
Acta Universitatis Carolinae. Mathematica et Physica

Tomáš Kepka
On a class of groupoids

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 22 (1981), No. 1, 29--49

Persistent URL: http://dml.cz/dmlcz/142463

Terms of use:
© Univerzita Karlova v Praze, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/142463
http://project.dml.cz


1981 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 22. NO. 1 

On a Class of Groupoids 

T. KEPKA 

Department of Mathematics, Charles University, Prague*) 

Received 24 January 1980 

For any groupoid G we can define a congruence tG by (a, b) e tG iff ax = bx and xa — xb 
for every x e G. If G is a subdirectly irreducible groupoid with tG =£ idG then there exist two 
elements a, b in G such that a 4- £ and tG = {(a, b), (b, a)} U idG . In the paper, groupoids 
having this property are called primitive and these primitive groupoids are investigated. Special 
attention is paid to regular primitive groupids. 

JXJIK BCHKoro rpynnoHfla G onpeaeJiaeTCH KOHrpyamniii tG Kaic (a, b) e tG, earn ax ~ bx 
YLxa= xb win Bcex xeG.G Ha3biBaeTca npHMHTHBHbiM, earn* B G cymecTByioT flBa aneMeHTa a, b 
TaK, MTO a 4= b H tG — {(a, b), (b, a)} U iG . B CTaTte HccjiczryioTCH npHMHTHBHbie H B HacTHocTH 
peryjiapHbie npHMHTHBHbie rpyrmoflbi. 

V libovolném grupoidu G lze definovat kongruenci tG předpisem (a, b) e tG právě když 
ax — bx a xa = xb pro každé x z G. Je-li G subdirektně nerozložitelný a je-li tG =}= id G , pak v G 
existují dva různé prvky a, b tak, že tG = {(a, b), (b, á)} U id G . Grupoidy s touto vlastností jsou 
v Článku nazývány primitivní a jsou studovány v rozmanitých situacích. Speciální pozornost je 
věnována regulárním primitivním grupoidům. 

1. Preliminaries 

Let G be a groupoid. For a e G, define two transformations La and Ra of G 

by La(x) = ax and Ra(x) = xa. The groupoid G is said to be a left (right) cancellation 

(division) groupoid if the transformations La (Ra) are injective (surjective). 

Let r be a relation on G. Then r is called 

— left stable if (a, b)er implies (ca, cb) e r for every ce G, 

— right stable if (a, b)er implies (ac, be) e r for every c e G, 

— compatible if (ac, bd) e r, provided (a, b)er and (c, d) e r, 

— left cancellative if (ca, cb) e r implies (a, b) e r, 

— right cancellative if (ac, be) e r implies (a, b) e r. 

Moreover, if r is an equivalence (congruence) then Gjr is the corresponding factorset 

(factorgroupoid). 

*) 18600 Praha 8, Sokolovská 83, Czechoslovakia. 
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For any subsets M,N of G, put MN = {x j>|xєM, yєN}. A non-empty 
subset I of G is said to be an ideal if GI ç I and IG c I. 

We denote by G° the opposiţe groupoid, i.e. G° = G(o), where x o y = yx. 
The groupoid G is said to be 

— medial if it satisfies the identity xy . uv = xu . yv, 
— left distributive if it satisfies the identity x . yz = xy . xz, 
— a left unar if it satisfies the identity xy = xz, 
— a Z-groupoid if it is both a left and right unar, 
— injective if the operation of G is an injective mapping. 

Letfbe a mapping of a set M into N. Then kerfis the equivalence on M defined 
by (a, b) є kerf ifff(a) = f(Ь). Let iм designate the identical transformation (rela-
tion) of M and card M the cardinal number corresponding to M. 

2. Some Relations 

Let G be a groupoid. Define a relation pG on G by (a, b)є p iff La = Lb (ie., 
ax = bx for every x є G). The groupoid G is said to be right faithful if p = iG. 
Clearly, every right cancellation groupoid is right faithful. 

2.1 Lemma. (i) pG is a right stable equivalence. 

00 PG = П ker I^, x є G. 
(iii) A block H of pG is a right unar, provided it is a subgroupoid. 

Proof. Obvious. 

For every ordinal 0 = a, define an equivalence p G a as follows: p0 = iG; if 0 ^ a 
then (a, Ь ) є p a + 1 iff (ax, bx)є pa for every x; if 0 < a is limit then pa = (Jpb, 
0 = b < a. It is obvious that pc = pc+í for some ordinal c and we put pGc = pG. 
Moreover, we denote by lp(G) the least ordinal d with p = pd. 

2.2 Lemma. (i) For every ordinal a, pGň is a right stable equivalence and pG a £ 
— PG,Ь» whenever a ^ b. 

(ii) pG is a right stable equivalence. 
(iii) pG = r, provided r is a congruence of G such that G\r is right faithful. 
(iv) If pG is a congruence of G then G/p is right faithful. 
(v) If 0 = n is natural and a,bєG then (a, b) є pGn iff ((ax^) ...) x n = ((bx^)...) x n 

for all xl9..., xn є G. 

Proof. Easy. 

We shall say that G satisfies (Clp) if pн is a congruence of H for eveгy factor H 

ofG. 

2.3 Proposition. G satisfies (Clp), provided at least one of the following condi-
tions holds: 
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(i) G is medial and G = GG. 
(ii) G is a semigroup. 

(iii) G is right distributive. 
(iv) G is commutative. 
(v) G is a right (left) unar. 

Proof. Only (i) is not immediate. It suffices to show that p is left stable. For, 
let a, b,x, y є G and (a, b) є p. Then x = uv for some u, v and we can write ya . x = 
= ya . uv = yu . av = yu . bv = yb . uv = yb . x. 

2.4 Lemma. Let G satisfy (Clp). Then: 

(i) Foг every ordinal number a, pGя is a congruence and pa+ijpa = PG/PЛ-
(ii) pG is a congruence and G/p is right faithful. 

Proof. Easy. 

Now, define an equivalence qG on G by (a, b)e qiiï Ra = Rb. Similarly as for p, 
we introduce the equivalences qGtЯ, qG, the ordinal number lq(G) and the condition 
(Clq). The groupoid G is said to be left faithful if it is both left and right faithful. 
Finally, G is said to satisfy (Cl) if it satisfies both (Clp) and (Clq). 

2.5 Proposition. G satisfies (Cl), provided at least one of the following conditions 
holds: 

(i) G is medial and G = GG. 
(ii) G is a semigroup. 

(iii) G is distributive. 
(iv) G is commutative. 
(v) G is a right (left) unar. 

Proof. Apply 2.3. 

Put tG = pG n qG . G is said to be semifaithful if t = iG. 

2.6 Lemma. (i) Every equivalence contained in tG is a congгuence of G. 

(ii) tG is a congruence. 
(iii) If a block of tG is a subgroupoid then it is a Z-groupoid. 

Proof. Easy. 

For every ordinal a, define tGя as follows: t0 = iG; if 0 ^ a then (a, b)є tя+í 

iff (xa, xb), (ax, bx) є tя for every x; if 0 < a is limit then tӣ = \Jtъ, 0 £. b < a. 
Put 1(G) = c and ЇG = tc, where c is the least ordinal with tc = tc+í. 

2.7 Lemma. (i) For every ordinal a, tG>a is a congruence, íGja £ pG>a n qGя 

and tя+íjtя = řG/řa. 

(ii) tG is the least congruence of G such that the corresponding factor is semifaithfuL 
Moreover, tG Ç pG n qG. 

Proof. Easy. 
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2.8 Lemma. Let G satisfy (Cl). Then: 

(i) For all natural numbers 0 = n, m with 1 = n + m, pn n qm ç= tn + „,_!• 
(ii) pQ n qQ = tQ, where o is the ŕìrst infinite oгdinal. 

(iii) If lp(G), lq(G) = o then 1(G) = o. 
(iv) tG = pG n qG. 

Pгoof. (i) By induction on (n, m). If either n = 0 or m = 0 then there is nothing 

to prove. Let 1 ^ n, m and a,beG, (a, b)e pnn qm. We have (ax, bx) e pn. ^ n qm 

for every x, and so (ax, bx) e řn+m_2. Similarly, (xa, xb) e ín + m-2. 
(ii) and (iii). These assertions follow from (i). 

(iv) One can show easily by induction on (a, b) that pa n qb _= ľ. 

2.9 Example. Consider the following groupoid G : G = {a, b, c}, aa = ba = b, 
ab = ac = bb = bc = cb = cc = c, ca = a. It is easy to see that p = {(a,b), 
(b, a)} u i, q = {(b, c), (c, b)} u i, q = q, p = G x G, t = i = t. Moreover, t0 = 
= ï + pnq = q, ì(G) = 0, lq(G) = 1, lp(G) = 2 and p, q are not congruences. 

2.10 Lemma. Let / be a homomorphism of G onto a groupoid Я. 

(i) For every ordinal a,/(/?G,a) _= Pя,a,/(aG,a) <= gя,a and/(tG > a) _= řя,a. 

(ü) ĄPG) = Þн, f( G) = qн and f(tG) _= tн. 
(iii) Let p G a _= ker/for some ordinal a. Then/(pG a + b) я pHtЪ for every ordinal b. 
(iv) Let řG a _= ker/ for some ordinal a. Then/( t G a + b ) _= řя b for every ordinal b. 
(v) Let ker/ _= pGa for some ordinal a. Then/~ l(pн b) ç= PG,a + b for every ordinal b. 

(vi) Let ker/ _= řGa for some ordinal a. Then/ _ 1 ( t я b) ç: řG,a+b for every ordinal b. 

Proof. Easy. 

2.11 Lemma. Let/ be a homomorþhism of G onto Я. 

(i) If ker/ _= pG then f(pG) = pн and lp(Я) = lp(G). 

(ii) If ker/ _= ľG then/(řG) = ľя and 1(Я) = 1(G). 

Proof. Use 2.10. 

2.12 Lemma. Let Я be a subgroupoid of G. Then pGaL | Я _= p Я a , qGa | Я _= 
_= gЯjЭ and řG a | Я _= řЯ a for every ordinal a. Moreover, pG | Я _= pя, ҘG | Я ç= Ҙя 

and tG\H = tн. 

Proof. Easy. 

2.13 Lemma. Let Я be a semifaithful subgroupoid of G. Then Я is isomorphic 
to a subgroupoid of G/ľ. 

Proof. This follows from 2.12. 

2.14 Lemma. Let G{, i є I, be a non-empty system of groupoids. Put G = J]GІ-

(i) If 0 _; n is natural and a{, bx є Gь (a{, b) e pGitП, then ((a), (b)) e pGtП. 

(ii) If lp(Gi) _̂  n for every i є I and some natural n, then lp(G) _f= n. 
(iii) tGfП = Y\tGltП for every natural n. 
(iv) If 1(GІ) = n for eveгy i є I and some natural n, then 1(G) = n. 
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(v) Suppose that the index set I is finite. Then pGл = П-̂ Gi.a a n d řG,a = Пř<?i.» 
foг every oгdinal a. 

(vi) Suppose that I is finite. Then lp(G) = max lp(Gi) and 1(G) = max 1(GІ). 

Proof. Easy. 

2.15 Lemma. (i) G is right faithful (faithful, seщifaitbful) iff lp(G) = 0 (lp(G) = 
= 0 = lq(G), 1(G) = 0). 

(ii) The class of right faithful (faithful, semifaithful) groupoids is closed under sub-

diгect products. 

Pгoof. Use 2.14. 

2.16 Lemma. Let r be a congruence of G such that r n tG = iG. Then r n 7G = 

= ІG-

Proof. Suppose, on the contrary, that r n tG Ф i. Then there is an ordinal a 
which is the least with r n ta Ф i. Obviously, a is not Hmit. Fдrther, there are x,yeG 
such that x ф y and (x, y)etar\ r. Then, (xz, yz) є í a . д r\r and (zx, zy^et^.^nr 
for eveгy z. Consequently, xz = yz, zx = zy, (x, y) e t, t n r Ф i, a contradiction. 

G is said to be torsion if tG = G x G. 

2.17 Proposition. (i) G is torsion iff no factoг of G is semifaithful. 

(ii) The class of torsion groupoids is closed under subgroupoids, factorgroupoids 

and finite cartesian products. 

Proof. Easy. 

We shall say that G satisfies (C2) if card G = card Gjp = card G\q. 

2.18 Lemma. G satisfies (C2), provided La and Rb are surjective foг some 
a,beG. 

Proof. There is a transformation f oî G with Laf = iG. Put k = gf9 where ø is 
the natural mapping of G onto G\q. Then fc is injective. 

2.19 Lemma. Let G be a division groupoid such that tG is left cancellatiye, 
Then G is a left quasigroup. 

Proof. Let ca = cb. Then (ca, cb) e t, (a, b) e t. There are x, y eG with a = ax9 

b = ay. Then (ax, ay) e t, (x, y) e t and a = ax = ay = b. 

2.20 Example. Let G( + ) be the quasicyclic 2-group. For every 0 ^ n, let An 

be the set of elements of order 2n. Hence A0 = 0, card A0 = 1 and caгd A.n = 2 1 1" 1 

for 1 = n. Farther, let Bn be the set of all elements of order at most 2n. Then Bn is 
a subgroup and card Bn = 2n. Take a{ e Aì9 i = 0, 1, 2 , . . . , such that 2я j + 1 = ŰJ 
for every 0 ^ j . Define a transformation / of G by/(x) = л i + 1, wheгe 0 ^ i is sucћ 
that x e A{. Finally, let a be an element not belonging to G. Put H = G u {a} and 
define a multiplication on Я a s follows: x>/ = 2x + 2y, xa = f(x) = ax and aa = 0 
for all x, y e G. 

2.20.1 Lemma. (i) H is a commutative groupoid and G is a subgroupoid of H. 
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(îi) f(2x) = 2f(x) for every x є G, x Ф 0. 

Proof. Obvious. 

2.20.2 Lemma. The groupoid H is generated by a. 

Proof. Let K be the subgroupoid generated by a and let L = G n K. Clearly,, 
0 є L, f(x) є L and 2x + 2j; є L for all x, ye G. We are going to show by induction 
on n that Bn _= L. For n = 0, Bn = 0 and 0 є L. Now, suppose that 0 f_ n and 
Ðn _= L. We have Бn + 1 = Bn u An + 1. Let a є An and b = 2f2(a). Then b є An + 1. 
Farther, b + 2x = 2f2(a) + 2 x є L for every x є B n . But 2Яn = f?n__, and so 
Cn_! = b + Bn__ _= L. Similarly, ЗЬ + 4x = 2f2(я) + 2(Ь + 2 x ) є L for every 
x є Бn, Cn_2 = Зb + Bn_2 _= L, ..., C0 = (2n -- 1) b + B0 _= L and C__ = 
= { ( 2 n + 1 - 1) b] = {-Ь} _= L. One can see easily that card С__ = 1 = card C0> 

card C! = 2,..., card Cn__ = 2 n " l . Let - 1 ^ i < j = n - 1 and x є C{ n Cr 

We have x = ( 2 n _ i - 1) b + y = 2 n " J - 1) Ь + z, where >>, z є Бj. From this, 
(2n"i - 2 n _ i ) ò є Бj and 0 = 2 j (2 n " j - 211"1) b. But 2 j 2^-^b = 2 n " i + j = 0, since 
n + l ^ n — i + j . Therefore 0 = 2nЬ, a contradiction. We have pгoved that 
C_ n Cj = 0 and consequently card D = 2n, where ö = С ч u С 0 u . . . u Cn-i* 
However, D _= L, I) _= An + 1 and card D = card An + 1. Thus D = An + 1 ç= L and 
Bn + i = Ь-

2.20.3 Proposition. Я is a commutative groupoid generated by one element 
and 1(Я) = 1. G is a subgroupoid of Я, G is torsion and 1(G) = o, wheгe o is the fiгst 
infinite ordinal. 

3. Regulaг Gгoupoids 

A groupoid G is said to be regular if pG = ker K^ and _G = ker Lx for eveгy 
x є G. It is said to be right (left) гegulaг if pG = keг Kx (qG = ker Lx). 

3.1 Lemma. The class of (right) regular groupoids is closed undeг subgroupoids 
and cartesian products. 

Proof. Obvious. 

3.2 Lemma. A groupoid is a (right) cancellation groupoid iffit is (гight) regulaг 
and (right) faithful. 

Pгoof. Obvious. 

3.3 Lemma. Let Я be a subgroupoid of G. 

(i) If G is right regular then pн = pG | Я. 

(ii) If G is regular then tн = tG | Я. 

Proof. Obvious. 

3.4 Lemma. Let r be a right cancellative congruence of G such that r _= pG. 
Then r = pG, lp(G) __ 1 and G is right regular. 

Proof. Easy. 
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3.5 Lemma. Let a division groupoid G possess a cancellative congгuence 
r _= tG. Then G is a quasigroup. 

Proof. By 3.4, G is regular and r = p = q = t. It is enough to show that G is 

faithful. For, let a,beG, (a, b) e q. Then a = ac,b = ad for some c, d, (ac, ad) є q> 

(c, d) є q and a = ac = ad = b. Similarly the rest. 

3.6 Lemma. Let G be a groupoid such that either G oг G/ř is regular. Let r be 
a congruence of G with r ntG = iG. Suppose that a,beG,a + b, (a, b) є r. Then 
at least one of the following assertions holds: 

(i) ax ф bx and xa Ф xb for every x є G. 
(ii) (a, b) є pG and xa Ф xb for every x є G. 

(iii) (я, b) є qG and ax ф Ьx for every x є G. 

Proof. Let ac = bc for some c є G. If G is regular then (a, b) e p. If G\t is 
regular then (ax, bx) etnr, ax = bx for every x and (a, b) e p. But (a, b)er 
and r n t = i. Thus (a, b) £ q and xя ф xb for every x. 

3.7 Proposition. Let G be a regular groupoid such that card GG = n for some 
natural 1 = n. Then card G\t ^ n2. 

Proof. Let bl9 ...,bne G be such that GG _= {bl9..., òn}. For i = 1, .. . , n, 
let Ai = {x | xb! = Ьj. Obviously Ai are blocks of j? and there are no other blocks 
of p. Hence card Gjp = n. Similarly, card G\q = n and card G\t = n2. 

3.8 Corollary. Let G be a semifaithful regular groupoid with card GG _ n 
for some natural n. Then card G = n2. 

3.9 Lemma. Let G be a cancellation groupoid andf, g two tranformations of G. 
Put x * y = f(x) g(y) for all x, yeG. Then: 

(i) G(*) is a regular groupoid. 

(ü) PGO = kerf, qG(џ) = kerg. 
(iii) G(*) satisfies (C2) iff cardf(G) = card G = card g(G). 
(iv) G(*) is a division groupoid, provided G is and f, g are surjective. 

(v) G(*) is commutative, provided G is andf = g. 

Proof. Obvious. 

3.10 Proposition. The following conditions are equivalent: 

(i) G is a regular groupoid satisfying (C2). 
(ii) There exist a cancellation groupoid G(o) and two surjective transformations f, g 

of G such that xy = f(x) o g(y) for all x, y e G. 

Pгoof. (i) implies (ii). There are transformations k, h, f,g of G such that 
(x, kf(x)) e p, (x, hg(x)) є q for every x є G and (k(a), k(b)) e p implies a = b> 
(h(c), h(d)) e q implies c = d for all a, b,c,de G. Put x o y = k(x) h(y). It is easy 
to check that G(o) is a cancellation groupoid and xy = f(x) o g(y) for all x j є G . 
Finally,fk = i = gh. 
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(ii) implies (i). See 3.9. 

3.11 Proposition. The following conditions are equivalent: 

(i) G is a regular division groupoid. 

(ii) There exist a loop G(°) and two surjective transfoгmations f,g oî G such that 
*y = / (*) o g(y) for all x, y. 

Proof. Similar to that of 3.10. 

3.12 Example. Let G( + ) be a vector space with an infinite countable basis 
{au . . . } . Define two endomorphisms / and g of G( + ) bу f(at) = 0, f(a) = ai_!, 
9(<*2) = 0, g(ax) = a2, g(a3) = at, g(a}) = a^x for all 2 ^ i , 4 = j . Clearlу,/and g 
are surjective. Farther, put xy = f(x) + g(y) for all x, y є G. One maу verifу easilу 
that G is a semifaithful regular division groupoid, p= ker /, q = ker g, t = t = 
= ic> P = Po = G x G = qo = Я. - n - 1(G) = 0, lp(G) = o = lq(G), where o is the 
first infinite ordinal. Moreover, p and q are not congruences of G. 

We shall saу that G satisfies (CЗ) (C4), (C4a)) if G/řn is regular for eveгу natural 
0 g n = 1 (0 g n, 1 = n). 

We shall saу that G satisfies (C5) if everу factor of G is regular. 

3.13 Lemma. (i) The class of groupoids satisfуing (CЗ) is closed under sub-
groupoids and cartesian products. 

(ii) The class of groupoids satisfуing (C4) is closed under subgroupoids and caгtesian 
products. 

(iii) The class of groupoids satisfуing (C4a) is closed under cartesian products. 
(iv) The class of groupoids satisfуing (C5) is closed under factors. 
(v) Everу left (right) unar satisfies (C5). 

Proof. Use 2.14. 

3.14 Lemma. Let G/tn be regular for some natural 0 ^ n and let a, b,c,de G. 
(i) If ac = Ъc then (a, b)e pn + í. 

(ii) lf da = db then (a, b)e qn+i. 
(iii) If ac = bc, da = db then (a, b)e tn+í. 

Proof. Easу. 

3.15 Proposition. Let G\t be гegulaг and lp(G), lq(G) g 1. Then G is regulaг 
and G satisfies (CЗ). 

Pгoof. This is an easу consequence of 3.14. 

3.16 Proposition. Let G satisfу (C4a). Then 1(G) = o and G\t is regulaг and 
semifaithful. 

Proof. Let a, bєG, (a, b) є tQ+1. For ceG, (ac, bc) e t0, (ca, cb) e t0, and so 
(ac, bc), (ca, cb) e ta foг some l ^ n . Since G\tn is гegular, (ax, bx), (xa, xb) e tn 

for everу xeG, (a, b)etn + í and (a, b) є tQ. The rest is cleaг. 
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3.17 Lemma. Let G satisfy (C4). Then tHл = tGa | H for every subgroupoid H 
of G and every ordinal a. 

Proof. Easy (use 3.16). 

3.18 Proposition. Let G satisfy (C4) and let H be a subgroupoid of G. Then 
1(Я) = 1(G) = o. 

Proof Apply 3.16 and 3.17. 

3.19 Lemma. Let G be a right regular medial groupoid. Then lp(G) ^ o and pG 

is the least right cancellative congruence of G. Moreover, pG is a congruence and Gjp 
is right regular. 

Proof. First, we show that p is a congгuence. It suffices to prove that p is left 
stable. We have ca . aa = ca . ba = cb . aa for a9b,cє G, (a, b) є p. Since G is 
гight regular, (ca9 cb) є p. Thus p is a congruence. Farther, if a, b, c є G and (ac, bc) є 
є p9 then ax . ca = ac . xa = bc . xa = bx . ca, and so (ax, Ьx) є p for every x є G. 
Thus Gjp is right regular and the rest is easy. 

3.20 Proposition. Every regular medial groupoid satisfies (C4). 

Proof. By 3.19 (and its left hand form), p and q are congruences of G and 
GJP (G/q) -s right (left) regular. We are going to show that G\p is left regular. Let 
a9b9cєG be such that (ca9 cb)єp. Then cx . ax = ca . xx = cb . xx = cx;. bx 
for every x є G. Consequently, (ax, bx) є q and ya . ax = yy . ax = yy . bx = 
= >fe . yx, (ya9 yb) є p. Similarly the other case and we have proved that Gjp and Gjq 
aré regular. But t = p n q and G/ř is a subdirect product of G\p and G/g. By 3.1, 
G\t is regular. 

3.21 Corollary. A medial groupoid G satisfies (C4a) iff G\t is regular. 

3.22 Remark. By [1, Proposition 2.14], every medial division groupoid satisfies 
(C4a). On the other hand, there exist commutative medial division groupoids which 
are not regular. Thus (C4a) does not imply (C4). 

3.23 Example. Consider the following groupoid G : G = {a, Ь, c}, aa = ab = 
= ba = bb = cc = a, ac = bc = ca = cb = b. It is easy to verify that G is com-
mutative and satisfies (C5). Put H = G x G and denote by A the block of tн con-
taining (a9a). Clearly, (x9y)єA iff x, yє{a, b}. Let B = A\{(a9 a)} and r = 
= (tн \ (A x A)) u (ß x B) u iя. Then r is a congruence of Я. However, (c, c) . 
. (a, Ь) = (Ь, b)9 (c, c) (a, c) = (Ь, a), ((Ь, b), (b9 a)) є r, (a, a) (a, b) = (a, a), (a, a) * 
. (a, c) = (a, ò). Hence H\r is not regular, H does not satisfу (C5) and the class of 
groupoids sątisfуing (C5) is not closed under cartesian products. 

3.24 Remark. Everу cancellation groupoid satisfies (C4) and can be imbedded 
into a simple cancellation groupoid. On the other hand, there are cancellation 
groupoids not satisfуing (C5). Thus the class of gгoupoids satisfуing (C5) is not closed 
under subgroupoids and (C4) does not implу (C5). 
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4. Primitive Groupoids 

Let G be a groupoid. We shall say that G is primitive if there are two elements 
a, b e G such that a 4= b and tG = {(a, b), (b, a)} u iG. Farthermore, we shall say that 
G is strongly primitive if a, 6 e GG and superprimitive if a, b e Gx n xG for every 
xeG. 

4A Lemma. A groupoid G is primitive iff tG 4= iG is a minimal congruence. In 
this case, card G = card G\t + 1, 1 ^ 1(G), tG is a minimal equivalence and r n tG = 
= iG for every congruence r with tG $ r. 

Proof. Obvious. 

4.2 Lemma. A primitive groupoid G is subdirectly irreducible iff tG is the least 
non-trivial congruence of G. 

Proof. Obvious. 

4.3 Proposition. Let G be a subdirectly irreducible groupoid. Then just one of 
the following cases takes place: 

(i) G is semifaithful. 
(ii) G is a two-element Z-groupoid. 

(iii) G is strongly primitive. 

Proof. Suppose that t =# iG. According to 2.6(i), t = {(a, b), (b, a)} u iG for 
some a,beG, a 4= b. Therefore G is primitive. Let 2 ^ card GG and r = (GG x 
x GG) u iG. Then r =1= i is a congruence and r n t =t= i. Thus (a, b)er and a,be GG. 

4.4 Proposition. Let G be a subdirectly irreducible (regular) groupoid satisfying 
(CI). Then just one of the following cases takes place: 

(i) G is a left faithful (left cancellation) groupoid. 
(ii) G is a right faithful (right cancellation) groupoid. 

(iii) G is a two-element Z-groupoid. 
(iv) G is strongly primitive. 

Proof. Use the equality t = p n q and 4.3. 

4.5 Proposition. Every factorgroupoid of a groupoid G is semifaithful iff no 
factorgroupoid is primitive. 

Proof. Use 4.3 and 2.15. 

4.6 Proposition. Let G be a regular division groupoid such that G is not semi
faithful. Then there is a congruence r c tG such that G\r is primitive. 

Proof. There is a block A of t containing at least two elements. Let a e A, 
B = A \ {a} and r = (t \ (A x A)) u (B x B) u iG. Then r = t is a congruence. 
Put H = G\r and denote by / the natural homomorphism of G onto H. Let x, y e G 
be such that (f(x),f(y)) e tH. Then (xz, yz), (zx, zy) e r for every z. On the other 
hand, a = xu, (a, yu) e r, xu = yu and (x, y) e p. Similarly, (x, y) e q, (x, y) e t 
and the rest is clear. 
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4.7 Lemma. Every primitive division groupoid is infinite and supeгprimitive. 

Proof. Obvious. 

4.8 Lemma. Let G be a regular primitive groupoid such that G/ř is left regular. 
Suppose that xy = a Ф b = xz for some x, y, z є G with (a, b) є tG. Then 
caгd G\p = 2. 

Proof. Since (xy, xz) є t and G\t is left regular, (uy, uz) є t for every uєG. 
If vy = vz for some v, then (y, z)є q and a = xy = xz = b, a contradiction. 
Hence uy Ф wZ and {uy, uz} = {a, b}. Thus uy = a,b and \G\p\ ^ 2, since G is 
regular. 

4.9 Proposition. Let G be a regular superprimitive groupoid. If G/ř is left 
(right) regular then G\t is a Z-groupoid, G\t is regular and G contains at most five 
elements. 

Proof. Let G\t be left regular. By 4.8, p has at most two blocks, say A and B 
(possibly A = B). Let a, b є G be such that a Ф b, (a, b)єt and let cєG. There are 
d,eєG with dc = a and ec = b. Then (d, e) є p, dє A, eє B. Now, Ac = {a}, 
Бc = {b} and Gc = {a, b}. We have proved that GG = {a, b} and consequently G\t 
is a Z-groupoid. In particular, G\t is regular and card G\q — 2 by the right hand 
form of 4.8. 

4.10 Corollary. Let G be a regular primitive division groupoid. Then G\t is 
neither left nor right regular. 

4.11 Corollary. (i) No superprimitive groupoid containing at least six elements 
satisfies (CЗ). 

(ii) No primitive division groupoid satisfies (CЗ). 

4.12 Proposition. Let G be a division groupoid. 

(i) If G is regular and not semifaithful then G is a subdirect product of its primitive 

factors. 

(ii) If G satisfies (C5) then every factorgroupoid of G is semifaithful. 

Proof. Apply 4.6 and 4.11. 

4.13 Proposition. The following conditions are equivalent: 

(i) G is a regular primitive groupoid satisfying (C2). 

(ii) Theгe are a cancellation groupoid G(o) and surjective transformations f,gofG 

such that xy = f(x) o g(y) for all x, yєG and kerf n ker g = {(a, b), (b, a)} u 
u iG for some a, b є G, a ф b. (In this case, G satisfies (CЗ) iff for every x є G, 
eitheг aфxoGorbфxoG and either aфGoxoľbфGox. 

Proof. ApplyЗ.Ю. 

4.14 Proposition. The following conditions are equivalent: 
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(i) G is a regular primitive division gгoupoid yi) u j s a icguiar primuive uivision groupoiu. 

(ii) There exist a loop G(o) and surjective transformations f, g of G such that xy = 

= f(x) ° d(y) for all x,yeG and kerf n ker g = {(a, b), (b, a)} u iG for some 
a, b e G, a =t= b. 

Proof. Apply 3.11. 

4.15 Example. Let G( + ) be the quasicyclic 2-group. Put xy = 2x + y for all 
x, y e G. Then G is a regular medial division groupoid, G is not a quasigroup and G 
satisfies (C5). Moreover, every congruence of G is left cancellative. 

4.16 Lemma. Let G be a regular primitive groupoid, a,beG,a + b, (a, b) e tG. 
Suppose that Gjt is not semifaithful. Then there is c e G such that either cG _= 
c {a, b} or Gc = {a, b}. Moreover, either card Gjq = 2 or card G\p ^ 2. 

Proof. There are c,deG such that (c, d) $ t and (ex, dx), (xc, xd) e t for every JC. 
We can assume that (c, d) $ p. Then ex #= dx, and so ex e {a, ft}. The rest is clear. 

4.17 Proposition. Let G be a superprimitive regular groupoid. Then G\t is a Z-
groupoid, provided at least one of the following conditions holds: 

(i) G\t is left regular, 
(ii) Gjt is right regular, 

(iii) Gjt is not semifaithful. 

Proof, (i) and (ii). See 4.9. 

(iii) With respect to 4.16, we can assume that card Gjq ^ 2. Let A and B be the 

only blocks of q (possibly A = B). Let a, be G, a =\= b, (a, b) e t. For x e G, there 

exist y, z e G with xy = a, xz = b. We have (y, z)$q, y e A, zeB, xA = {a}> 

xB = {b}. Therefore GG = {a,b}. 

4.18 Corollary. Let G be a superprimitive regular groupoid. Then either 1(G) = 1 
or 1(G) = 2 and Gjt is a Z-groupoid. 

4.20 Lemma. Let G be a primitive groupoid such that G is not strongly primitive. 
Then Gjt is semifaithful and 1(G) = 1. 

Proof. Easy. 

4.21 Example. Consider the following groupoid G : G = {a, b, c, d}, aa = 
= ab = ba = bb = c, ac = ad = be = bd = d, ca = cb = dc = dd = a, cc = 
= cd = da = db = b. Then G is strongly primitive and regular and Gjt is right 
but not left regular. Moreover, G = GG and 1(G) = 2. 

4.22 Lemma. Let G be a regular primitive groupoid, a, b e G, a 4= b, (a, b) e tG. 
Let H be a subgroupoid of G such that a, beH. Then H is regular and primitive. 

Proof. Obvious. 
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5. Primitive Groupoids 

5.1 Lemma. The following conditions are equivalent: 

(i) Gjt is a Z-groupoid. 
(ii) GG is contained in a block of tG. 

(iii) G is torsion and 1(G) ^ 2. 

Proof. Easy. 

5.2 Lemma. Let G be a groupoid such that Gjt is a Z-groupoid. Then: 

(i) G satisfies (CI) and (C4a). 
(ii) G is medial, 

(iii) Either 1(G) = 2 or 1(G) = 1 and G is a Z-groupoid. 

Proof. Easy. 

5.3 Proposition. Let G be a primitive groupoid such that Gjt is a Z-groupoid. 
Let a, b e G, a * b, (a, b) e tG. Then: 

(i) G is subdirectly irreducible and GG _ {a, b}. 
(ii) Either G is strongly primitive and GG = {a, b} or G is a two-element Z-groupoid. 
(iii) Every proper factorgroupoid of G is regular. 

Proof. If G is a Z-groupoid then G contains just 2 elements. Suppose that G is 
not a Z-groupoid. Then 2 _ card GG. But GG is contained in a block of t, and so 
GG = {a, b}. Finally, let r 4= iG be a congruence of G. There are x, y e G with 
* =t= y> (*- y) e r. If {x, )>} = {a, b}, then f _ r. Let x £ {a, b}. Then (x, >>) £ t and 
either (x, >>) 4 P or (x, y) £ q. In particular, either xz 4= yz or zx + zy for some z 
and consequently (a, b) e r, t _ r. 

5.4 Lemma. Let G(*) and G(o) be two regular groupoids such that pG(m) = pG(Q) 

and qG(0) = qG(o). Suppose that G * G, G o G _ {a, b} and c * d = c © d for some 
a, b, c, de G. Then G(*) = G(o). 

Proof. Let c * d = a. If ee G then either c * e = a, and hence (d, e)e q, a = 
= c ° d = coe, or c * c = &, (d, e)$q, a = cod + coe = b. Thus c * x = c o x 
for every x. The rest is similar. 

Consider the following groupoids: A(0) = {a, b}, aa = ab = ba = bb = a; 
A(l) = {a, b, c], aa = ab = ba = bb = cc = a, ac = be = ca = cb = b; A(2) = 
= {a, b, c}, aa = ab = ba = bb = ac = be = a, ca = cb = cc = b; A(3) = 
= {a, b, c}, aa = ab = ba = bb = ca = cb = a, ac = be = cc = b; A(4) = 
= {a, b, c, d}, aa = ab = ba = bb = ac = be = cd = dd = a, ad = bd = ca = 
= cb = cc = da = db = dc = b; A(5) = {a, b, c, d}, aa = ab = ba = bb = 
= ca = cb = dc = dd = a, ac = ad = be = bd = cc = cd = da = db = b; 
.4(6) = {a, b, c, d}, aa = ab = ba = bb = ac = be = cd = da = db = dc = a, 
ad = bd = ca = cb = cc = dd = b; A(l) = {a, b, c, d, e}, aa = ab = ba = bb = 
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ac = bc = cd = ce = da = db = dc = ed = ee = a, ad = ae = bd = be = ca = 
= cb = cc = dd = de = ea = eb = ec = b. 

5.5 Lemma. (i) -4(0), ..., A(7) are primitive regular groupoids. 

(ii) A(0)\t, ..., A(7)/ř are Z-groupoids. 
(iii) A(2), A(3) are strongly primitive and A(l), A(4), A(5), A(6), A(7) are super-

• primitive. 
(iv) -4(0), ..., A(7) are pair-wise non-isomorphic. 

Proof. Easy. 

5.6 Proposition. Let G be a regular primitive groupoid such that G\t is a Z-
groupoid. Then: 

(i) G is isomorphic to exactly one of the groupoids -4(0),..., -4(7). 
(ii) G is subdiгectly irreducible and contains at most 5 elements. 

(iii) G satisfies (C5). 

Proof. First, let a, b є G, a ф b, (a, b) є t. Then GG .= {a, b}, and so caгd G\pъ 
card G\q й 2, since G is regular. From this, caгd G ś 5. Now, assume that G = 
= {a, b, c, d, e} contains five elements. We have GG = {a, b}, and hence we can 
assume that aa = a. Then ab = ba = bb = a. If p ç q then p = t and p has fouг 
blocks, a contradiction. Thus p $ q, similarly q ф p and both p and q have exactly 
two blocks, say A, B of p and C, D of q. Then A n C = {a, b}, card A n D, 
card B n C, card B n D = 1. Сonsequently, card A = 3 and card B = 2. Without 
loss of generality, we can assume that A = {a, b, c} and B = {d, e}. Then eitheг 
C = {a, b, d}, D = {c, e} or C = {a, b, e}, D — {c, d}. The rest is now cleaг from 
5.4 and 5.5. Similarly if card G = 4. 

5.7 Proposition. Let G be a regular superprimitive groupoid such that G/ř is 
either left or right regular. Then G is isomorphic to exactly one of the gгoupoids 
^l(l), A(4), A(5), A(6), A(7). 

Proof. Аpply 4.9, 5.5 and 5.6. 

6. Pгimitive Gгoupoids 

6.1 Proposition. Let G be a regular primitive groupoid such that G\t is a left 
unar. Then just one of the following cases takes place: 

(i) G is a left unar. 
(ii) G is isomorphic to A(3). 

(iii) G is isomorphic to one of the groupoids A(4), A(5), -4(6), A(7). 

Proof. Let a, b є G, a ф b, (a, b) є t. Farther, suppose that G is not a left unaг. 
Then cd ф ce for some c, d, eє G. However, (xy, xz) є t for all x, y, z є G and G 
is regular. Сonsequently, {xd, xe} = {a, b} for every x. Finally, (xd, xy) є t and 
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jcd e {a, b}. Hence xy є {a, b} for all x,y єG9GG Я {a, b} and G\t is a Z-groupoid. 
The rest follows from 5.5 and 5.6. 

6.2 Proposition. The following conditions are equivalent: 

(i) G is a primitive left unar. 

(ii) There exist a transformation f of G and elements a,beG such that a ф b, 

kerf = {(a, b), (b, a)} u iG and xy = f(x) foг all x, yєG. 

Proof. Easy. 

6.3 Corollary. Lét G be a primitive left unaг. Then G\t is either a right cancel-
iation groupoid or a primitive groupoid. 

6.4 Corollary. Let G be a primitive left unar. Then: 

(i) 1(G) < o iff G\tn is a right cancellation groupoid for some 1 = n < o. 
(ii) o = 1(G) iff 1(G) = o iff G\tn is primitive foг every 0 ^ n < o. 

Let G be a left unar andДx) = xx for every xєG. We shall say that G is quasi-
cyclic if there exists an element aeG such that for every x, fn(x) = fm(a) for some 
1 ^ n, m. 

Consider the following left unaгs: B(n) = {a0, al9..., a n}, 1 = n, f(a0) = a0, 
J(a) = ai_i for 1 = i й n; B(§) = {a0, al9...}9 f(a0) = a0, ДÖJ) = a^-! foг 
1 = i; C(n, m) = {al9..., an, b^,..., Ьm, cx, c 2 , . . . } , 1 = n, m, Д a t ) = ĉ  = Д b i ) , 

Д Û І ) = * І - I , / ( Ь J ) = Ьj-i,/(ck) = c k + 1 for 2 = i = n, 2 = j = m, 1 = k; C(n, §) = 

= {al9 ..., an, bl9 b29 ..., cl9 c2, . . . } , 1 = n, f(ax) = ĉ  = Дb^), f(a) = aj.^, 
Дbj) = bj-i, f(ck) = c k + 1 for 2 = i ^ n, 2 = j , 1 = k; C(§, §) = {al9 a2,... 
..., Ьj,Ь2, ..., C1?C2, . . . } , Дf l ! ) = C! =/(&!) , Д Ű І ) = Л І - ! , /(Ьj) = Ьj-i, /(C k = 

= c k + 1 for2 = i,j, 1 = k;£(n, m) = {a0,..., an, bu ..., bm}, 1 = n,m,Дa 0) = an, 
Д b i ) = «o, Двi) = вi-i. Дbj) = Ьj-i for 1 = i = n, 2 = j = m; £(n, §) = 
= {a0, ..., an, bl5 b2,...}, 1 ;= n,Дa 0) = a^ĄbJ = a 0,Дai) = ai-i.Дbj) = b^^ 
foг 1 = i = n, 2 = j . 

6.5 Lemma. (i) ß(n), Б(§), C(n, m), C(n, §), C(§, §), £(n, m), £(n, §) are quasi-
cyclic primitive left unars. 

(ii) B(n) is torsion, subdirectly irreducible and 1(-B(n)) = n. 
(iii) ß(§) is torsion, subdirectly irreducible and l(-5(§)) = o. 
(iv) C(n, m) is not subdirectly irreducible and l(C(n, m)) = min (n, m). 
(v) C(n, §) is not subdirectly irreducible and l(C(n, §)) = n. 
(vi) C(§, §) is not subdirectly irreducible and 1(C(§, §)) = o. 

(vii) £(n, m) is not subdirectly irreducible and l(£(n, m)) = m. 

(viii) £(n, §) is not subdirectly irreducible and l(£(n, §)) = o. 

Proof. Obvious. 

6.6 Proposition. Let G be a quasicyclic primitive left unar. Then G is isomorphic 
to one of the groupoids Б(n), B(§), C(n, m), C(n, §), C(§, §), £(n, m), £(n, §). 

Proof. Easy. 
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6.7 Proposition. Let G be a subdirectly irreducible primitive left unaг. Then G 
is isomoгphic to Б(n) for some 1 ^ n ^ §. 

Pгoof. Easy. 

6.8 Proposition. Let G be a primitive left unar and a, b є G, a Ф b, (a, b) є tG 

Then theгe exist two subsets H, K of G such that: 

(i) H u K = G and H n K = 0. 
(ii) a, b є H, H is a subgroupoid of G and Я is a quasicyclic primitive left unar. 

(iii) Either K = 0 or K is a subgroupoid of G and K is a right čancellation gгoupoid. 

Pгoof. Easy. 

7. Technical Results 

Let G be a groupoid and a є G. Define a relation qa on G by (x, y)є gaiSxy = a. 
Letf : Qa -> {0,1} be a mapping. Consider the following conditions: 

(1) If x, y є G, (x, y) є tG, x Ф y, then there exists zєG such that eitheг xz = a 
and f(x, z) Ф f(y, z) or zx = a and f(z, x) Ф f(z, y). 

(2) For every x є G, there exist д>, z, u, i; є G with xy = xz = a = ux = vx and 

/ ( X J ) Ф / ( X , Z ) , / ( « , X ) Ф / ( M ) . 

(3) If x, y, z є G, xz = jz and either xz Ф a or xz = a and f(x, z) = f(y, z) then 

(x, y) є pG andf(x, v) = f(y, v) for every vєG with xt? = a. 

(4) If x, j>, z є G, zx = zд> and either zx ф я or zx = a and f(z, x) = f(z, >>) then 

(x, y) є qG and f(t?, x) = f(v, y) for every vєG with vx = a. 

We shall say that the element a satisfies (a) ((ß), (y), (ô)) if there exists a mapping 
/ : Qa -> {0,1} satisfying (1) ((1), (2); (1), (3), (4); (1), (2), (3), (4)). 

We shall say that G satisfies (C6) ((C7), (C8), (C9)) if G contains an element 
satisfying (a) ((ß), (y), (ô)). 

7.1 Lemma. Let G be a groupoid, aєG and f: Qa-+ {0, 1} 

(i) Iff satisfies (l) and G is not semifaithful thenfis surjective. 
(ii) If aфGG then f satisfies (1) iff G is semifaithful. 

(iii) If G is injective then card Qa ̂  1 and f is not surjective. 
(iv) If f satisfies (2) then G is neither a left nor a right cancellation groupoid. 

Proof. Obvious. 

7.2 Lemma. Let a gгoupoid G satisfy (C6). The following statements are equi--
valenť. 
(i) There exist aєG and a surjective mapping f : qa -> {0, 1} satisfying (l). 

(ii) G is not injective. 

Proof. Easy. 
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7.3 Lemma. (i) Every element from a semifaithful groupoid satisfies (a). 

(ii) Every primitive groupoid satisfies (C6). 
(iii) Every Z-groupoid satisfies (C6). 
(iv) A Z-groupoid satisfies (C7) iff it is non-trivial. 

Pгoof. (i) and (ii). These are obvious. (iii) and (iv). Theгe is a e G such that 
xy = a for all x, y. Hence Qa = G x G. Define/by/(x, y) =5 0 if x Ф y and/(x, x) = 
= 1. The rest is clear. 

7.4 Lemma. Let G be a regular groupoid, a,b,c,deG and bc = a = db. 
Denote by B, C, D the blocks of tG, qG, pG containing b, c, d, resp. If a satisfies (a) 
then card B = 2m, where m = card C + card D. 

Proof. Let / : Qa-+ {0, 1} be a mapping satisfying (1). If x, y e G and bx = a = 
= yb, then xeC, y e D, since G is regulaг. Let P and Q designate the set of all sub-
sets of C and D, resp. Define a mapping g : B -+ P x Q as follows: For xeB, 
g(x) = (M, N), where M = {y e D \ f(y, x) = 0} and N = {z є C | /(x, z) = 0}. 
Since / satisfies (1), g is injective and the rest is clear. 

7.5 Example. Let G be an infinite countable commutative loop containing an 
element a with aa Ф 1, 1 being the unit of G. As is easy to see, there is a surjective 
transformation / of G having the following properties: 

(i) /( l ) = l = f(a) and f(x) Ф 1 for every 1, a Ф x є G. 

(ii) For eveгy 1 Ф x є G, there are at least 17 different elements yeG with/(>>) = x# 

Now, put x o y = f(x)f(y). Then G(o) is a commutative regular division groupoid. 
Using 7.4, one can show easily that G(°) does not satisfy (С6). 

7.6 Lemma. Let G be a right division groupoid such that card B _ 2 c a г d Л , 
whenever A is a block of pG and B of tG. Then every element from G satisfies (a). 

Proof. Let aeG and let P be the set of all ordered pairs (A, B), where A є G/p, 
B e Gjt and AB = {a}. Obviously, QЛ = \j(A x B), (A, B) e P. Moreover, if (A, B), 
(C, D)eP and (A x B) n (C x D) Ф 0, then A = C and B = D. Now, let (A, B) e 
є P. According to the hypothesis, there is an injective mapping g oî B into Q, Q 
being the set of all subsets of A. We shall define a mapping / : A x B -> {0, 1} by 
/ (x , y) = 0 if x є g(y) and f(x, y) = 1 otherwise. The rest is cleaг. 

7.7 Lemma. Let G be a division groupoid such that 2 ^ card A = card B 
for any two blocks A and B of tG. Then every element from G satisfies (/>). 

Proof. Let A, B є G/ř be such that AB = {a}, a e G. There is a biunique map-
ping g : A -> B. Define / : A x ß -* {0, 1} by f(x, g(x)) = 0 and f(x, y) = 1 if 
y * #(*)• The rest is clear. 

7.8 Lemma. Let G be a left unar and a e GG. Then a satisfies (a) iff there is 
beG such that the following two conditions hold: 
(i) a = bc foг some ceG. 
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(ii) card B ^ 2caтàA, whenever B is a block of tG and A is the block of tG containing b. 

Proof. Easy. 

7.9 Lemma. Let G be a left unar and g(x) = xx for every xeG. Then G satisfies 
(C6) iff there exists an element aeG such that card B ^ 2CЛľdл, whenever B is a block 
of ker Ö and A is the block of ker g containing a. 

Proof. Use 7.8. 

7.10. Lemma. Every finite left unar satisfies (C6). 

Proof. This is an easy consequence of 7.9. 

7.11 Lemma. Let G be a semifaithful division groupoid such that 2 = caгd Ay 

card B for every block A of pG and every block B of qG. Then every element fгom G 
satisfies (ß). 

Proof. Let a є G, A be a block of p, B oí q and AB = {a}. Let A = C u Dy 

C n D = 0, B = KuL, KnL=Ф, C,D,K,L*ф. Define / : Л x B -> {0, 1} 
by /(C x K) = 0 = /(D x L), /(C x L) = 1 = f(D x K). The rest is clear. 

8. Technical Results 

8.1 Lemma. Let aeG satisfy (y), f: ga -* {0, 1} be the corresponding mapping 
and x, y,u,ve G. 
(i) If xz = yz Ф a Ф ux = uy then x = y. 

(ii) If xz = yz = a = ux = uy, f(x, z) = f(y, z) and f(u, x) = f(u, y) then x = y. 

Proof. Obvious. 

8.2 Lemma. Every element from a regular semifaithful groupoid satisfies (y). 

Proof. Obvious. 

A groupoid G is said to be semiinjective if xy = uv implies (x, u) e pG and 
(y, v) e qG for all x, y,u,ve G. 

8.3 Lemma. Let G be a regular semifaithful groupoid such that G is not semi-
injective. Then there are a e G and / : Qa -> {0, 1} such that / satisfies (1), (3), (4) 
and / is surjective. 

Proof. There are x, y,u,ve G such that xy = a = uv and (x, u) фp. Let 
A, B e G\p, C,De G\q be such that xeA, ueB, yeC, veD. Put f(A x C) = 0 
and/(B x D) = 1. The rest is clear. 

8.4 Lemma. Let G be a semiinjective groupoid, aeG and let / : Qa -> {0, 1} 
be a surjective mapping satisfying (3) and (4). Then G is either a left or a right unaг. 

Proof. Since G is semiinjective, Qa = A x B, where A is a block of p and B of q~ 
Farther, f(x, y) Ф f(u, v) for some x, u e A, y, v e B. Suppose that xz Ф a foг some 
zeG. We have xz = uz Ф a and f(x, y) = f(u, y) by (3). Сonsequently, f(u, y) Ф 
Ф f(u, v) and Gy = {a}. Since G is semiinjective, p = G x G and G is a right unaг. 
Similarly the rest. 
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8.5 Lemma. A Z-groupoid satisfies (C8) iff it contains at most 4 elements. 

Proof. Let G be a Z-groupoid, a, x, y e G, a = xy. Suppose that G satisfies; 

(C8). Then there are ЬeG and a mapping f: Qb-+ {0, 1} satisfying (l), (3), (4). 
Obviously, b = a and Qa = G x G. Define two equivalences r and s by (x, y) e r 
iff f(x, z) = f(y, z) and (u, v)e s iff f(z, u) = f(z, v) for every zeG. It is easy to 
show that r n s = idG and card G\r = 2, card G\s ^ 2. 

8.6 Lemma. Let G be a left unar. Then G satisfies (C8) iff at least one of the 
following assertions holds: 

(i) G is a Z-groupoid containing at most 4 elements. 
(ii) G is a right cancellation groupoid. 

(iii) G is primitive. 

Proof. It is easy to verify that G satisfies (C8), provided at least one of (i), (ii), 
(iii) is fulfilled. Hence, assume that G satisfies (C8). There are aeG and f: Qa-+ 
-> {0, 1} satisfying (1), (3), (4). Farther, put g(x) = xx for every x є G. If G is a Z-
gгoupoid then 8.5 may be applied. Suppose that G is not a Z-groupoid. Then g(b) Ф a 
for some b є G. If G is semifaithful then g is injective. Let g(c) = g(d) for some 
c Ф d. If x, y, z e G, g(x) = a, then f(x, y) = f(x, z) by (4) (we have bz = by = 
= g(b) Ф a). Now, by (1), there exists eeG such that ce = a = de and f(c, e) Ф 
Ф f(d, e). In particular, g(c) = a = g(d). On the other hand, if x є G and g(x) = a, 
then either f(x, e) = f(c, e) or f(x, e) = f(d, e), and so either x = c or x = đ 
(use 8.1). 

8.7 Lemma. Let G be a regular groupoid satisfying (C8). Then G is either semi-
faithful or a left (right) unar. 

Proof. There is a e G satisfying (y). Let f: Qa -* {0, 1} be the corresponding. 
mapping. Suppose that G is not semifaithful. Then (b, c) e t for some b ф c. By 8.1, 
bx = a = cx for every x є G (the other case is similar). Then, for all x, y, bx = 
= cx = by = cy = a. Since G is regular, q = G x G and G is a left unar. 

8.8 Lemma. Let G be a regular semifaithful groupoid. The following conditions 
are equivalent: 

(i) There are a e G andf : Qa -> {0, 1} satisfying (1), (3), (4) such thatfis surjective. 
(ii) G is not semiinjective. 

Proof. Apply 8.3, 8.4, 8.6. 

9. Technical Results 

9.1 Lemma. Let G be a primitive groupoid, a,beG,a=џb, (a, b)e tG. Put 
H = Gjt and c = k(a), where k is the natural homomorphism of G onto H. Then: 

(i) c satisfies (a) in H. 

(ii) c satisfies (ß), provided G is superprimitive. 
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(iii) c satisfies (y), provided G is regular. 
(iv) c satisfies (<5), provided G is regular and superprimitive. 

Pгoof. Ľ>efine / : £c -» {0, 1} as follows: Let x, y єH, xy = c and d, e є G, 
k(d) = x, k(e) = y. Then (de, a) є t and either de = a or de = b. We put/(x, y) = 0 
if de = a and f(x9 y) = 1 in the opposite case. 

9.2 Construction. Let Я be a groupoid, a є Я, s = tн and f: Qa-+ {0, 1}. 
Farther, let Ь £ Я and G = Я u {ò}. We shall define a groupoid G(*) as follows: 
x * y = xy for all x, y є H with xv Ф a; x* y = a for all x, y є H with xy = a 
and /(x, y) = 0; x * y = b for all x, y є H with xy = a and Дx, y) = 1; x * Ь = 
= x * a and b * x = a * x for every x є Я ; b * b = a * a. Obviously, a Ф Ь and 
(a, b)єt, t = řG(+). Put fc(x) = x for every x є Я and k(b) = a. Then /c is a homo-
morphism of G(*) onto Я. 

9.2Л Lemma. (i) G(*) is primitive, provided / satisfies (1). 

(ii) G(*) is strongiy primitive, provided / is surjective and satisfies (1). 

(iii) G(*) is superprimitive, provided / satisfies (1), (2). 

(iv) G(*) is regular, provided / satisfies (3), (4). 

(v) G(*) ïs a division gгoupoid, provided Я is and / satisfies (2). 

(vi) If G(*) is primitive then Я is isomorphic to G(*)/ř. 
Pгoof. Easy. 

10. Main Results 

10.1 Theorem. Let Я be a groupoid. Then: 
(i) Я is isomorphic to G\t for a primitive groupoid G iff Я satisfies (C6). 

(ii) Я is isomorphic to G\t for a strongly primitive groupoid G iff Я satisfies (C6) 
and Я is not injective. 

(iii) Я is isomorphic to G\t for a superprimitive groupoid G iflf Я satisfies (C7). 
(iv) Я is isomorphic to G\t for a regular primitive groupoid G ifF Я satisfies (C8). 
(v) Я is isomorphic to G\t for a regular strongly primitive groupoid G iťf Я satisfies 

(C8) and either Я is not semifaithful or Я is not semiinjective. 
(vi) Я is isomorphic to G\t for a regular superprimitive groupoid G iťf Я satisfies 

(C9). 
(vii) Я is isomorphic to G\t for a primitive division groupoid G iff Я is a division 

groupoid satisfying (C7). 
(viii) Я is isomorphic to G\t for a regular primitive division groupoid G iff Я is 

a division groupoid satisfying (C9). 
Proof. Apply 7.1(i), (iii), 8.8, 9.1 and 9.2. 

10.2 Theorem. (i) A groupoid G satisfies (C6), provided at least one of the fol-
lowing conditions holds: 

(ia) G is semifaithful. 
(ib) G is a right (left) division groupoid and card B ^ 2°*^^, wheneveг A \s 
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a block of pG (ЧG) and B of tG. 
(ic) G is a left (right) unar and there exists a block A of tG such that card B ^ 

= 2 c a г d Я for every block B of řG. 
(id) G is a finite left (right) unar. 
(ie) G is primitive. 

(ii) A groupoid G satisfies (C7), provided at least one of the following conditions 
holds: 
(iia) G is a non-trivial Z-groupoid. 
(iib) G is a division groupoid and 2 ^ card A = card B foг any two blocks 
A, B of tG. 
(iic) G is a semifaithful division groupoid and 2 ś card A, 2 ^ card B for every 
block A of pG and B of qG. 

(iii) A groupoid G satisfies (C8), provided at least one of the following conditions 
holds: 
(iiia) G is semifaithful and regular. 
(iiib) G is a primitive left (right) unar. 
Pгoof. Apply 7.3, 7.6, 7.7, 7.9, 7.10, 7.11, 8.2, 8.6. 

10.3 Theorem. Let G be a primitive groupoid satisfying (CЗ). Then at least 
one of the following assertions holds: 

(i) Gjt is regular semifaithful and 1(G) = 1. 
(ii) Gjt is a Z-groupoid and either G is isomorphic to .4(0) and 1(G) = 1 or G is 

isomorphic to one of the groupoids A(i), A(2), A(3), A(4), A(5), A(6), A(l) and 
1(G) = 2. 

(iii) G is a left unar, Gjt is primitive and 3 ^ 1(G) ^ o. 
(iv) G is a right unar, Gjt is primitive and 3 g 1(G) S o. 

Proof. Apply 9.1, 8.7, 8.6, 6.1, 5.6. 

10.4 Corollary. Let G be a primitive groupoid satisfying (CЗ). Then: 
(i) G satisfies (C4) and 1 = 1(G) = o. 

(ii) Either 1(G) = 1 or G satisfies (C5). 
(iii) If G is subdirectly irreducible then G is strongly primitive and either 1(G) = 1 

or G is isomorphic to one of the groupoids -4(1),..., A(7), Б(n), ß(n)°, 3 ^ 
š n = §. 

(iv) lf G is torsion then G is isomorphic to one of the groupoids -4(0),..., -4(7), 
Б(n), Б(n)°, 3 = n й §• 

(v) If G is superprimitive then G is isomorphic to one of the groupoids -4(1), -4(4), 
A(5), A(6), A(7). 

Proof. Аpply 10.2, 5.7 and 6.7. 
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