
Acta Universitatis Carolinae. Mathematica et Physica

Lubomír Skála; Oldřich Bílek
Algebraic representation of the Nakajima-Zvanzig's generalized master equation

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 23 (1982), No. 2, 61--72

Persistent URL: http://dml.cz/dmlcz/142495

Terms of use:
© Univerzita Karlova v Praze, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/142495
http://project.dml.cz


1982 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 23. NO. 2. 

Algebraic Representation of the Nakajima-Zwanzig's 
Generalized Master Equation 

L. SKALA and O. BILEK 

Department of Chemical Physics, Charles University, Prague*) 
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It is shownthat using some properties of the Bessel functions the integro-differential general-
ized master equation can be transformed into a systém of linear matrix equations. The simplicity 
of the systém makes possible wide applicability of this method. Various properties of this repre-
sentation of the generalized master equation together with an illustrative example are given and 
discussed in detail. 

B pa6oTe noxa3aHO HTO C noMombio HeKOTOpwx CBOHCTB 4>VHK.UHH Eeccejia BOSMOJKHO 
HHTerpo-AH(J)4>epeHUHajibHoe o6o6ineHHoe KHHeraHecKoe ypaBHeHHe CBCCTH K CHcreMe jiHHeHHbix 
MaTpHHHbix ypaBHeHHň. n p o c T O T a 3THX ypaBHeHHň no3BOJiaeT HiHpoKoe npHMeHeHHe 3Toro noA-
xoAa. .TJeTajibHo oBcyHCAaiOTCH pa3Hbie cBOňcTBa 3Toro npeACTaBJíeHHH o6o6meHHoro KHHeTHHecKo-
ro ypaBHeHHfl H npHBOAHTca npocToň npHMep ero npHMeHeHHH. 

V práci je ukázáno, že s použitím některých vlastností Besselových funkcí lze integro-
diferenciální zobecněnou kinetickou rovnici převést na systém lineárních maticových rovnic. 
Jednoduchost tohoto systému umožňuje širokou použitelnost navržené metody. V práci jsou 
uvedeny a diskutovány různé vlastnosti této reprezentace zobecněné kinetické rovnice společně 
s ilustrativním příkladem. 

1. In t roduct ion 

Starting from the work of Pauli [ l ] , the master equations play an important 
role in various fields of physics. We mention here the theory of transpoit phenomena 
and relaxation processes and the theory of lasers. Further examples and references 
are given e.g. in [2]. 

The most general form of the master equation is the so called generalized master 
equation (GME) [3, 4]. It is convenient for example for the unified description of 
the coupled coherent and incoherent motion of excitons. 

The most elegant way of the derivation of GME is based on the decomposition 
of the density matrix Q into some relevant and irrelevant parts. Starting then from the 
Liouville equation for O, the equation for the relevant part only (usually the diagonal 

*) Ke Karlovu 3, 121 16 Prague 2, Czechoslovakia. 
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of Q) can be derived. This non-local in time integro-differential equation is known as 
the generalized master equation. This equation for the relevant part of 0 contains the 
kernel consisting of so called memory functions which aie characteristic for a given 
system and do not depend on the dynamical process in question. For given memory 
functions and initial conditions, the time evolution of the relevant pait of o is given 
by GME. On the other hand, if the time evolution of o is known (for example from 
the solution of the corresponding Schrodinger equation), GME can be used for the 
evaluation of the memory functions. 

In this work, we describe a new way of the solution of GME based on some 
properties of the Bessel functions. The simplicity of this approach leading to a system 
of linear matrix equations makes possible to take into account the most general form 
of GME with the so called non-retaided teims (section 2). The expansion of the 
probabilities in terms of a simple modification of the Bessel functions is discussed 
in section 3. Simple example illustrating the foregoing theory is given in section 4. 
The time scaling pioceduie is described in section 5. The appendix summarizes 
the relevant results from the theory of the Bessel functions. 

2. Algebraic Representation of GME 

In this work, we discuss GME in the form 

^ = f IfiJt - s) P„(s) ds + Qjt) , (1) 
at Jo n 

where Pm(t) are the diagonal elements of the density matrix, Kmn(t) are the memory 
functions and Qm(t) are so called non-retarded terms. Although Pm(t) and Qm(t) 
are not in general independent [4], Pm(t), Kmn(t) and Qm(t) may be from our point 
of view arbitrary functions satisfying (1). In many important cases the non-retarded 
terms vanish [ 2 - 5 ] . 

To simplify the notation, we re-write GME (1) into the matrix form. For this 
aim, we consider the probabilities Pm

l)(t) and the non-retarded terms Qm
l)(t) for dif

ferent initial conditions P(
m

l)(0) and the conesponding QJ„o(0), i= 1,2, ... and 
define matrices 

fp\l\t), p?\t), ...\ 
P(t) = I Pil\t), Pf\t), ... I (2) 

and 
fQ?\i), Q[2\t), . 

Q(t) = I CHO, Q?\t), ...\. (3) 
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GME (1) then becomes 

^ = fK(r-s)P(s)ds + e(r), (4) 
at Jo 

where K(t — s) = {Km„(r — s)}m,ii=1,2,... is also matrix. For the problem of the order 
N (m runs from 1 to N) we use N independent initial conditions so that all three 
matrices P(r), K(t) and Q(t) are the square matrices of the order N. 

The right hand side of GME (4) contains the time convolution between K(t — s) 
and P(s). One way of its solution consists in the application of the Laplace transform 
to (4) which leads to a product of the corresponding transforms instead of the 
convolution of the originals (see e.g. [5]). Instead of using the Laplace transform, 
we make use of the Neumann type series (see Appendix) for the expansion of P(l), 
K(t) and Q(t) as functions of time. 

For this aim, we define functions 

J.Q.fr+'JWO, ( = 0 , 1 , . . . , (5) 

where Jt(t) are the Bessel functions of the first kind. From our point of view, these 
functions have the following important properties 

dt 

- ^ = i|7.-i(0 - J.+1(0] • i = 1, 2, ... (6b) 
dř 

and 

f. Jt(t- s)Jj(s)ds = Ji+J+1(t) (7) 
)0 

leading to a significant simplification of (4). 
We assume now that P(t), K(t) and Q(t) are expanded in terms of the functions 

m 
i = 0 

- - ( O - I K . - W (9) 
i = 0 

and 
<2(t) = I Qi h(t), (10) 

i = 0 

where Pt, Kt and Qv are the matrix-type expansion coefficients. It appears that the 
mathematical assumptions for which the series (8) —(10) can be used are sufficiently 
general (see Appendix). 
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Substituting now (8) — (10) into GME (4) and equating the coefficients before 
J.(t) on both sides of (4) we get the following infinite system of matrix equations 

iPi = Co , (Ha) 

t(Pi - Po) = KoPo + G i , (Hb) 

i(P3 - P.) = KoP, + KiPo + Q2 , (l ie) 

i(P i + 1 - P i _ 1 ) = X ^ / - i - j + Qi, i= 1,2 ( l id) 
1=o 

Thus, it appears that GME (4) is equivalent to the matrix system (11) which represent 
the reccurrent relations for the determination of one unknown function from P(t), K(t) 
and Q(t) in terms of two remaining ones. 

If the matrix coefficients K, and Qi are known, the matrices Pt can be evaluated 
in an obvious way. Assuming that the initial value P(0) is given it follows from (A4) 
that 

Po = 2P(0). (12) 

Fuither matrices Pl9 P2, ... can be found from (11) 

Pi = 26o , (13) 

P2 = 2(K0P0 + QJ + P0 , 

P3 = 2(K0P, + KXP0 + Q2) + Pt . 

]f the memory functions are to be evaluated, we solve (11) in a similar way 

K0 = [i(P2 - Pv) - G i ] V . (14) 

Ki = [ i t o - ^ i ) - ^ o ^ i ~ 0 2 ] Po1 , 

K2 = [i(A " Pi) ~ K0P2 - K.P, - Q3] Po1 . 

Note that the matrix P0 is regular for independent initial conditions so that P0
 x 

exists. In many cases (see e.g. [5]) the initial condition has the form P(0) = 1 so that 
Po1 = 0 . 5 . 1 . 

The evaluation of Qt in terms of P, and K, is straightforward and requires no 
comment. 

Multiplying equations ( l l ) by J0(l), Ji(0> ••• anc* summing them we get the fol
lowing form of GME 

^® = Z(Wi-i-j)m + o(t)- as) 
at ; = o j=o 
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This equation explicitely displays the essence of our method. The "continuous" 
convolution in (4) is transfoimed to a "discrete" convolution in (15). In the discrete 
convolution, time t appears in the functions Jt(t) only. GME (15) is local in time, 
however, the value of the convolution depends on all Ki9 Pi9 (i = 0, 1 , . . . or as it 
can be shown on all deiivatives of P(t) and K(t) at t = 0. Truncating the series 
(8) —(10) i.e. assuming P, = K, = Qt = 0 for i > n, we search for the solutions 
exact to the n-th power of t (see (Al)). It follows from (15) that the corresponding 
truncated expression for the convolution is then exact to the (n + l)-th power of t 
so that it can also be truncated. Therefore, this form of GME is particulaily suitable 
for finding approximate solutions exact to a given power of t. 

3. Evaluation of the Matrices Pt 

In this section we discuss the way by which the memory kernel K(t) can be evalu
ated. Assuming the initial conditions for which Q(t) = 0 we find the matrix of the 
probabilities P(t) from the solution of the corresponding Schrodinger equation 
Having P(t), we derive the formulae from which the matrix coefficients P, can be 
evaluated. The calculation of the memory kernel from (14) and (9) is then straight
forward. 

We consider here the problem of the motion of excitons in the coherent case 
(see e.g. [5]). For this aim, we assume the time independent electron hamiltonian 

H = I |m> Hmn <„| , (16) 
m,n 

where |n> are some localized states. We suppose here that the solutions of the 
Schrodinger equation 

#|<*> = £«|«> (17) 

are known and introduce frequencies to, by 

£« = hto. . (18) 

In the representation of the states |n>, Eq. (17) becomes 

JX-<" | a> = £.<m | a> • (19) 
a 

Our aim, however, is to investigate solutions of the time Schrodinger equation 

i f t | < n | ^ > = .ff<ii|^> (20) 
ct 

which has a general solution 

<n | <A> = Zc« exp (-\(DJ) <n I a> . (21) 
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Now, as it is usual we require the fulfilment of N independent initial conditions 

<n\^(t = 0)}p = 5np, P=1,.-.,N, (22) 

i.e. we assume that the solution (21) is at t = 0 localized at site p, p = 1, ..., N. 
This requirement directly leads to 

<n I !K0>P = E < " | « > exP ( - M <« I H> • (23) 
a 

Further let us denote the probability to find the excitation at site n by Pn
p)(t\ 

where p denotes the initial localization of the excitation 

- W ) = KP • (24) 
We get from (23) 

H>\t) = |<« I •A(t)>P|
2 = I GS* exp (-ia>.,t), (25) 

where the elements of the matrix G(<x0) are formed by the components of the eigen
vectors <n | a> 

G™ = <n | a> <a | p> <p | /*> </? \ n} . (26) 

Therefore, the matrix of the probabilities appearing in (4) equals 

P(r) = lG^expHv) . (27) 

The matrices G(a/?) are in general hermitian 

G«tf) = Ge*> + (28) 

and fulfil the relation 

For the real hamiltonian the matrix of the probabilities is symmetric 

P(t) = ^G(^ cos (coaPt) = P(t)\ (30) 
*,P 

Assuming now that P(t) (27) is known we evaluate the matiices P, in the expan
sion (8). Since the only time-dependent term in (27) is the exponential one it is suf
ficient to determine the coefficients cn(co) of the expansion 

00 

exp ( - icot) = £ cn(co) Jn(t) . (31) 
n = 0 

First we determine c0(co). Putting t = 0 and using (A4) we get 

1 = £ cn(a))J,,(0) = ico(co) (32) 
n = 0 

so that 
c 0 H = 2. (33) 
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In order to determine c„{co), n = l, 2 , . . . we calculate the derivative of both sides 
of (31) and use (A3) 

00 

- i © exp {-icot) = c0(co) ( - * ) J,(t) + £ c„((o) *C7--i(0 - -!»+i(tj) • (34) 
л = l 

Substituting for exp ( — icot) from (31) and equating the coefficients before J„(t), 
n = 0, 1, 2,. . . on both sides we get the following reccurrent formulae 

cx(co) = — 2icoc0(co), (35a) 

cn+ i(co) = c„- i(co) - 2ico c„(co) , n = 1, 2, ... . (35b) 

For a given co, these equations and Eq. (33) determine cn(co), n = 0, 1, 2,.. . uniquely. 
Because of the difference equation (35b), the coefficients cn(co) are closely related 
to the Gegenbauer and Tschebyschev polynomials [6]. 

The matrices Pn necessary in (11) can be now easily found. It follows from (27) 
or from 

P{t) = I &«•> exp ( - icoaßt) = liP„ J„{t) (36) 
aß 

that 

Since 

we get also 

and 

P„ = £ C * c „ t o , ) . (37) 
<*/9 

c„(c) = ( - l )»c n ( -co) (38) 

P2k = 2 £G ( M ) + 2 X cjæ,„) Re G<*> (39a) 
<X<ß 

P2k+1 = 2iY c2k+1{(oxß) Im G<«« . (39b) 
a<ß 

These formulae are general. If the hamiltonian is real we get 

I^+i = 0 (40) 
and 

Pit = Pit • (41) 

In many cases, P(r) is an even function of t so that the expansion of cos (co^t) 
instead of exp ( — icoafit) is necessary. The coefficients of the expansion 

cos cot = £ bn(co) Jn(t) (42) 
fl = 0 

can be determined analogously. First it is obvious that 

b„{(o) = Re c„{co) (43) 
so that 

!>2*+iH = 0 . (44) 
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For non-zero coefficients we get the reccurrent relations 

b0 = 2 , (45) 

b2 = 2 - 8w2 , 

^2*+2 = (2 - 4a>2) b2k - b2*_2 . 

It follows from (37) that the matrices Pt are determined by the energy spectrum 

of the hamiltonian (coafi = (Ea — Ep)jh) and the corresponding eigenvectors (ma

trices G(xP)). According to (14), the memory kernel K(t) depends also on a)aP and 

Q(<*P) Thjg dependence, however, is in general complicated. For short times it is 

given by 

P(t) = iP>J>(t) (46a) 
1 = 0 

and 

K(t) = iKiJi(t), (46b) 
i - 0 

where Pt = Pi((oaP, G("0)) and Kt = K(wafh G(acP)) with the accuracy to the n-th 

power of t. 

4. Example 

In this section, a simple example illustrating the use of our approach is 

given. Further applications are prepared for the publication. 

It is well known that the problem of the excitons in dimer with the hamiltonian 

- О Д 
( 4 7 ) 

leads to the probabilities 

/cos 

P(t) = 

/cos2 — t , sin2 — t\ 

v v I W 
, sin2 — t, cos2 — t i 
\ h 

and the constant memory kernel 

^=2iCI: -0- «> 
It can directly be verified that these P(t) and K(t) satisfy GME (4) with Q(t) = 0. 

First we introduce a new time scale by the substitution 

- t -> t . (50) 
h 
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Using then the method of section 3 we get as a result 

and 

where 

, . /cos2 ř, sin2 ř\ £ „ 7 / x ,C1\ 
P®-(«n>t,cOSt)-£0

P»JM (51) 

x w=(~2, -2) =LKin Jin{t)' (52) 

/ 2 _ 24,ny (2» - -)! ( - l ) " " s + 1 2^-y1 (2 n ~ 5) ! ( - 1 ) " ' " ' 
_ i s=o 24ss! (2n - 2s)!' *=o 24ss! (2и - 2s)! . , . 

2 " " l

2 4 B y ( 2 » - s ) ! ( - l ) ' - s + 1

 2 24.у(2и--).(-1)Г-*11 ' 
^ s=o 24 ss! (2n - 2s)! ' s=o 24 ss! (2л - 2s)./ 

and 

- 4 
4 ^ 2 n — : -i)• <*> 

The first few matrices Pn have the form 

P _ l 2 , 0\ _ / - 1 4 , 16\ / 210, -208\ 
n " V0, 2J' ^2~{ 16, -14 j ' 4 ~ 1-208, 210) ' ^ 5 > 

_ ^-2910, 2912\ 
2912, -2910) 

Matrices P2„ + i and K2n + l are equal to zero. 

5. Time Scaling 

The method developed in this paper is based on the infinite expansions (8) —(10) 
of P(t), K(t) and Q(t) in terms of the functions Jf(t). From the computational point 
of view, the question of the rate of the convergence of these series and the possibility 
of their truncation is to be analyzed. It may appear in this context that the expansion 
in terms of the functions Ji(At) (A =j= l) instead of J,(t) is more convenient. This 
generalization leading to the change of the form of the basis functions can be taken 
into account in the following way. 

Let us consider GME (4) and define a new time scale by 

x - At, a - As . (56) 

Then we get from (4) 

^ W = f X ' ( T - a) P'(a) da + Q'(x) (57) 
OT Jo 
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where 
P\T) = P(TJA), Q'(T)=Q(TJA) (58) 

and 

K'(T) = ±-2K(T\A). (59) 

Solving (58) we get the original solutions from 

P(t) = P\At), Q(t)=Q\At) (60) 
and 

K(t) = A2K'(Ai). (61) 

The time scaling generally leads to the change of the matrix coefficients P„ K, and Qx, 
For example, in case of the dimer (section 4) we put A = 2 so that 

n, x /cos21, sin2 A ^ _, T /- \ / ^ \ 
p « = U ( ; c o S

2 J = i 0
P 2 » ^ (62) 

and 
K{t) = {~l', -l) = %K2nJ^2t)- (63) 

The expression for P2n then becomes 

p _ t l + ( - l ) " ( 2 n + l), l - ( - l ) " ( 2 n + l ) \ 

V ~ ( - 0" (2« + 1), 1 + ( -1)" (2n + 1)) { > 

K2n=(-;;_;)• (65) 

The functions J„(t) appearing in (8) —(10) go for n > t very quickly to zero so 
that these series may easily be truncated. It means that to get a sufficiently exact 
numerical solution on the interval (0, t) the number of terms of the series (8) —(10) 
taken into account must be roughly equal or greater than t. For example, to get P(i) 
or K(t) on the period (0, TT) with 7 digit accuracy, it is sufficient to take about 10 first 
terms of the series (62) or (63). 

From the computational point of view, the scaling parameter A is optional and 
can be used for the optimalization of the convergence of the series (8) —(10). 

6. Conclusions 

The suggested way of the solution of GME is applicable to the most general 
form of GME with non-retarded terms. There is no limitation of our method as far 
as the spatial structure (one, two or three dimensions, perfect or distorted lattice) 
and the composition (different chemical components, impurities) of the investigated 
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systems is concerned. Because of its generality, it can be used in different fields 
of physics. In comparison with other methods, it leads to a simple system of algebraic 
equations which can be easily solved. The method is particularly suitable for search
ing approximate solutions exact to a given power of t. 
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Appendix 

The functions 

jn(ř) = 1+1 (ÍX i W 
2 \ 2 / m = o m! (m + n + ť 1)! 

have the following properties 

(Al) 

àJf = -ïШ, (A2) 
йt 

^ - Ч [ - / . - i ( 0 - - ' . + i ( 0 ] . * = 1.2 (AЗ) 
ӣt 

Л(0) = ł 8 n 0 , (A4) 

J ( ( ř - s ) J ( s ) d s = J í + J + 1 ( 0 - (A5) I 
The expansion of a given function in terms of the functions Jn(t) is one of the 

forms of the Neumann series of the first kind [7]. Any function f(t) which can be 
expanded into the power series 

j(0 = I b,t' (A6) 
1 = 0 

can also be expanded into the series 

K0 = I>» Jn{t) (A7) 
n = 0 

with the same radius of convergence. The mutual relation between the coefficients 
of these series is given by 

=»/2 (n _ SV 
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, ± %r ( - l ) m / / + 1 \ ,AOX 
bl = ÍTTTT, -- / , T fl'--- • (A9> 

(/ + 1)! m=o / — 2m + 1 \ m / 

and 

(/ + 1)!m = 0 

A few examples is given below. 
00 

cosf = 2 X ( - r / ( 2 * + l)Ja k(/) , (A10) 
* = o 

s in r=2 f ; ( - l ) 4 2( / c + l )J 2 , + 1 ( / ) , (AH) 
k = 0 

l=2£J2k(t), (A12) 
k = 0 

cos2 t = X [1 + {-If (2k + 1)] JM(2r), (A 13) 
A = 0 

oo 

sin2 t = I [1 - (-1)* (2k + 1)] J2k(2O . (A14) 
k = 0 
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