detail analysis has to be done before the approximate relations 
(34) and (35) are used for calculation of the differential cross sections. 

55 

1.5 

1.0 

0.5 

EXPERIMENT^ 

THEORY WITH 
CI AND AN=2 
INTERACTION 

THEORY WIThh 
OUT CI AND 
WITHOUT &N=2 
INTERACTION 

3.55„ 

Ř Ï 

162 m 161 
Jy \ u , «• 

0=90 

Dy 

I JL Ь 1Д 3/2 13/2 
1/2 fббOj 

fl 3/2 5/2 
112 [400] 

3/2 
312 [65Í] 

3/2 572 7JT 
312 [Ш] 

Fig. 3. The relative cross section for excitation of some even parity states in 1 6 1 D y by the 
1 6 2 D y ( d , t ) 1 6 1 D y reaction 
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3.4. C o m p a r i s o n with exper iment 

Theoretical considerations presented in the paper were applicated to the analysis 
of experimentally studied (d, p) and (d, t) reactions on rare-earth deformed isotopes. 
As an example the analysis of excitation of some even parity states in 161Dy by the 
162Dy(d, t) 161Dy reaction is presented on Fig. 3. The experimental relative cross 
sections, taken from Ref. [29], are compared with that calculated theoretically (the 
cross section is normalised to the odd parity state not present on Fig. 3). Cross sec­
tions calculated from the simple Nilsson model, from the Nilsson model with CI 
and that calculated using expression (36) are shown. It is seen that the AN = 2 mixing 
affects substantially the transition intensity and expressively improves the agreement 
between the calculated and experimental results. 

Performed analysis and its application to the experimentally obtained results 
indicates that rather fine effects in nuclear structure can substantially affect nuclear 
reaction cross section. Nevertheless, if accurate models and optimalized parameters 
are used for description of excited states, experimental material can be satisfactorily 
analysed in frame of DWBA theory, although in some cases the computation codes 
have to be modified. 
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