Acta Universitatis Carolinae. Mathematica et Physica

Tomáš Kepka

Notes on left distributive groupoids

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 22 (1981), No. 2, 23--37

Persistent URL: http://dml.cz/dmlcz/142471

Terms of use:

© Univerzita Karlova v Praze, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Notes On Left Distributive Groupoids

T. KEPKA
Department of Mathematics, Charles University, Prague*)

Received 5 March 1981

Abstract

A groupoid satisfying the identity $x, y z=x y, x z$ is said to be left distributive. In the present paper, some basic properties of these groupoids are proved.

Grupoid splňující identitu $x . y z=x y, x z$ se nazývá zleva distributivní. V článku se dokazují některé základní vlastnosti těchto grupoidů.

Группоид выпольняющий тождество $x . y z=x y . x z$ называется леводистрибутивным. В статье исследуются некоторые основные свойства этих групподов.

1. Introduction

A groupoid G is said to be

- idempotent if $a a=a$ for every $a \in G$,
- commutative if $a b=b a$ for all $a, b \in G$,
- left distributive (an LD-groupoid) if $a . b c=a b . a c$ for all $a, b, c \in G$,
- distributive if it is left distributive and $a b . c=a c . b c$ for all $a, b, c \in G$,
- medial if $a b . c d=a c . b d$ for all $a, b, c, d \in G$,
- a left unar if $a b=a c$ for all $a, b, c \in G$,
- a right unar if $b a=c a$ for all $a, b, c \in G$,
- left symmetric if $a . a b=b$ for all $a, b \in G$,
- right symmetric if $b a . a=b$ for all $a, b \in G$,
- semisymmetric if $a . b a=b$ for all $a, b \in G$.

Let G be a groupoid. For all $a, b \in G, L_{a}(b)=a b$ and $R_{a}(b)=b a$. We shall say that G is left (right) cancellative if $L_{a}\left(R_{a}\right)$ is injective for every $a \in G$. We shall say that G is left (right) divisible if $L_{a}\left(R_{a}\right)$ is surjective for every $a \in G$. A left (right) cancellative and left (right) divisible groupoid is called a left (right) quasigroup.

Let G be a groupoid. Define two equivalences p_{G} and q_{G} on G by $(a, b) \in p$ iff $L_{a}=L_{b}$ and $(c, d) \in q$ iff $R_{c}=R_{d}$. We shall say that G is left (right) regular if $q=$ $=\operatorname{ker} L_{a}\left(p=\operatorname{ker} R_{a}\right)$ for every $a \in G$.

Let G be a groupoid and $a \in G$. Then Id G is the set of idempotents of G and $[a]_{G}$ the subgroupoid generated by a. A subgroupoid H is said to be left closed in G

[^0]if $a b, a \in H$ implies $b \in H$. For a subgroupoid $K,[K]_{G}^{c l}$ is the least left closed subgroupoid containing K.

For every $n=1,2, \ldots$, define a left unar $\operatorname{Cycl}(n)$ as follows: $\operatorname{Cycl}(n)=$ $=\{1,2, \ldots, n\}, a b=b+1$ and $a n=1$ for all $a, b \in \operatorname{Cycl}(n), b \neq n$. Further, define a left unar $C y c l(\infty)$ by $C y c l(\infty)=\{1,2, \ldots\}, a b=b+1$.
1.1. Lemma. Let A and B be left unars. Suppose that A can be generated by one element and there exist surjective homomorphisms f of A onto B and g of B onto A. Then these unars are isomorphic.

Proof. Obvious.
1.2 Lemma. The following conditions are equivalent for a left unar A :
(i) Every subunar of A generated by one element is isomorphic to A.
(ii) A is isomorphic either to $\operatorname{Cycl}(n)$ for some $n \geqq 1$ or to $\operatorname{Cycl}(\infty)$.

Proof. Obvious.
1.3 Lemma. Let G be a simple left unar. Then exactly one of the following four assertions is true:
(i) G is isomorphic to $\operatorname{Cycl}(1)$.
(ii) G is isomorphic to $C y c l(p)$ for a prime $p \geqq 2$.
(iii) G is a two-element semigroup of right zeros.
(iv) G is a two-element semigroup with zero multiplication.

Proof. Obvious.

2. Basic Properties Of Left Distributive Groupoids

2.1 Lemma. Let G be an LD-groupoid and $a \in G$. Then:
(i) L_{a} is an endomorphism of G and $a . a a=a a \cdot a a$.
(ii) If $R_{a a}$ is inejctive then $a=a a$.
(iii) If $a=a a$ then $L_{a} R_{a}=R_{a} L_{a}$.
(iv) If L_{a} is surjective and f is a transformation of G such that $L_{a} f=\operatorname{id}_{G}$ then $a b . c=$ $=a \cdot b f(c)$ for all $b, c \in G$.
(v) If L_{a} is surjective then $(a, a a) \in p$.

Proof. All the assertions are easy observations ((ii) follows from (i) and (v) follows from (iv) for $b=a$).
2.2 Proposition. Let G be an LD-groupoid. Then:
(i) Id G is either empty or a left ideal of G.
(ii) q_{G} is a congruence of G.
(iii) q_{G} is right (left) cancellative, provided G is so.
(iv) $(a, a a) \in q$ for every $a \in G$ iff $G G \subseteq \operatorname{Id} G$.

Proof. (i) For $a \in G$ and $b \in \operatorname{Id} G, a b . a b=a . b b=a b$.
(ii) We have $q=\cap \operatorname{ker} L_{a}, a \in G$.
(iii) If G is left cancellative then $q=$ id. Suppose that G is right cancellative and $(b a, c a) \in q$. Then $d b . d a=d . b a=d . c a=d c . d a$ and $d b=d c$ for every $d \in G$.

2.3 Lemma. Let G be an LD-groupoid.

(i) If $(a, a a) \in p$ for every $a \in G$ then the mapping $a \rightarrow a a$ is an endomorphism of G.
(ii) If G is left cancellative then $(a, a a) \in p$ iff $a a \cdot a=a a$.
(iii) If the mapping $a \rightarrow a a$ is injective then $a a . a=a a$ for every $a \in G$.

Proof. (i) We have $a a \cdot b b=a . b b=a b . a b$.
(ii) Let $a a=a a \cdot a$. Then $a a \cdot a b=(a a \cdot a)(a a \cdot b)=(a a)(a a \cdot b)$.
(iii) We have $a a \cdot a a=(a a \cdot a)(a a \cdot a)$.
2.4 Proposition. Let G be an LD-groupoid. Then p_{G} is a congruence of G, provided at least one of the following four conditions is satisfied:
(1) G is left divisible.
(2) G is left cancellative and $a a=a a . a$ for every $a \in G$.
(3) G is right regular.
(4) G is medial and $G G=G$.

Proof. (1) and (3). Let $a, b, c, d \in G$ and $(a, b) \in p$. Then $c a . c d=c . a d=$ $=c . b d=c b . c d$ and the rest is clear.
(2) Let $a, b, c, d \in G$ and $(a, b) \in p$. Then $(c . a c)(c a . d)=(c a . c c)(c a . d)=$ $=(c a)(c c \cdot d)=c a \cdot c d=c \cdot a d=c \cdot b d=(c \cdot b c)(c b \cdot d)=(c \cdot a c)(c b \cdot d)$, since $c . a c=c . b c$ and $c c . d=c d$ by 2.3(ii).
(4) Let $a, b, c, d, e \in G$ and $(a, b) \in p$. Then $c a . d e=c d . a e=c d . b e=c b . d e$. 2.5 Proposition. Let G be an LD-groupoid. Then $(a, a a) \in p$ for every $a \in G$, provided at least one of the following six conditions is satisfied:
(1) G is left divisible.
(2) G is left cancellative and $a a=a a . a$ for every $a \in G$.
(3) G is right regular.
(4) G is medial and $G G=G$.
(5) The mapping $a \rightarrow a a$ is a surjective endomorphism of G.
(6) The mapping $a \rightarrow a a$ is an injective endomorphism of G.

Proof. (1) is proved in 2.1(v), (2) in 2.3(ii) and (3) follows from 2.1(i).
(4) We have $a \cdot b c=a b . a c=a a . b c$ for all $a, b, c \in G$.
(5) and (6). Put $f(a)=a a$. Then $a f(b)=a \cdot b b=a b \cdot a b=a a \cdot b b=a a \cdot f(b)$ and the rest is clear, provided f is surjective. If f is injective then $f(a b)=f(a)$. . $f(b)=f(a) . b b=f(a) b . f(a) b=f(f(a) b)$ yields the result.
2.6 Theorem. Let G be an LD-groupoid satisfying at least one of the conditions (1), (2), (3) and (4) from 2.4. Then:
(i) p_{G} is a congruence of G and G / p is an idempotent LD-groupoid.
(ii) Every block of p_{G} is a subgroupoid of G and a left unar.
(iii) For every $a \in G,[a]_{G}$ is a left unar.
(iv) If G is right divisible then the left unars [a] and [b] are isomorphic for all $a, b \in G$.
(v) If G is right divisible and left cancellative then any two blocks of p are isomorphic left unars.

Proof. (i), (ii) and (iii). See 2.4 and 2.5 .
(iv) and (v). Let $a, b \in G$. There are $c, d \in G$ with $c a=b$ and $d b=a$. Hence $L_{c}(A)=B, L_{d}(B)=A$, where $A=[a]$ and $B=[b]$, and we can use 1.1 and 1.2. Finally, let P and Q be blocks of p. There are $a, b \in G$ with $a P \subseteq Q$, $b Q \subseteq P$ and the rest is clear.
2.7 Corollary. Let G be a right divisible LD-groupoid satisfying at least one of the four conditions from 2.4. Then there exists $n \in\{1,2, \ldots, \infty\}$ such that $[a]_{G}$ is isomorphic to $\operatorname{Cycl}(n)$ for every $a \in G$.
2.8 Proposition. An LD-groupoid G is idempotent, provided at least one of the following two conditions is satisfied:
(i) G is right cancellative.
(ii) G is right divisible and Id G is non-empty.

Proof. Use 2.1(ii) and 2.2(i).
2.9 Proposition. Let G be an LD-groupoid. Then p_{G} is left (right) cancellative, provided G is so.

Proof Let G be left cancellative, $(c a, c b) \in p$ and $d \in G$. Then $c . a d=c a . c d=$ $=c b . c d=c . b d$ and $a d=b d$.
2.10 Proposition. Let G be a left cancellative LD-groupoid such that $a a=$ $=a a . a$ for every $a \in G$. Then there exists a groupoid H with the following properties:
(i) G is a subgroupoid of H and $H=[G]_{G}^{\mathrm{cl}}$.
(ii) H is an LD-groupoid and a left quasigroup.
(iii) G and H generate the same groupoid varietv.
(iv) H is idempotent iff G is.
(v) $p_{G}=p_{H} \mid G$.
(vi) $p_{H}=$ id iff $p_{G}=$ id.
(vii) H is right (left) cancellative (divisible), provided G is so.
(viii) H is simple, provided G is.

Proof. By 2.4 and $2.5, p_{G}$ is a congruence of G and $(a, a a) \in p_{G}$ for each $a \in G$. Now, let $a \in G$. Consider the subgroupoid $K=a G$ of G. Then $K \subseteq G, K$ is isomorphic to G and $K=a a . G$. The rest is clear.
2.11 Corollary. The following conditions are equivalent for an LD-groupoid G :
(i) G can be imbedded into an LD-groupoid H such that H is a left quasigroup.
(ii) G is left cancellative and $a a=a a . a$ for each $a \in G$.
2.12 Proposition. Let G be an LD-groupoid. Define a relation r on G by $(a, b) \in r$ iff there are $n \geqq 1$ and $a_{1}, \ldots, a_{n} \in G$ such that $a_{1}\left(\ldots\left(a_{n} a\right)\right)=a_{1}\left(\ldots\left(a_{n} b\right)\right)$. Then r is the least left cancellative congruence of G. Moreover, if $(a a . a, a a) \in r$ for some $a \in G$ then $b b=b b . b$ for some $b \in G$. Similarly, if $(c c, c) \in r$ for some $c \in G$ then Id G is non-empty.

Proof. Easy.
2.13 Proposition. Let G be a finite LD-groupoid. Then there exists at least one element $a \in G$ with $a a=a a$. a.

Proof. Consider the congruence r defined in 2.12. Then G / r is a left quasigroup, and so ($a a . a, a a) \in r$ for every $a \in G$.
2.14 Proposition. Let G be a left cancellative L.D-groupoid. Put $A=\{a \in G$; $a a . a=a a\}$ and $B=\{b \in G ; b b . b \neq b b\}$. Then:
(i) $G=A \cup B$ and $A \cap B=\emptyset$.
(ii) A is either empty or a left ideal of G.
(iii) B is either empty or a left ideal of G.
(iv) $r=(A \times A) \cup(B \times B)$ is a left cancellative congruence.
(v) If $r \neq G \times G$ then G / r is a two-element semigroup of right zeros.

Proof. Easy.

3. Examples Of Left Distributive Groupoids

3.1 Proposition. Let G be a left unar and let f be the transformation of G such that $a b=f(b)$ for all $a, b \in G$. Then:
(i) G is a medial LD-groupoid and G is regular.
(ii) G is distributive iff $f^{2}=f$.
(iii) Id G is empty iff $f(a) \neq a$ for every $a \in G$.
(iv) If Id G is an ideal then $f^{2}=f$.
(v) $p=G \times G$ and $q=\operatorname{ker} f$.
(vi) G is left cancellative (divisible) iff f is injective (surjective).

Proof. Obvious.
3.2 Example. The left unar $\operatorname{Cycl}(2)$ is an LD-groupoid without idempotents. Moreover, this groupoid is a left quasigroup, it is medial, regular and left symmetric and it is not distributive.
3.3 Proposition. Let G be a groupoid such that $G=A \cup B$, where A is the set of left units of G and $B=\{a \in G ; a b=a c \in \operatorname{Id} G$ for all $b, c \in G\}$. Then:
(i) G is an LD-groupoid.
(ii) G is distributive iff either G is a right unar or G is idempotent and contains at most one left zero.
(iii) G is idempotent iff every element from B is a left zero.
(iv) Id G is an ideal iff either $B=G$ or G is idempotent.
(v) p_{G} is a congruence of G.
(vi) The mapping $x \rightarrow x x$ is an endomorphism of G iff either G contains just one left unit e and $a a=e$ for every $a \in G$ or $a a \in B$ for every $a \in B$.
(vii) $(x, x x) \in p$ for every $x \in G$ iff $a a \in B$ for every $a \in B$.

Proof. (i) Let $a, b, c \in G$. If $a \in A$ then $a . b c=b c=a b . a c$. If $a \in B$ then there is an $e \in \operatorname{Id} G$ such that $a x=e$ for each $x \in G$ and we have $a . b c=e=e e=$ $=a b . a c$.
(ii) Suppose that G is distributive. If $B=G$ then G is a right unar. Let $B \neq G$ and $e \in A$. We have $a=e a=e e . a=e a . e a=a a$ for each $a \in G$, and so G is idempotent. Moreover, if $z \in G$ is a left zero then $z=z a=e z \cdot a=e a \cdot z a=$ $=a z$ for evera $a \in G$ and z is a zero. The rest is clear.
(iii) and (iv). These assertion are easy.
(v) Let $(a, b) \in p$ and $c \in G$. Then either $c \in A$ and $c a=a, c b=b$ or $c \in B$ and $c a=c b$.
(vi) Suppose that $x \rightarrow x x$ is an endomorphism. Let $e=a a \in B$ for some $a \in B$. For each $f \in A, f=e f=a a . f=a a \cdot f f=a f . a f=e e=e$. Moreover, for every $b \in B, b b=e . b b=a a . b b=a b . a b=e e=e$.
(vii) This is evident.
3.4 Example. Consider the following groupoid $L(1)$:

$L(1)$	0	1
0	1	1
1	0	1

This groupoid is an LD-groupoid, it is not distributive and the set $\{1\}$ of idempotents is not an ideal. Moreover, $(a, a a) \notin p=$ id for $a=0$ and the mapping $x \rightarrow x x$ is an endomorphism of $L(1)$.
3.5 Example. Consider the following groupoid $L(6)$:

$L(6)$	0	1	2
0	0	1	2
1	1	1	1
2	0	0	0

This groupoid is a simple LD-groupoid, p is a congruence and $x \rightarrow x x$ is not an endomorphism (see 3.3).
3.6 Proposition. Let G be an LD-groupoid and $0 \notin G$. Define a groupoid $H(*)$ as follows: $H=G \cup\{0\}, a * b=a b, a * 0=0 * 0=0,0 * a=a$ for all $a, b \in G$. Then:
(i) $H(*)$ is an LD-groupoid.
(ii) $H(*)$ is distributive iff G is an idempotent distributive groupoid satisfying the identites $x=y x . x$ and $x y=y . x y$.
(iii) $p_{H(*)}$ is a congruence of $H(*)$ iff p_{G} is a congruence of G and the set of left units of G is either empty or a left ideal of G.
(iv) The map $a \rightarrow a * a$ is an endomorphism of $H(*)$ iff $b \rightarrow b b$ is an endomorphism of G.
(v) $(a, a * a) \in p$ for every $a \in H$ iff $(b, b b) \in p$ for every $b \in G$.

Proof. Easy.
3.7 Example. Consider the following groupoids:

$L(2)$	0	1	2
0	0	0	0
1	1	1	1
2	1	0	2

$L(3)$	0	1	2
0	0	0	0
1	1	1	1
2	0	1	2

$L(4)$	0	1	2
0	0	0	2
1	0	1	2
2	0	1	2

$L(5)$	0	1	2
0	0	1	2
1	0	1	1
2	0	2	2

One may check easily that these are pair-wise non-isomorphic LD-groupoids which are idempotent and not distributive. Moreover, p is not a congruence of $L(4)$.

4. Non-Distributive Idempotent Left Distributive Groupoids With At Most Three Elements

4.1 Proposition. (i) Every idempotent LD-groupoid containing at most two elements is distributive.
(ii) The groupoids $C y c l(2)$ and $L(1)$ are two-element non-distributive LD-groupoids. Moreover, these groupoids are not isomorphic.
(iii) Every non-distributive two-element LD-groupoid is isomorphic to one of the groupoids $C y c l(2)$ and $L(1)$.

Proof. Easy.
4.2 Lemma. Let G be a three-element LD-groupoid such that Id G is nonempty and G contains no left and no right zero. Then G is distributive.

Proof. Let $G=\{a, b, c\}$. Since Id G is a left ideal and G contains no right zero, Id G has at least two elements, say a and b. Let us distinguish the following situations:
(i) Id $G=\{a, b\}$. We can assume that $c c=a$. Further, $a b, b a, c a, c b \in\{a, b\}$ and $a=a . c c=a c . a c, a c \in\{a, c\}$. First, let $a c=a$. Then $a b=b$, since a is not a left zero. Moreover, $a . c b=a c . a b=a . a b=a b=b, c b=b$ and b is a right zero, a contradiction. Hence $a c=c$ and $c a=c . c c=c c . c c=$ $=a a=a$, and so $b a=b$. On the other hand, $b c=b . a c=b a . b c=b . b c$, $b c=c$ and $b=b a=b . c c=b c . b c=c c=a$, a contradiction.
(ii) G is idempotent. Since a is not a left zero, we can assume that $a c \neq a$.
(ii1) Let $a c=b$. Then $a . c a=a c . a=b a$ and $c b=c . a c=c a$. c. If $c a=a$ then $a=a . c a=b a, a$ is a right zero, a contradiction. If $c a=b$ then $a b=$ $=a . c a=b a, c b=c a . c=b c$ and G is commutative. If $c a=c$ then $c b=$ $=c a \cdot c=c c=c, c$ is a left zero, a contradiction.
(ii2) Let $a c=c$. Since c is not a right zero, $b c \neq c$.
(ii2a) Let $b c=a$. Then $a=a \cdot b c=a b . a c=a b . c$, and so $a b=b$. Further, $a=b c=b . a c=b a . b c=b a . a, b=b . a b=b a . b$ and $c b \neq b$. Thus $b a=a$. If $c b=c$ then $c a=b$ (since a is not a right zero and c is not a left zero) and $c=c b=c . a b=c a . c b=b c=a$, a contradiction. If $c b=a$ then $a=b a=b . c b=b c . b=a b=b$, a contradiction.
(ii2b) Let $b c=b$. If $b a=a$ then $b=b c=b . a c=b a . b c=a b, b . c a=$ $=b c . b a=b a=a$ and $c a=a$, a contradiction. Thus $b a=c$ and $b=$ $=b c=b . a c=b a . b c=c b, a b=a . b c=a b . a c=a b . c$ and $a b=c$. From this, $c a=a b . a=a . b a=a c=c$ and G is commutative.
4.3 Lemma. Let G be a three-element idempotent LD-groupoid containing a zero element. Then G is distributive.

Proof. Suppose that $G=\{a, b, c\}$ and a is a zero element of G. Let G be not distributive. It is easy to check that then we have either $c b=a$ and $b c \in\{b, c\}$ or
$b c=a$ and $c b \in\{b, c\}$. In the first case, $c . b c=c b . c=a c=a$, and therefore $b c=b$ and $b=b c . b=b . c b=b a=a$, a contradiction. In the second case, $a=c . b c=c b . c, c b=b$ and $b=b . c b=b c . b=a b=a$, a contradiction.
4.4 Lemma. Let G be a three-element idempotent LD-groupoid containing at least two left zeros. Then G is either distributive or isomorphic to one of the groupoids $L(2), L(3)$.

Proof. Let $G=\{a, b, c\}$ and let the elements a and b be left zeros. Suppose that G is neither distributive nor isomorphic to $L(2)$. Then either $c a=a, c b=b$ and G is isomorphic to $L(3)$ or $c a=a, c b=c$ or $c a=c, c b=b$. If $c a=a, c b=c$ then $c=c b=c . b a=c b . c a=c a=a$, a contradiction. If $c a=c, c b=b$ then $c=$ $=c a=c \cdot a b=c a \cdot c b=c b=b$, a contradiction.
4.5 Lemma. Let G be a three-element idempotent LD-groupoid containing just one left zero and no right zero. Then G is distributive.

Proof. Let $G=\{a, b, c\}$ and let a be the only left zero of G. Since a is not a right zero, we can assume that $c a \neq a$.
(i) Let $c a=b$. If $b a=a$ then $b=b . c a=b c . b a=b c . a$, and hence $b c=c$ and $b=c a=c . a c=c a . c=b c=c$, a contradiction. Consequently, $b a \in$ $\in\{b, c\}$.
(i1) Let $b a=b$. Then $b=b a=b . a c=b a . b c=b . b c$, and so $b c=a$, since b is not a left zero. Finally, $b=b a=b . c a=b c . b a=a b=a$, a contradiction.
(i2) Let $b a=c$. Then $c=b a=b . a b=b a . b=c b$ and $c \cdot b c=c b . c=c$ yields $b c \in\{b, c\}$. If $b c=b$ then G is distributive. If $b c=c$ then $b=b . c a=$ $=c c=c$, a contradiction.
(ii) Let $c a=c$. Then $c b \in\{a, b\}$.
(ii1) Let $c b=a$. We have $c . b a=c b . c a=a c=a$, hence $b a=b$ and $b c \in$ $\in\{a, c\}$. But $\{b, c\}$ is not a subgroupoid of G, and so $b c=a$ and $c=c a=$ $=c \cdot b c=c b . c=a c=a$, a contradiction.
(ii2) Let $c b=b$. If $b c=b$ then $c \cdot b a=c b . c a=b c=b, b a=b$ and b is a left zero, a contradiction. Hence $b c=c$ (since $\{b, c\}$ is a subgroupoid), $c, a b=$ $=c a . c b=c b=b, a b=b$ and $b=b a=b . a c=b a . b c=b c=c$, a contradiction.
4.6 Lemma. Let G be a three-element idempotent LD-groupoid containing a right zero and no left zero. Then G is either distributive or isomorphic to one of the groupoids $L(4), L(5)$.

Proof. Put $G=\{a, b, c\}$ and let a be a right zero. We can assume that $a c \neq a$.
(i) Let $a c=b$. Then $c b=c . a c=c a . c=a c=b$. If $b c=a$ then $b=b b=$ $=b . a c=b a . b c=a a=a$, a contradiction. If $b c=b$ then $a b=a . b c=$
$=a b . a c=a b . b$ and either $a b=a$ and $b=b . a c=b a . b c=a b=a$, a contradiction, or $a b=b$ and G is distributive. If $b c=c$ then either $a b=a$ and $b=a . b c=a b . a c=a b=a$, a contradiction, or $a b \in\{b, c\}$ and G is distributive.
(ii) Let $a c=c$. Then $b c=b . a c=b a . b c=a . b c=a b . a c=a b . c$ and $a . c b=a c . a b=c . a b$.
(ii1) Let $a b=a$. Then $b c=c$ and $a . c b=a, c b \in\{a, b\}$. If $c b=b$ then G is isomorphic to $L(4)$. If $c b=a$ then G is distributive.
(ii2) Let $a b=b$. If $c b=a$ then $c . b c=c b . c=a c=c$, and so $b c=c$ and G is distributive. If $c b=b$ and $b c=a$ then G is distributive. If $c b=b$ and $b c=b$ then G is isomorphic to $L(4)$. If $c b=b$ and $b c=c$ then G is distributive. If $c b=c$ and $b c=a$ then $a=c . b c=c b . c=c c=c$, a contradiction. If $c b=c$ and $b c=b$ then G is isormophic to $L(5)$. If $c b=c$ and $b c=c$ then G is isomorphic to $L(4)$.
(ii3) Let $a b=c$. Then $b c=a b . c=c c=c$ and $a . c b=c \cdot a b=c c=c$. Consequently, $c b \in\{b, c\}$. In both cases, G is distributive.
4.7 Proposition. (i) The groupoids $L(2), L(3), L(4)$ and $L(5)$ are pair-wise nonisomorphic non-distributive idempotent LD-groupoids.
(ii) Every non-distributive three-element idempotent LD-groupoid is isomorphic to one of the groupoids $L(2), L(3), L(4)$ and $L(5)$.

Proof. Use 3.7, 4.2, 4.3, 4.4, 4.5 and 4.6.

5. Simple Left Distributive Groupoids

Let G be an LD-groupoid. Denote by $A(G)$ the set of all $a \in G$ such that the translation L_{a} is injective and by $B(G)$ the set of all $a \in G$ such that $a b=a a$ for every $b \in G$. Further, let $C(G)=\{a \in B(G) ; a a \in A(G)\}$ and $D(G)=\{a \in G ; a a, a \in$ $\in B(G)\}$.
5.1 Lemma. Let G be an LD-groupoid and $a \in B(G)$. Then there is an idempotent $e=e(a) \in G$ such that $a a=e=a b$ for every $b \in G$. If $a \in D(G)$ then $e \in$ $\in D(G)$ and $e b=e$.

Proof. Easy.
5.2 Lemma. Let G be a non-trivial simple LD-groupoid. Then:
(i) $G=A(G) \cup B(G)$ and $A(G) \cap B(G)=\emptyset$.
(ii) $B(G)=C(G) \cup D(G)$ and $C(G) \cap D(G)=0$.

Proof. Let $a \in G$. Then $r=\operatorname{ker} L_{a}$ is a congruence of G, and hence either $r=$ id and $a \in A(G)$ or $r=G \times G$ and $a \in B(G)$. The rest is clear.
5.3 Lemma. Let G be a non-trivial simple LD-groupoid. Then:
(i) $A(G)$ is either empty or a subgroupoid of G.
(ii) $D(G)$ is either empty or a right ideal of G.
(iii) $A(G) B(G) \subseteq B(G), A(G) C(G) \subseteq C(G)$ and $A(G) D(G) \subseteq D(G)$.

Proof. (i) Let $a, b \in A(G), c, d \in G, c \neq d$. Then $a b . a c=a \cdot b c \neq a . b d=$ $=a b . a d$. By 5.3(i), $a b \in A(G)$.
(ii) If $a \in D(G)$ and $b \in G$ then $a b=e(a) \in D(G)$.
(iii) Let $a \in A(G), c \in C(G)$ and $d \in D(G)$. For every $b \in G, a c . a b=a . c b=a e(c)$ and $a d . a b=a e(d)$. Since $a, e(c) \in A(G), a e(c) \in A(G)$ by (i) and $a c \in C(G)$. Finally, $a e(d) . a b=a \cdot e(d) b=a e(d)$, and so $a e(d) \in D(G)$ and $a d \in D(G)$.
5.4 Lemma. Let G be a simple LD-groupoid containing at least three elements. Then either $A(G)=G$ or $D(G)=G$ or $\operatorname{card} A(G)=\operatorname{card} C(G)=\operatorname{card} D(G)=1$.

Proof. Put $r=(A(G) \times A(G)) \cup(C(G) \times C(G)) \cup(D(G) \times D(G))$. Then r is an equivalence and we are going to show that r is a congruence. Let $a, b, c \in G$ and $(a, b) \in r$. If $c \in A(G)$ then $(c a, c b) \in r$ by 5.3(i), (iii). If $c \in B(G)$ then $c a=c b$, and so $(c a, c b) \in r$. If $a, b, c \in A(G)$ then $a c, b c \in A(G)$ by $5.3(\mathrm{i})$ and we have $(a c, b c) \in r$. If $a, b \in D(G)$ then $a c, b c \in D(G)$ by $5.3($ ii $)$ and $(a c, b c) \in r$. If $a, b \in C(G)$ then $a c=$ $=e(a), b c=e(b), e(a), e(b) \in A(G)$, and hence $(a c, b c) \in r$. If $a, b \in A(G)$ and $c \in C(G)(c \in D(G))$ then $a c, b c \in C(G)(a c, b c \in D(G))$ by 5.3(iii), and therefore $(a c, b c) \in r$. We have proved that r is a congruence of G. First, suppose $r=G \times G$. Then either $A(G)=G$ or $C(G)=G$ or $D(G)=G$. If $C(G)=G$ then $A(G)=\emptyset$, a contradiction. Finally, let $r \neq G \times G$. Then $r=$ id and $\operatorname{card} A(G)=\operatorname{card} C(G)=$ $=\operatorname{card} D(G)=1$, since G contains at least three elements.
5.5 Example. Consider the following groupoids:

$D(1)$	0	$D(2)$	0	1	$D(3)$	0	1			
0	0	0	0	0	0	0	0	$D(4)$	0	1
1	0	0	1	0	1	1	1	1		
	$D(5)$	0	1							
0	0	1								
0	1	0	1							

It is easy to check that these groupoids are pair-wise non-isomorphic simple distributive groupoids.
5.6 Theorem. Let G be a simple LD-groupoid. Then exactly one of the following three assertions is true:
(i) G is isomorphic to one of the groupoids $D(1), D(2), D(3), D(4), D(5), L(1)$, Cycl(2).
(ii) G is isomorphic to $L(6)$.
(iii) G is a left cancellative groupoid containing at least three elements.

Proof. If G contains at most two elements then (i) is true. Suppose that G contains at least three elements. If $A(G)=G$ then G is left cancellative. Let $D(G)=G$. Then there is a mapping $e: G \rightarrow \operatorname{Id} G$ such that $a b=e(a)$ and $e(e(a))=e(a)$ for all $a, b \in G$. Since ker e is a congruence of G, either ker $e=\mathrm{id}$ and e is injective or ker $e=G \times G$. If e is injective then $a=e(a)$ for every $a \in G, G$ is a semigroup of left zeros and consequently G contains at most two elements, a contradiction. If ker $e=G \times G$ then $e(a)=e(b)$ for all $a, b \in G, G$ is a semigroup with zero multiplication, and hence G contains at most two elements, a contradiction. Finally, let $A(G) \neq G \neq D(G)$. By 5.4 and 5.2 , card $G=3$ and $\operatorname{card} A(G)=\operatorname{card} C(G)=$ $=\operatorname{card} D(G)=1$. Assume $G=\{a, b, c\}, A(G)=\{a\}, C(G)=\{c\}$ and $D(G)=\{b\}$. Then $a a=a, a b=b, a c=c, b a=b b=b, c a=c b=c c=a$ (use 5.3) and G is isomorphic to $L(6)$.
5.7 Theorem. (i) The groupoids $D(1), D(2), D(3), D(4), D(5), L(1), L(6), \operatorname{Cycl}(p)$, $p \geqq 2$ a prime, are pair-wise non-isomorphic simle LD-groupoids.
(ii) Every finite simple LD-groupoid G is either isomorphic to one of the groupoids from (i) or it is an idempotent left quasigroup with $p_{G}=\mathrm{id}_{G}$.

Proof. Let G be a finite simple LD-groupoid. With respect to 5.6 , we can assume that G is left cancellative. Then G is a left quasigroup and by $2.4, p$ is a congruence of G. If $p=$ id then G is idempotent by 2.5 . If $p=G \times G$ then G is a left unar and we can use 1.3.
5.8 Proposition. Let G be a simple LD-groupoid such that the mapping $a \rightarrow a a$ is an endomorphism of G. Then G is either isomorphic to one of the groupoids $D(1), D(2), D(3), D(4), D(5), L(1), C y c l(p), p \geqq 2$ a prime, or it is idempotent and left cancellative.

Proof. Taking into account 5.6 and 3.5 , we can assume that G is left cancellative. Put $f(a)=a a$. Then $\operatorname{ker} f$ is a congruence of G. First, let $\operatorname{ker} f=G \times G$. Then $a a=b b$ for all $a, b \in G$ and $a a=a a . a a=a$. $a a$ implies $a=a a$. Now, let ker $f=\mathrm{id}$. Then f is an injective endomorphism and $(a, a a) \in p$ for every $a \in G$ by $2.5(6)$. By $2.3(\mathrm{i})$ and $2.4(\mathrm{ii}), p$ is a congruence of G and we can proceed similarly as in the proof of 5.7.
5.9 Proposition. Let G be an infinite simple left cancellative LD-groupoid. Then either G is idempotent or $a a . a \neq a a$ for every $a \in G$.

Proof. Apply 2.14 and 5.8.

6. Group Constructions Of Left Distributive Groupoids

6.1 Proposition. Let f be an endomorphism of a group G. Let $x \in C(G)(=$ the centre of G) be such that $f(x)=x$. Put $g(a)=a f\left(a^{-1}\right)$ and $a * b=g(a) x f(b)$ for all $a, b \in G$. Then:
(i) $G(*)$ is a regular LD-groupoid.
(ii) $G(*)$ is distributive iff $x=1$ and $f g(a) f g(b)=f g(b) f g(a)$ for all $a, b \in G$.
(iii) $G(*)$ is medial iff $f g(a) f g(b)=f g(b) f g(a)$ for all $a, b \in G$.
(iv) $G(*)$ is idempotent iff $x=1$.
(v) $G(*)$ is left (right) cancellative (divisible) iff $f(g)$ is injective (surjective).

Proof. Easy.
6.2 Example. Let $G(+)$ be a quasicyclic 2-group. There is an elefent $0 \neq x \in G$ with $2 x=0$. Put $a * b=2 a-b+x$ for all $a, b \in G$. Then $G(*)$ is a regular divisible LD-groupoid containing no idempotents.
6.3 Proposition. Let f be an endomorphism of a group G and $K=\{x \in G$; $f(x)=x\}$. Put $a * b=a f\left(b a^{-1}\right)$ for all $a, b \varepsilon G$. Then:
(i) $G(*)$ is an idempotent LD-groupoid.
(ii) $G(*)$ is distributive iff it is medial iff $f\left(G^{\prime}\right) \subseteq K$ and $f(G)$ is nilpotent of class at most 2 ; these conditions are equivalent to $f\left(G^{\prime}\right) \subseteq K \cap C(f(G))$.
(iii) If f is either injective or surjective then $G(*)$ is distributive iff $G^{\prime} \subseteq K$ and G is nilpotent of class at most 2 .
(iv) $G(*)$ is left symmetric iff $f^{2}=$ id and $a f(a) \in C(G)$ for every $a \in G$.
(v) $G(*)$ is right symmetric iff $f\left(a^{2}\right)=f^{2}(a)$ for every $a \in G$ and the group $f^{2}(G)$ is commutative.
(vi) $G(*)$ is semisymmetric iff $f(a)=a f^{2}(a)=f^{2}(a) a$ and $f^{2}\left(a b a^{-1} b^{-1}\right)=$ $=a^{-1} b^{-1} a b$ for all $a, b \in G$.
(vii) $G(*)$ is commutative iff $f\left(a^{2}\right)=a$ for every $a \in G$ and G is commutative.
(viii) $G(*)$ is symmetric iff G is commutative, $a^{3}=1$ and $f(a)=a^{2}$ for every $a \in G$.
(ix) $G(*)$ is left regular and $q=\operatorname{ker} f$.
(x) $G(*)$ is left cancellative (divisible) iff f is injective (surjective).
(xi) p is a congruence of $G(*)$ and $(a, b) \in p$ iff $a^{-1} b$ is contained in $K \cap C(f(G))$.
(xii) $G(*)$ is right regular iff, for all $a, b \in G, a f(b)=f(b a)$ implies $a \in K \cap C(f(G))$; in this case, $K \subseteq C(f(G))$.
(xiii) $G(*)$ is right cancellative iff, for all $a, b \in G, a f(b)=f(b a)$ implies $a=1$; in this case, $K=1$.
(xiv) $G(*)$ is right divisible iff the mapping $a \rightarrow a f\left(a^{-1}\right)$ is surjective; in this case, $G(*)$ is a right quasigroup iff this mapping is a permutation.
Proof. Only the assertion (ii) needs a proof. First, assume that $G(*)$ is distributive. Then $f\left(b^{-1} a c^{-1} b a^{-1} c\right)=f^{2}\left(c b^{-1} a c^{-1} b a^{-1}\right)$ for all $a, b, c \in G$. Setting $c=1$, we get $f\left(b^{-1} a b a^{-1}\right)=f^{2}\left(b^{-1} a b a^{-1}\right)$ and the inclusion $f\left(G^{\prime}\right) \subseteq K$ is evident. Conse-
quently, $f\left(b^{-1} a c^{-1} b a^{-1} c\right)=f^{2}\left(c b^{-1} a c^{-1} b a^{-1}\right)=f^{2}\left(c b^{-1} c^{-1} b b^{-1} c a c^{-1} b a^{-1}\right)=$ $=f\left(c b^{-1} c^{-1} b b^{-1} c a c^{-1} b a^{-1}\right)=f\left(c b^{-1} a c^{-1} b a^{-1}\right)$ for all $a, b, c \in G$. For $b=1$, $f\left(a c^{-1} a^{-1} c\right)=f\left(c a c^{-1} a^{-1}\right)$, and so conjugated elements commute in the group $f(G)$. Further, $f\left(c^{-1} b a^{-1} c a b^{-1}\right)=f\left(a^{-1} b c b^{-1} a c^{-1}\right)=f\left(c^{-1} a^{-1} b c b^{-1} a\right)$, $f\left(b a^{-1} c a b^{-1}\right)=f\left(a^{-1} b c b^{-1} a\right), \quad f\left(b^{-1} a b a^{-1} c\right)=f\left(c b^{-1} a b a^{-1}\right) \quad$ and $\quad f\left(G^{\prime}\right) \subseteq$ $\subseteq C(f(G))$. Now, conversely, suppose that $f\left(G^{\prime}\right) \subseteq K \cap C(f(G))$. Then $f\left(a^{-1} c b^{-1}\right.$. .$\left.a c^{-1} b\right)=f^{2}\left(a^{-1} c b^{-1} a c^{-1} b\right) \in C(f(G))$, and so $f\left(a^{-1} c b^{-1} a c^{-1} b f(d)\right)=f^{2}\left(d a^{-1}\right.$ $c b^{-1} a c^{-1} b$) for all $a, b, c, d \in G$. The rest is clear.
6.4 Example. As it is well known, there exists a non-trivial torsionfree group G such that any two elements $a \neq 1 \neq b$ are conjugated in G. Put $H=G \backslash\{1\}$ and $a * b=a b a^{-1}$ for all $a, b \in H$. Then $H(*)$ is a divisible idempotent LD-groupoid and $H(*)$ is a left quasigroup. On the other hand, $p=\mathrm{id}=q$ and $H(*)$ is not right regular.
6.5 Proposition. Let f be an endomorphism of a group G. Put $a * b=a f\left(b^{-1} a\right)$ for all $a, b \in G$. Then:
(i) $G(*)$ is an idempotent groupoid.
(ii) $G(*)$ is an LD-groupoid iff $f(a) f^{2}\left(a^{-1}\right) f^{2}(b)=f^{2}(b) f^{2}\left(a^{-1}\right) f(a)$ for all $a, b \in G$.
(iii) If f is either injective or surjective then $G(*)$ is an LD-groupoid iff $a^{-1} f(a) \in$ $\in C(G)$ for every $a \in G$.
(iv) $G(*)$ is right distributive iff $f\left(a b c a^{-1} c f(b)\right)=f\left(c f(b) f(a) b c f\left(a^{-1}\right)\right)$ for all $a, b, c \in G$.
(v) $G(*)$ is left symmetric iff $f=$ id.
(vi) $G(*)$ is right symmetric iff $f\left(a^{2}\right) f^{2}(a)=1$ for every $a \in G$.
(vii) $G(*)$ is semisymmetric iff $a f(a) f^{2}(a)=1$ and $a f(a)=f(a) a$ for every $a \in G$.
(viii) $G(*)$ is commutative iff $a f\left(a^{2}\right)=1$ for every $a \in G$.
(ix) $G(*)$ is symmetric iff $f=$ id and $a^{3}=1$ for every $a \in G$.
(x) $G(*)$ is left regular and $q=\operatorname{ker} f$.
(xi) $G(*)$ is left cancellative (divisible) iff f is injective (surjective).
(xii) $(a, b) \in p$ iff $a^{-1} b=f\left(a b^{-1}\right) \in C(f(G))$.
(xiii) p is a congruence of $G(*)$ iff, for all $a, b \in G, a^{-1} b=f\left(a b^{-1}\right) \in C(f(G))$ implies $f\left(a^{2}\right)=f\left(b^{2}\right)$.

Proof. Easy.
6.6 Corollary. Let G be a group and $a * b=a b^{-1} a$ for all $a, b \in G$. Then $G(*)$ is a left symmetric LD-groupoid.

References

[1] Basarab, A. S.: Serdcevina obobščenoj lupy Mufang. Mat. Issled. 2 (1968), 3-13.
[2] Belousov, V. D.: Ob odnom klasse levodistributivnych kvazigrupp. Izv. vys. uč. zav. Matematika 32 (1936), 16-20.
[3] Belousov, V. D.: Serdcevina lupy Bola. Issled. po obščej algebre, Kišiněv 1965, 53-66.
[4] Belousov, V. D.: Osnovy teorii kvazigrupp i lup. „Nauka"‘, Moskva 1967, 131-174.
[5] Belousov, V. D., Florja, I. A.: O levodistributivnych kvazigruppach. Bul Akad. Štiince RSS Mold., Izv. A. N. Mold. SSR, ser. fiz.-techn. i matem., no. 7, 1965, 3-13.
[6] Belousov, V. D., OnoJ, V. I.: O lupach, izotopnych levodistributivnym kvazigruppam, Mat. Issled. 7 (1972), 135-152.
[7] Galkin, V. M.: Levodistributivnyje kvazigruppy koněčnovo porjadka. Mat. Issled. 5I (1979), 43-54.
[8] Hosszú, M.: Homogeneous groupoids. Ann. Univ. Sci. Budapest, Math., 3-4, 1960—1961, 95-98.
[9] Loos, O.: Spiegelungsräume und homogene symmetrische Räume. Math. Z. 99 (1967), 141-170.
[10] Onoj, V. I.: Levodistributivnyje kvazigruppy, odnorodnyje sleva nad kvazigrupoj. Bul. Akad. Štiince RSS Mold., Izv. A. N. Mold. SSR, ser. fiz.-techn. i matem. n., no. 2, 1970, 24-31.
[11] OnoJ, V. I.: O serdcevinach kvazigrupp so svojstvom pravoj obratimosti. Voprosy teorii kvazigrupp i lup, Kišiněv 1970, 91-104.
[12] Onos, V. I.: Svjaz S-lup s lupami Mufang. Mat. Issled. 7 (1972), 197-212.
[13] Robinson, D. A.: A loop-theoretic study of right-sided quasigroups. Ann. Soc. Sci. Bruxelles 93 (1979), 7-16.
[14] Stein, S. K.: On the foundations of quasigroups. Trans. Amer. Math. Soc. 85 (1957), 228 to 256.
[15] Stein, S. K.: On a construction of Hosszú. Publ. Math. 6 (1959), 10-14.
[16] Stein, S. K.: Left distributive quasigroups. Proc. Amer. Math. Soc. 10 (1959), 577-578.

[^0]: *) 18600 Praha 8, Sokolovská 83, Czechoslovakia.

