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Еуегу 8гоир01(1 соп1атт§ а гего е1етеп* 18 18отогрЫс 1о а Гас1ог8Гоиро1(1 оГ а зиосЛгесИу 
1Ггедис1Ые §гоирО!с1. 

ЕСЛИ группоид О является факторгруппоидом подпрямо нерозложимого группоида, то 
пересечение всех идеалов в С непусто. Наоборот, всякий группоид с нулем изоморфен такому 
факторгруппоиду. 

Кагсгу вгироШ 8 п и ^ у т ргVкет е̂ 12отоггш .Гак^о^оVети «дгироЫи пфакёпо 8иЪсНгек1п6 
пегог1о211е1пёЬо ^гироЫи. 

1. Ideals 

Let G be a groupoid. We put MN = {xy | x e M, y e N} for any subsets M 
and N of G. A non-empty subset / of G is said to be an ideal of G if GI £ J and 
IG e j . We denote by 1(G) the set of all ideals of G. This set is not empty, since G 
is an ideal of G. Farther, we put Int (G) = (]I9Ie 1(G). 

l . i Proposition. Let G be a groupoid. Then: 
(i) The intersection of a system of ideals of G is either empty or an ideal, 

(ii) If Int(G) is non-empty then it is the smallest ideal of G. 
(iii) The union of a non-empty system of ideals is an ideal, 
(iv) If I, J are ideals of G then IJ ^ I n J and I n J is an ideal, 
(v) The intersection of a finite non-empty system of ideals of G is an ideal, 

(vi) 1(G) is a distributive lattice with respect to inclusion of ideals. Moreover, if 
Int(G) is non-empty then 1(G) is a complete lattice, 

(vii) Any subset of G containing GG is an ideal of G. 

Proof. Easy. 

An element 0 of a groupoid G is said to be a zero element if Ox = 0 = xO for 
every x e G. Obviously, G contains at most one zero element. 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 
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1.2 Lemma. Let G be a groupoid, Oe G and I = {0}. Then I is an ideal of G 
iff 0 is a zero element of G. In this case, / = Int(G). 

Proof. Obvious. 

1.3 Lemma. Let / be an ideal of a groupoid G. Put r = (I x I) u idG. Then r 
is a congruence of G and I/r is a zero element of the groupoid G\r. 

Proof. Easy. 

1.4 Lemma. Let / be a homomorphism of a groupoid G onto a groupoid H. 
Then/(Int(G)) c Int(H). Moreover, if Int(G) is non-empty, then /(Int(G)) = Int(H). 

Proof. Easy. 

2. Subdirectly Irreducible Groupoids 

2.1 Proposition. Let G be a subdirectly irreducible groupoid. Then Int(G) is 
non-empty. 

Proof. We can assume that G is non-trivial. Let s be the smallest non-trivial 
congruence of G. There are a, beG such that a + t and (a, b) e s. Let J be an ideal 
of G. Consider the congruence r defined in 1.3. If r =t= idG then s ^ r, (a,b)er 
and a, be I. Suppose r = idG. Then I = {0} is a one-element set, 0 is a zero element 
of G and Int(G) = I by 1.2. Thus we can assume that G contains no zero element. 
Then a e Int(G). 

2.2 Corollary. Let G be a homomorphic image of a subdirectly irreducible 
groupoid. Then Int(G) is non-empty. 

Let G be a subdirectly irreducible groupoid. If G is non-trivial then we denote 
by 5G the least non-trivial congruence of G. If G is trivial then we put sG = idG. 

A groupoid G is said to be faithful if a = b, whenever a, be G and either ax = bx 
for every x or xa = xb for every xeG. 

2.3 Proposition. Let G be a groupoid containing a zero element. Then there 
exists a faithful subdirectly irreducible groupoid H such that G is isomorphic to HjsH. 

Proof. We can assume that G is non-trivial. Let 0 be the zero element of G and 
K = G\{0} . One may see easily that there exists a groupoid Lwith the following 
properties: Lis simple, Lis faithful, Lcontains at least three elements, Ln G = 0, 
there is an injective mapping/: K x K -> Land there are elements a,be Lsuch that 
a + b and a 4= cc # b for every celmf. (For example, we can take a sufficiently 
large simple idempotent commutative groupoid.) Put H = K u L and define a partial 
operation * on H as follows: x * y = x>> if x, y e K and xy e K; x * y = a if x, y e K 
and xy = 0; x */(x, y) = a = / (x , y) * x and j> */(x, >>) = b = / (x , y) * y if 
x j e X and x 4= y; x * y = xy if x, y e L. It is easy to check that this partial opera
tion can be extended to a complete operation * defined on H and satisfying the fol
lowing conditions: 
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(i) x * y e L, y * x e L for all x e H and y e L. 
(ii) x * j > 4 = y * y 4 = y * x for all x e K and y e L. 

Now, put s = (L x L) u idH. Since L is an ideal, s is a congruence of H(*). Moreover, 
s 4= idH and H(*)js is isomorphic to G. Let r 4= idH be a congruence of H(*). We are 
going to show that s ^ r. There are c,deH such that c =(= d and (c, d) e r. The fol
lowing cases can arise: 

(1) c, de L. Then r | L 4= idL, L x L^ r and s ^ r, since L is simple. 

(2) ceK, de L. Then (c * d, d * d) e r, c * d, d * d e L and c* d ^ d* d. Now, we 
can proceed similarly as in (1). 

(3) c e L, d e K. Dual to (2). 

(4) c,deK. Then a = c *f(c, d), b = d *f(c, d), (a, b)e r and (1) may be applied. 

We have proved that H(*) is subdirectly irreducible. It remains to show that this 
groupoid is faithful. For, let x, ye H, x 4= y. If x, y e K then we have x *f(x, y) 4= 
* y *f(x, y) and f(x, v) * x 4= f(x, y) * y. If x e K, yeL then x*>>4=y*y4= 
4= y * x. Similarly, if x e L, y e K. Finally, if x, y e L then x * u 4= y * u and v * x 4= 
4= v * y for some w, v e L, since L is faithful. 

2.4 Proposition. Let G be a subdirectly irreducible groupoid containing two 
elements a, b such that a 4= b, a = aa and (a, b) e sG. Then there exists a subdirectly 
irreducible groupoid H such that G is isomorphic to H\sH. 

Proof. Let a be an element not belonging to G and H = G u {a}. Define an opera
tion * on H as follows: x * y = xy if x, y e G; x * OL = xa and a * x = ax for every 
a ^ xeG; a * a = a = a * a ; a * a = a. Put s = {(a, a), (a, a)} u idH. It is easy 
to see that s =j= id# is a congruence of H(*) and H(*)ls is isomorphic to G. Now, let 
r =1= idH be a congruence of H(*). There are c,deH with c 4= d and (c, d)e r. We 
can assume that ceG. The following cases can arise: 
(i) d e G. Then r | G 4= idG, (a, b)er and (a, a) 6 r, since a = a*a , a * b = ab, 

(a, ab) e r and (a, ab) e r. 
(ii) d = OL. We can assume that c 4= a. Then (a, a) e r, since ac = a * c, a = a * a, 

(ac, a) e r, ac = a * c, a = a * a, (ac, a) e r. 

2.5 Proposition. Let G be a groupoid satisfying at least one of the following 
conditions: 

(i) G has a zero element. 
(ii) G is subdirectly irreducible and idempotent. 

(iii) G is subdirectly irreducible and there exist a, b e G such that a =J= b and ac = 
= be, ca = cb for every ceG. 

(iv) G is simple and contains at least one idempotent element. 
(v) G is simple and ab = cd for some a, b, c, de G with (a, b) 4= (c, d). 

(vi) G is simple and finite, 
(vii) G is a quasigroup and every congruence of G is either left or right cancellative. 
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(viii) G is a finite quasigroup. 
(ix) G is a group. 

Then there exists a subdirectly irreducible groupoid H such that G is isomorphic to* 
H\sH. 

Proof. See 2.3, 2.4 and [1, Theorem 4.11]. 
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