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Effect of the AN = 2 and phonon-phonon interaction on the Coriolis interaction in
deformed nuclei is examined. An attempt is done to explain by the phonon admixture the ob-
served reduction of the Coriolis interaction matrix elements, calculated from Nilsson model.
Effect of change of deformation parameters on nuclear structure is also considered. Obtained
results are applied to the one nucleon transfer reactions and corresponding relations for dif-
ferential cross sections are given. The possibility of exploitation of the standard DWBA codes for
computation is also discussed.

ITpoBomuTcs aHamu3 BIuAHEA AN = 2 1 GOHOH-HOHOHHOrO B3aMMOJMEHCTBHA HA B3aUMOAEH-
creae Kopuonuca. V3BecTHasi penykUusi MaTpUYHBIX 3/1eMeHTOB KB, pacuMTaHHBIX IO MOZIETH
Hunccona, 06ACHAETCA IPACYTCTBHEM (OHOHOBBIX BOJTHOBBIX (GYHKIMH B BOJHOBOM (YHKIIEH BO3-
OyXIEeHHBIX COCTOSIHMYN. BHUMaHMe ynenseTcs Takke H3MEHEHHIO MapaMeTpoB AedopManau sapa
Ha ocHOBe IOJIyYEHHBIX Pe3yJIbTATOB BBHIBOOATCA (GOpPMyJBI Ui NONEPEYHOTO CEYECHHUS peakudi
C MEPEHOCOM OJIHOTO HYKJIOHA B PaMKaxX NPUCTyNa MeTOJa NpHOmkeHHss BOpHA C UCKaXXKEHHBIMH
poitHamu (MUB). B 3akiroyeHne nmoka3bpBaeTCsi BOZMOXHOCTh I€penucaTh GOPMYJIIBI 11 CeYEHHA
peakuud Ha GOpMy, HO3BOJISAIONIYIO BOCIOJIB30BATh ISl YACIEHHBIX PaCUETOB H3BECTHHIE IPOTpPaM-
MBI s MUB.

V préci je zkoumédn vliv AN = 2 a fonon-fononové interakce na Coriolisovu interakci
v deformovanych jiadrech. Ukazuje se moZnost vysvétlit experimentalné pozorovanou redukci
maticovych elementi Coriolisovy interakce, politanych na zédkladé Nilssonova modelu, pomoci
fononovych pfimési ve vinovych funkcich vzbuzenych stavi, p¥i ¢emz je bran také v ivahu mozny
vliv riznych hodnot parametrii deformace jadra. Na zdkladé ziskanych vysledku jsou dale studo-
vany reakce s pfenosem jednoho nukleonu. Jsou odvozeny vztahy pro diferencidlnf G¢inny prifez,
zahrnujici v8echny uvaZované efekty a vychazejici z pfistupu Bornovy aproximace s porusenymi
vlnami (DWBA). Na z4ivér je diskutovdna moznost upravy vztaht do tvar, umoZiiujicich pro
numerické vypodlty vyuZivat standartni DWBA programy.

1. Introduction

In last 15—20 years the direct reactions became the very useful tool for study of
structure of deformed nuclei (e.g. [1, 2]). The’ Distorted Waves Born Approxima-
tion (DWBA) or more realistic Coupled Chanels (CC) methods are usually used
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for analysis of experimental results. Nevertheless, the CC one needs rather leng
computation time and therefore the DWBA theory, for which the computation codes
are prepared [3, 4], is mainly used.

Detail information about the nuclear structure are necessary in both methods.
In the DWBA one the nuclear structure affects first of all the absolute value of dif-
ferential cross sections through the spectroscopic factors (for the one particle
transfer reactions) or through the reduced transition probabilities (for inelastic
scattering of charged particles) [2]. The angular distribution is determined mainly
by the averaged interaction between incident and outgoing light particles and nucleus,
represented usually by the optical potential.

In the first period the spectroscopic factors for one nucleon transfer reactions
on deformed nuclei were calculated from simple unified model with Nilsson potential
[5] (e-g. [6]). Nevertheless, obtained absolute values of cross sections are in bad
agreement with experimental ones [7, 8] and therefore more accurate description for
the nuclear structure was used. It was found that pairing effect [1, 9] and Coriolis
interaction (CI) in deformed nuclei [10] can substantially change intensity of transi-
tions to different members of rotational bands [1, 11], but the CI matrix elements
calculated from the Nilsson model have to be artificially reduced [11, 12, 13]. More
fine structural effects (e.g. phonon admixtures [14, 15] or AN = 2 interaction [16,
17]) complicate substantially the analysis of experimental results by the DWBA
method.

We analysed the structure of deformed nuclei including simultaneously the CI,
AN = 2 and phonon-phonon interactions and partly their competition in dependence
on nuclear deformation. The results were applied to the one nucleon transfer
reactions. In present paper we give the ideas of derivation of basic formulas in spirit
of the DWBA theory. In first part we give scarce analysis of the nuclear structure
including optimalization of the nuclear deformation parameters. The discussion of
the differential cross section for the one nucleon transfer reactions and modification
of general expressions to the form allowing use of the standard DWBA codes is given
in second part.The examples of application of theoretical analysis to the experimental
results-are shown in last part.

2. Structure of Deformed Nuclei

We will assume that the deformed nucleus possess axially symmetric form with
respect to axis 3. The principal moments of inertia, #,, are than #; = 2, = 2 £ 2.
In the unified model the hamiltonian of deformed nucleus can be expressed as [14,
18, 19, 20]

K2 h? 5 h? . .
H=H, + —j+ — 12— = (1, + 1)), 1
i 2g,( J3) g,( +J Jj+) (1)

Here I and j are the operators of total and intrinsic impuls-moment of nucleus
respectively, H;, is the part of hamiltonian describing intrinsic motion (including

12



. surface vibrations) and I+ = I, + il,, j+ = j; % ij,. The last term
h? ,
Heoe = _;‘9‘;(1+]--— +I—J+) (2)

represents the coupling between intrinsic and rotational motion of nucleus (Coriolis
interaction — CI). Neglecting this term the wave function of the nuclear states can
be written [14, 18, 19, 20]:

Y(IMKQ) = (E%%ﬁ)m [23x(%) 20 + (1) *D4 k(8 x-2]  (3)

where 9{“(9,‘) are the Wigner functions depending on Euler angles and describing
the rotation of intrinsic coordinate system 1, 2, 3 joined with nucleus with respect
to external one (x, ¥,2), M = I, K = I,. xq is the wave function of intrinsic nuclear
motion with projection j; = Q (for axially symmetric nucleus Q = j, = I, = K).

2.1. Intrinsic States of Deformed Nucleus

It is convenient to separate H, into three parts [14, 20, 21]
Hin = Hav + Hp + HQ (4)

H,, represents motion of individual nucleons in averaged field of nuclear forces.
Corresponding deformed potential can be expressed through the nuclear sourface
which can be for axially symmetric nucleus written as [14]

R(S, ¢) = Ro[1 + %20 Y20(9 @) + %aoYao(9: @) = )
= Ro .f(azo, (X40, !9, (p) .

Here R, = r,A'/3 is average radius of nucleus, 9 and ¢ are polar angles related to
the intrinsic coordinate system, Y,o(9, ¢) and Y,q(9, @) are spherical functions.
ay0 and oy, are parameters of quadrupole and hexadecapolare deformation of
nucleus respectively.

The most often used potentials are that of corrected axially symmetric deformed
ocillator with I — s interaction included (the expanded Nilsson potential) [5, 22, 23]

V(r, 9, 0) = — 2 4 B2 (——’—)2 + C(ls) + D(I2 - <I1%) (6)
M 2 \f(oz20, 240, 9, @)
or the Saxon-Woods deformed potential [24]
Vs-w = V(", A0 Aa0s 95 @) + Vls(r’ %20, %40, I, @)
~V,
1 + exp {¢[r — Rof(%20, a0, 9, 0)]}
Vi(r, %20, %40, 8> @) = —{[p x s] grad V(r, az0, 240, 9, 0) -

()

V(", %205 %405 %> ‘P) =
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In (6) and (7) p, ! and s are impuls, orbital moment and spin of nucleon respectively,
w, is oscillator frequency, C, D, V,, £ and { are numerical parameters of potentials.
If the single proton states are calculated, the Coulomb potential in form [14]

4 R3
: {1 + exp {é[r, - ROf(aZO’ %405 ‘9’ (P)]} (8)

is added to Eq. (6) or (7).

The single particle wave functions, |<pg> (Q K) can be expressed as a super-
position of wave functions |NIJQ>, the solutions of the Schrédinger equation for
spherical part of the potential [5, 14, 20]

[0a> = 3 Cuii(2) [N1i€2) ©)

-1 d3r
Vc(ra %205 %405 3 ¢) )I |r ; |

N is the principal quantum number, Cy,;(R) are coefficients depending on the form
of potential and on nuclear deformation. Only the states of given parity are included
in (9).

Usually only one N-shell is included in (9), but in some, rather special cases, few
values of N have to be considered what is interpreted as the AN = 2 interaction.
(The interaction is important for some N = 4 and 6 even parity and N = 3,5and 7
odd parity states in rare-earth deformed nuclei — e.g. [14, 16, 17, 25]).

The nucleons in single particle states interact through residual interaction not.
included in average nuclear field. The short-range part, assigned in (4) as H,, can
be interpreted as pairing force [14, 26, 27]. Using formalism of second quantization,
the particle system can be transformed to the quasiparticle one by canonical trans-
formation [14, 20, 21]

af = U + tVa,_,
a,, = Uga,_, + tV,a;, (10)

Here a;, and a, are the particle creation and annihilation operators, o), and «,
are the corresponding operators for creation and annihilation of quasiparticles. As
the vacuum function for the quasiparticles is used the correlated function ¥, [14,
26] of even-even nucleus which originates from odd nucleus in mind after removing
the odd nucleon (proton for odd-Z and neutron for odd-N nucleus). Index “s”
denotes all quantum numbers of the state related to definite type of nucleon, 7 = +1
is connected with time reflection. The numbers U, and V, are the amplitudes of pro-
bability for the state s in even-even nucleus to be vacant or occupied by pair of
protons or neutrons respectively, so that U2 + V2 = 1.

The transformation (10) made it possible to consider system of independent
quasiparticles instead of system particles interacting through short-range (pairing).
forces.
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The long-range residual interaction (Hq in (4)) leads to correlated motion of
many nucleons interpreted as surface vibration of nucleus. Corresponding potential
is usually taken in form [14]

Vo = V(|ri — r) + V(|ri — r) 010, (11)

where r;, r, are radius vectors and ¢, and o, represent spins of interacting nucleons.
Expanding potential (11) into multipol and spin-multipol series it can be shown
[14, 20] that only the lowest multipoles are important. Therefore the interaction is
usually interpreted as multipol-multipol one.

It is possible to construct the quantum of vibrational motion with boson pro-
perties (“phonon”) and corresponding operators Q;’“ and Q,,, creating and annihilat-
ting the phonon with angular momentum A, parity (—1)* and projection p of the
momentum onto nuclear symmetry axis (13 = p). As a vacuum state for phonon
operators is again taken the ground state function ¥, of the neighbour even-even
nucleus. '

The intrinsic state of odd nucleus with projection K of angular momentum onto
symmetry axis and parity 7 can be interpreted as superposition of the quasiparticle
and phonon states with K = lKo + ,ul, where K, = j; is projection of the particle
impulsmoment. After rather complicated calculations not given here (see e.g. Ref.
[14]) the intrinsic part of wave function (3) for odd axially symmetric deformed
nucleus can be written as (see Eq. (9.41) in Ref. [14])

Xa = X(K" 07) = Cologe + X ¥ Dii™o” Qi (Au)} %o - (12)

Api s

Here ¢ and 7 are the quantum numbers of quasiparticle state (for the odd proton or
neutron system), C; and D;;‘,’“ are normalization coefficients, which can be deter-
mined, together with corresponding intrinsic energy & (¢) by minimalizing average
value of hamiltonian H,, (Eq. (4)) in state (12). The value of (C} . D}4")? is the pro-

bability of the phonon-quasiparticle admixture o, Q" (An) ¥, in total intrinsic wave
function x.(K", 0).

2.2. The Coriolis Interaction
If the term Hc, is neglected in (1), the rotational motion of the nucleus as
whole relative to the external coordinate system gives arise to the rotational bands
built on each of intrinsic states y(K", ¢). The energy of different members of the
band corresponding to the wave function (3) is then given by formula [10, 14, 19]
h? . x
E(I,K) = ex(o) + 7 (K™, @) |72] xa(K™, @)Y +
h2
Ly {[I(1 + 1) — 2K*] + a(=1)"Y2(I + 1/2) 6k 4,2} (13)

where a, is the decoupling parameter.
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From the properties of operators I, and j, follows that the total hamiltonian
(1) including Hg,, is not diagonalized by function (3) if K > 1/2. The nondiagonal
matrix elements are [10]
12
CHIMK + 1) |Heo| ¥(IMK)) = % AU = K)(I+ K + D2 (14)
with
Ag = K™ @) ]J-| (K + 17, @) (15)

For the K = 1/2 states the CI matrix elements are diagonal with respect to function
(3) and are usually included in E(I, K) (last term in (13)).

Presence of He,, in (1) leeds to the mixing of the states (3) and resulting wave
function can be written as

P(IMK) = ¥ ai ¥(IMK) (16)

where summation includes all states for which CI is considered. Corresponding
energy and coefficients ak’ can be obtained by diagonalization of hamiltonian (1).
Matrix elements Ag (15) are calculated from nuclear intrinsic structure. Generally
it is assumed that intrinsic state is pure quasiparticle one [11, 12, 20, 28], but the
obtained matrix elements Ay are too high and have to be artificially reduced by
“attenuation factor” fyg, so that matrix element (15) can be written in form

AK = <qIO| aqtj— I a:’r IqI0> Nkk+1 =
= (UU, + V) ; Crif(Ke) Cuif(K + 1) [J = K) (j + K + )] ngsy (17)
J

All symbols have the same meaning as before.

We have done attempt to explain the reduction of CI by presence of the phonon
admixtures in the intrinsic wave function y,(K*, ¢) (Eq. (12)).

For matrix elements of the operators j, between single particle states hold the
symmetry relations [14]

<T00| aqtj+a;:tl'}’00> = <QT|]'+IQ'T> =
= —<e'—Tijie = = =<e—1liife - (18)

Here ¥, is the particle vacuum function defined by relation a0,|'l’oo> = 0. Opera-
tors j4 can be expressed through creation and annihilation particle operators as

Jo = EX iy atae (19)
vt v't’
After transformation (10) to quasiparticle operators and rearrangement we obtain
for j, the relation

.}+ —ZZ(VT|]+|V,T’> [U UV v— t v =1’ + TVU uvtavt +

vtv't’

+ UV, al_al. + tt'V,V, a0k (20)
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which can be directly used for evaluation of matrix elements Ag (Eq. (15)). In the
Random phase approximation (RPA) [14] the phonon operators Q,, commute
with the quasiparticle operators «,,. Assuming that Q,, and «,, affect on the same
vacuum function ¥, the application of commutation relations for quasiparticles
and symmetry relations (18) leed to following expression for Ag:

Ag = (K™ )|+ [1aAK'e™, @'7') = C3Cy-
[ M<et|isleTy + ¥ Y My DD Cst]js | s'2)] - (21)
Api ss’
Here symbol M,,. = U,U,. + V,¥,. is used. Similar expression can be obtained for
matrix elements of j_ operator.

Selection rules for matrix elements (vr| jilv’t’) indicate that in (21) are nonzero
only that matrix elements for which K, = K. + 1.

The attenuation factor ngg., can be now obtained, in agreement with Eq. (17)
by division the Ay calculated from (21) by the value A} calculated from the pure

Table 1. Theoretical and experimental values of 7g g 4, in 161py

K[Nn3A] K'[N'n3A’] APDn | ADsw Ak TRx1 | NERx1
1/2 [5301®) 1/2 [530]®) 0.800 0.659 0.127 0.190 0.125
1/2 [521] 1/2 [5301%) 1.020 1.016 0950 | 0935 | 0.280%
3/2 [521] 1/2 [5301% 3.476 3.287 0447 | 0147 | 0310
3/2 [521] 1/2 [521] —0.356 —0.425 —0.349 0.794 0.720
3/2 [532] 1/2 [521) 1.500 1.420 0.943 0.630 0.750
5/2 [512]) 3/2 [521] 2.803 2.780 2.100 0.755 0.840
5/2 [512] 3/2 [532] 0.105 0.110 0.285 2.700 0.700°)
5/2 [523] 3/2 [521] 0.836 0.600 0.393 0.700 0.800
5/2 [523] 3/2 [532] 2.350 2.400 2.230 0.950 0.830
1/2 [521] 1/2 [521] 0.650 0.484 0.390 0.600 0.640
3/2 [651] 1/2 [660] 6.046 6.395 4.830 0.770 0.720
3/2 [651] 1/2 [400] —0.984 —0.775 —0.300 0.400 0.540
5/2 [642] 3/2 [651] 5.496 5.670 4.870 0.800 0.700 .
5/2 [642] 3/2 [402] 0.420 0.470 0.220 0.470 0.700
7/2 [633] 5/2 [642] 5.490 5.630 5.330 0.950 0.750
7/2 [404] 5/2 [642] —0.017 —0.054 0.001 0.015 9
1/2 [660] 1/2 [660] —5.594 —5.500 —4.900 0.750 0.640
1/2 [400] 1/2 [400] —0.380 —0.176 —0.136 0.770 0.440

2) The states are close to the vibrational ones.
®) The extremally big difference between ¥+, and 7P, , is not clear,

©) Because intensity of CI is low the energy of mixed states is weakly affected and q%’}?i 1 is
uncertain or cannot be extracted at all.
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quasiparticle functions:

o _ Ax _ <l(KG 07)] | (K, £ 17 0'T)) -
Nkk+1 = 5 = - ¥ ( )
AK <g10' aor,.]:tl aq’t'lql0>

The calculated values of 7gk, ; for some rare-earth odd deformed isotopes were
compared with the values obtained by optimalization of the CI matrix elements to
experimentally observed energies of rotational bands. The results for the '®'Dy
isotope are shown in Table 1.In first two columns the states |Q> and |g’> are given
in asymptotic notation. In next three columns are the CI matrix elements (AQ)N,
(A,‘é)Sw and Ay calculated from Nilsson model, from model with deformed Saxon-
Woods potential and from Eq. (21) respectively. The values of gk, presented in
next column are that, obtained from Saxon-Woods potential (usually they are not
remarcably different from values calculated from Nilsson model). The values of
ned. 1, given in last column, were calculated from experimental energies taken from
Ref. [29].

A
RS SN AN N NN
\\\\\;\&\\\\\
5 N N ANERNEAN N\
NS AN NN AN
N AN
4\\\\ N
SNINY \\ AN
N N 5
1& \\ X
\w% \\ \\‘\ / 4
JINERNEN 3
002N N 2
00
004\ 1
00
029 03 031 032 033 034 <,
oK
40

Fig. 1. Dependence of the CI matrix element {3/2 [651]|,|1/2 [660]> on nuclear deformation
(Overtaken from Ref. [30])
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2.3. Deformation Parameters

According to relations (17) and (21) the CI matrix elements A depend on the
nuclear deformation only through the coefficients Cy;(R) of progress (9). It might
be shown that the dependence is weak if only one value of principal quantum number,
N, is substantial in (9) Nevertheless, in some rare earth isotopes the AN = 2 inter-
action become very important [16, 17, 25] and the dependence of the C-coefficients
on deformation can be substantial. Performed analysis indicates [30] that in such
cases also the CI matrix elements become strongly dependent on nuclear form in
narrow region of deformation parameters. This evident from Fig. 1 overtaken from
Ref. [30] on which the matrix elements between states close to the 3/2 + [651] and
1/2 + [660] quasiparticle states are given as a function of a,, and a4, parameters.

Strong dependence of the CI matrix elements on nuclear form indicates that for
accurate theoretical model calculations a good knowledge of the deformation para-
meters is inevitably needed. The values of the quadrupole deformation parameter a5,
can be determined with a good accuracy from the ground state electric quadrupole
moment of nucleus, known with sufficient accuracy for many isotopes (e.g. [14, 31]).

The values of the hexadecapolare deformation parameéter &,, are much less
certain. Therefore we have tried to determine the parameter from experimentally
known energies of low-lying levels in some rare-earth odd neutron nuclei. Using the
experimental energies from survey papers [32] and [33], corresponding quasiparticle
energies, &x(0), were extracted. For the isotopes, in which many excited states are
known the CI was taken into account in this procedure while in other cases the
quasiparticle energy was established by using Eq. (13). The single particle energies,
corresponding to extracted quasiparticle ones, were then compared with the values,
obtained for different hexadecapolar deformation by solution of the Schrodinger
equation with the Nilsson potential (6). The values of a4, for which the best agree-
ment between calculated and experimental energies was achieved, were taken as
corresponding to the nuclear hexadecapolar deformation.

The isotopes '53Sm, '°°Gd, '57Gd, '*!'Dy, 3Dy, '$"Er and !7'Yb were
analysed by this manner. As an example the dependence of difference between cal-
culated and experimental single particle energies on a,, in the 137Gd isotope is shown
on Fig. 2, from which the optimal value of ay, = 0.065 can be extracted. (The
states 1/2 — [530] and 3/2 — [523], for which the analysis is bad, are known to be
of complex structure with substantial phonon admixture [25]). The results for all

Table 2. Parameters of hexadecapolar deformation for some rareearth defdrmed nuclei

Nucleus 153Sm 155Gd 157Gd 161Dy 163Dy ].67Er 171Yb

%40 0.080 0.065 0.065 0.045 0.040 0.020 0.00
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examined isotopes are collected in Table 2. Obtained values are in good agreement
with parameters calculated theoretically by Solovjev [14].

L 1 1 T T T T

'(’)%:

1
600f 7~ [530] 2

3
i ~-[521]

__/5[52 -

H
o
o

N
o
o

Ag = 6P~ el [Kev]

i +642 .

o /3400 =

j %{4021
200} ]

T

- 505] :
-400

T
1

' -

-600

3-[523] -

1 1 1 1 1 1 1

0 002 004 0,06 008
%40

Fig. 2. Dependence of differences between calculated and experimental single particle energies
on parameter a4,
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The use of the values of the parameter a,, extracted from excitation energies
made it possible substantially improve agreement between calculated and observed
energy spectra of deformed rare-earth nuclei. It replaces in some extent artificial
shifting of principal shells necessary in the Nilsson model calculations [14].

3. Nuclear Direct Reaction Cross Section

As was shown in [2] the nuclear structure is closely connected with direct
nuclear reactions, the states close to the quasiparticle ones being excited mainly in
the one nucleon stripping and pick-up processes. If the DWBA theory is used for
description of the reaction, the differential cross section for reaction on even-even
nucleus is usually taken in the form [2]

dofs)

5 = N-Sy-0u9) (23)

where N is normalisation factor, 6,(9) is the one particle cross section calculated
in the DWBA theory and S;; is the spectroscopic factor in which all information
about nuclear structure is included. Nevertheless, the simple expression (23) must
be replaced by more complicate one if different N-shell have to be considered
simultaneously.

In the present work we have taken into account, in addition to the pairing effect
and CI, the AN = 2 interaction in deformed odd isotopes and its influence onto
reaction cross section is examined. We show briefly derivation of corresponding
expressions keeping the spirit of the DWBA theory. Because the methods for the
stripping and pick-up reactions are similar, we limit ourselves to the one nucleon
stripping reaction while the resulting expressions for the pick-up process are given.

3.1. General Formulas

In the first order Born approximation the differential cross section for reaction
a+ A->B+bis[26,34]

da,g Hatty (kg 2
ap . _Fabs ()T, 24
de  (2nh?)? \k, 7ol (24)

where p,, 15 are the reduced masses in incident («) and outgoing () chanels of reac-
tion respectively, k,, k; are corresponding impulses.

In the DWBA theory the matrix element T, can be expressed in form [2]
y J' d’r, .[ d3rgxy (kg rg) <bB|V| aA) 3V (k,, 1, (25)
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where x{*) and x{™ are the distorted waves describing relative motion of particles
in incident and outgoing chanels respectively and £ is transformation Jacobian. The
matrix element (bB]V| aA) represents the transition between states of the nuclei
in both chanels and can be rewritten as

(bBlVI aA) = <IBMnSbmb|VI 1M s,m,> (26)

where in both chanels I and s are the spins of nucleus and light particle respectively,
M and m are their projections onto quantum axis.

If we assume that in the stripping reaction the transfered particle x is captured
by the target nucleus A we get, after some rearrangement, for the matrix element:

UgMysymy| V|[[,Ms,m,> = ;; (IsMpjMy — M, | IgMy) .
J
. J‘q)?v‘}J{A—MA(rxA’ ax) ¢sbmb(ab) V(rbx) q’s.m.(rbxa Obs ax) dab dax . (27)

(IsM,jMg — M, | IsMy) are the Clebsch-Gordon coefficients, V(ry,) is the inter-
action potential responsible for transition, @, (0,); ¥sum.(Foxs Tbs 0x) are the wave
functions of light particles and o, o, are intrinsic coordinates of particles b and
transfered particle x respectively.

The function @332, - m.(Fxa> 0x) represents the singleparticle state in which the
transfered nucleon x is captured. It depends on the model used for description of
nuclear structure and is in the DWBA theory usually expressed over the single
particle wave functions @y, -mA(Fras 0x) O the spherically symmetric part of the
average nuclear potential. The model effects are concentrated to the spectroscopic

amplitude S}; so that the function @3iA —a,(Fxas 0) can be expressed as

I 1/2
‘PaN'}jflg—MA("xAs U'x) = SN/lj . (pNIjMB—MA(rxA’ Ux) (28)
The differential cross section for the one nucleon stripping reaction on even-even
target nucleus can be obtained by the same method as in the classical DWBA theory.
But, if we consider the AN = 2 interaction, we have to include different N-shells and
the cross section in the zero-range approximation is given by formula

1
(21 + 1)1z’ @)

2
Dz} .

Here R(r) and Y(9, ¢) are the radial and angular parts of the function (28) and D is
numerical constant.

d_a'=2IB+1Z Halhp ﬁ,z
dQ 20, + 1% |(2nh?)* k, 'm

SR 15 B R0) Yol ) ) 0

Similar expression can be derived for the one nucleon pick-up reaction, in which
the transferred nucleon, x, is assumed to be extracted from the target nucleus A.
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It is seen form (29) that if different N-shells are simultaneously considered the
cross section cannot be written simply as a product of the structural part and part
describing relative motion as it is in the clasical DWBA theory (Eq. (23)). With
respect to structure of (29) the described theory represents intermedial state between
the DWBA and CC methods.

3.2. The Spectroscopic Factors with the AN = 2 Interaction

The spectroscopic amplitude defined by Eq. (28) can be written in the following
form [2]:

SNG = ; (IAMAjMy — M, | IgMy) CP(ILAM WK ) @nijeg -ma| PIsMsKz)>  (30)
A

where P(I,M,K,) and P(IgMgKy) are the wave functions of target and residual
nucleus respectively, including the CI (see Eq. 16)).

Further we assume that the wave function of deformed nucleus is given by Eq.
(3) and that the ground state of the target even-even nucleus is not affected by the CL
Using the symmetry properties of Clebsch-Gordon coefficients and Wigner functions
[35] after some rearrangement can be the spectroscopic amplitude written in the form

1/2 _ 1 IsKp .
Nij [2(2IB + 1)]1/2 ) KB
. {(TOA(/’NUKBI Aks) + <XOA(lej—Kg| X—x.,'> (_I)IBH(B} 51‘13 . (31)

Here ¥, is the wave function of quasiparticle vacuum (ground state wave function
of nucleus A) and y, is the quasiparticle part of the intrinsic wave function (12).
Using the Nilsson model or model with Saxon-Woods potential for description of the
nucleus and the properties of creation and annihilation operators (10) [35] the final

form of Sy}j is:

2 /
U0 = Ty D & S Ure Ol ) &
B B

By the same method the expression for the one nucleon pick-up process on even-
even deformed target nucleus is obtained in the form

(S¥ii)p-u = (9" X 8" Via Cis(K) dj1a (33)

In (32) and (33) the symbols a;%, Uy, Vi and Cy;;(K) have the same meaning as in
section 2.1.

3.3. Approximate formulas

If the general formula (29) for differential cross section is used, the standard
DWBA computation codes cannot be applied to the numerical calculations because
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the terms with mixed m-values cannot be evaluated. Nevertheless, if the mixed terms
in (29) may be neglected the expression can be replaced by approximate relation

do 21B +1 12 12/ q\12
—_ S 9 34
do ZIA + 12][2 NIj O NU( )] ( )

with

Ilv/IZ( ) = _Halp Eg
! (2nh%)? k,

For the pick-up reaction the approximate relation is:

do 2s 1
(§0)._ = o] DTS O )
with (S¥),-u given by Eq. (33).

The formulas (34) and (35) are similar to that used in Ref. [16, 17].

The validity of approximate relations can be expected for small values of transfer-
red angular momentum, I, [36]. In other cases in which the AN = 2 interaction is
substantial the more detail analysis has to be done before the approximate relations
(34) and (35) are used for calculation of the differential cross sections.
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Fig. 3. The relative cross section for excitation of some even parity states in 161py by the
1621yy(d, t)1 %! Dy reaction
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3.4. Comparison with experiment

Theoretical considerations presented in the paper were applicated to the analysis
of experimentally studied (d, p) and (d, t) reactions on rare-earth deformed isotopes.
As an example the analysis of excitation of some even parity states in '®'Dy by the
162Dy(d, t) '®'Dy reaction is presented on Fig. 3. The experimental relative cross
sections, taken from Ref. [29], are compared with that calculated theoretically (the
cross section is normalised to the odd parity state not present on Fig. 3). Cross sec-
tions calculated from the simple Nilsson model, from the Nilsson model with CI
and that calculated using expression (36) are shown. It is seen that the AN = 2 mixing
affects substantially the transition intensity and expressively improves the agreement
between the calculated and experimental results.

Performed analysis and its application to the experimenially obtained results
indicates that rather fine effects in nuclear structure can substantially affect nuclear
reaction cross section. Nevertheless, if accurate models and optimalized parameters
are used for description of excited states, experimental material can be satisfactorily
analysed in frame of DWBA theory, although in some cases the computation codes
have to be modified.
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