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The paper is concerned with N-pure-high subgroups of abelian groups, the study of which
is proposed by L. Fuchs in his book Infinite Abelian Groups (Problem 14).

Clanek se zabyva N-servantné-vysokymi podgrupami Abelov§ch grup, jejich? studium
navrhuje L. Fuchs ve své monografii Infinite Abelian Groups (Problem 14).

B cratee m3yyaroTcsi /N-CEpPBaHTHO-BBICOKME MOATPYINBLI abeseBbIX IpPYII, HMCCIEeNOBaHHE
KOTOpbIX npeanaraeTcs npodiemoit Ho 14 B kaure Becxoneunbie abeness! rpymmnsr JI. dykca.

1. Introduction, history and some basic information

The concept of N-high subgroup was introduced into the theory of abelian groups
by J. M. Irwin and E. A. Walker [6, 9] in 1961. Since then many papers have been
written investigating the various properties of N-high subgroups. One of first ques-
tions, namely, for which subgroups N it is true that all N-high subgroups are pure,
was posed by Irwin and Walker in [6, 9]. This question has been investigated in
several papers (Irwin, Walker, Charles, Khabbaz, Reid), the final result has been
done by R. S. Pierce [11]. Some generalizations and related results have been written
later (Megibben, Rochlina, Keane, Betvdr).

L. Fuchs, inspired with these relevant questions, proposes the study of N-pure-
high subgroups in problem 14 of his book [5]. K. Benabdallah dealt with this problem

in [1].

1.1. Definition. Let N be a subgroup of a group G. We say that a subgroup H
of G is N-pure-high in G if it is maximal among the pure subgroups disjoint from N.

Zorn's lemma guarantees the existence of N-pure-high subgroups. Moreover,
each N-pure-high subgroup of G is contained in an N-high subgroup of G. A natural
problem arises to characterize such subgroups N of a group G for which all N-pure-
high subgroups are N-high. From this point of view, the mentioned theorem of Pierce
describes all subgroups N of a group G for which N-pure-high and N-high subgroups
of G coincide. We reformulate the Pierce’s result in the following way:

*) 186 00 Praha 8, Sokolovska 83, Czechoslovakia.
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1.2. Theorem. ([11]). If N is a subgroup of a group G then the following asser-
tions are equivalent:

(i) A subgroup H of G is N-pure-high in G if and only if H is N-high in G.

(ii) For each prime p either N[p] < p“G or G/N is torsion and there is a natural
number n such that p"*? G[p] < N[p] < p'G.

The necessary and sufficient condition for a subgroup N under which all N-
pure-high subgroups are N-high has not yet been found. In 1974, K. Benabdallah
gave the following partial solution (see also theorem 14, [4]):

1.3. Theorem (Theorem 2, [1]). Let N be a subgroup of a group G. If one N-high
subgroup is torsion, all N-high subgroups are torsion and N-pure-high subgroups
are N-high.

It is easy to see that the assumption and the first assertion of 1.3 are mutually
equivalent and that they are also equivalent with the condition that G/N is torsion:

1.4. Remark For a subgroup N of a group G, the following conditions are
equivalent:

(i) G/N is torsion.

(ii) There is a torsion N-high subgroup of G.

(iif) Each N-high subgroup of G is torsion.

Hence the theorem of Benabdallah obtains this form: If G/N is torsion then
each N-pure-high subgroup of G is N-high in G. The converse is not true; it follows
already from Pierce’s theorem 1.2.

If G is a torsion group then N-pure-high subgroups of G are exactly pure N-high
subgroups of G by 1.3. If G is a torsion free group then N-pure-high and N-high
subgroups of G coincide, since N-high subgroups are neat and neat subgroups of
a torsion free group are pure. Consequently, the study of N-pure-high subgroups is
useful only in the theory of mixed groups. For example, if G does not split then no
G-high subgroup of G is pure in G and hence G,-pure-high subgroups of G are not
G,-high in G.

The purpose of this paper is to investigate N-pure-high subgroups (of mixed
groups). An important result is theorem 2.5 which asserts that: the torsion parts
of N-pure-high subgroups of G are pure N,-high in G,. A few corollaries of this
theorem give a comparison of some elementary properties of N-pure-high and
N-high subgroups. If N is a subgroup of a group G and H is an N-high subgroup
of G then the following assertions hold:

(i) If g € G and pg € H for a prime p then ge N @ H (9.8, [5]).

(ii) H is neat in G.

(iii) G[p] = N[p] ® H[p] for each prime p.

(iv) N @ H is essential in G.

(v) G/(N @ H) is torsion.
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The proof of these assertions (in written sequence) can be easily proved. If H is an
N-pure-high subgroup of G then the assertions (i)—(iii) hold too (see 2.6 (iii) —(iv)).
However, the assertions (iv) and (v) hold if and only if H is N-high in G (see 2.7).
Moreover, if M is an N-high subgroup of G containing an N-pure-high subgroup H
of G then M/H is torsion free (see 2.6 (v)).

All groups in this paper are assumed to be abelian groups. We follow the ter-
minology and notation of [5]. In addition, a subgroup H of a group G is said to be
p-absorbing resp. absorbing in G if (G/H), = 0, resp. (G/H), = 0. Obviously, every
p-absorbing subgroup of G is p-pure in G and if S is a pure subgroup of G then
S + G, is absorbing in G. The set of all primes is denoted by P.

2. Torsion parts of N-pure-high subgroups of G are N,-high in G,
We shall often use the following lemma.

2.1. Lemma. Let N, A and S be subgroups of a group G such that
() AnN =0=SAN,
(i) A = G,
(iii) if A, + Othen S, = 4,
(iv) A and S are pure in G.
Then A + Sis purein Gand (4 + S)n N = 0.

Proof. If a + s = p'g, where a€ A, se S and g € G, then o(a) s = o{a) p'g and
there is §€ S with o(a)s = o(a) p's by (iv). Hence s — p'se A by (iii). Further
a+ s — p's=pl(g — 5)e A and by (iv), there is a € 4 such that a + s — p's =
= p'a. Consequently a + s = pi(a + 3).

If a + s=n, where ae 4, se S and neN, then o(a)s = o(a)neSNN =0

and hence se A by (iii). Consequently a + s=neAnN =0 and (4 + S)n
NnN=0.

2.2. Corollary. Let N be a subgroup of a group G and R = {pe P; N, = 0}.
Then the following assertions hold:

(i) Each N-pure-high subgroup of G contains @ G,
(i) Each N-pure-high subgroup of G is p-absorbmg in G for each pe R.
Proof. Let H be an N-pure-high subgroup of G and 4 = @ G,. By lemma 2.1,

peR

H + A is a pure subgroup of G and (H + A) n N = 0. With respect to the maxi-
mality of H, we have A < H. If pg € H, where g € G and p € R, then pg = ph for
some he H. Hence g — he G, < Hand ge H.

In the following text, we shall often work with a subgroup T which is defined
by the equality (G/N), = T|N.
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2.3. Lemma. Let N be a subgroup of a group G and (G/N), = T/N. Then the
following assertions hold:

(i) Tis absorbingin Gand N + G, < T.

(i) TN + G,) = (G/(N + G)))..

(iii) Tis a maximal essential extension of N + G, in G.

(iv) Tis a pure hull of N + G, in G.

(v) T= G n D, where D is a divisible hull of N + G, contained in a divisible
hull E of G.

Proof. (i) GIN|T/N =~ G|T and hence G/T is torsion free. Since N + G,/N is
torsion, N + G, = T.

(ii) Obviously T/(N + G,) < (G/(N + G,)),. If geG and kgeN + G, for
some integer k then mg € N for some integer m and hence g € T.

(iii) If xe TN(N + G,) then by (ii), o + kx =n + t (ne N, teG,) for some
integer k and hence N + G, is essential in T. If N + G, is essential in a subgroup X
of G then X/{N + G,) is torsion and X < T by (ii).

(iv) Tis pure in G by (i) and hence T|G, is pure in G/G,. Let X/G, be the inter-
section of all pure subgroups of G/G, containing (N + G,)/G,. Then X is the pure
hull of N + G,in Gand N + G, < X = T. Now, X is pure and essential in T and
hence X = T.

(v) If E is a divisible hull of G and D a divisible hull of N + G, which is con-
tained in E then N + G, is essential in D n G and hence DN G < T. If t e T then
kte N + G, < D for an integer k, kt = kd for an element d € D and hence t — d €
€E, < DandteD.

2.4. Remark. Let N be a subgroup of a group G and (G/N), = T/N. Then
(i) if N is pure in G then T= N + G,,
(i) if N is a maximal essential extension of N in G then N + G, = T.

2.5. Theorem. Let N be a subgroup of a group G, (G/N), = TN and Y be a sub-
group of G with G, € Y < T. Then

(i) If H is an N-pure-high subgroup of G then Hn Y = H, and H, is a pure
N n Y-high subgroup of Y.

(i) Each pure N n Y-high subgroup of Y is the torsion part of an N-pure-high
subgroup of G.

Proof. Since Y(Nn Y) = (Y + N)/N = TN, Y/(N 1 Y) is torsion and N n Y-
high subgroups of Y are torsion (see 1.4).

(i) If H is an N-pure-high subgroup of G then obviously HN Y = H, and H,
is pure in Y. Let A be a pure subgroup of Y such that H, = Aand AnNN Y = 0.
By lemma 2.1, A + H is pure in G and (4 + H)n N = 0. With respect to the
maximality of H, we have A = H,. Hence H, is N n Y-pure-high in Y and by theorem
1.3, H, is pure N n Y-high in Y.
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(ii) Let A be a pure N n Y-high subgroup of Y. Since 4 is torsion, A4 is pure in G.
If H is a N-pure-high subgroup of G containing 4 then by (i), H, = Hn Y = A.

2.6. Corollary. Let N be a subgroup of a group G and (G/N), = T/N.If H is an

N-pure-high subgroup of G then the following assertions hold:
(i) H, is pure N,-high in G,.

(ii) H,is pure N-high in Tand in N + G,.

(iii) G[p] = N[p] ® H[p] for each prime p.

(iv) If g € G and pg € H for some prime p then g € N[p] @ H.

(v) If M is an N-high subgroup of G containing H then M /H is torsion fre.

(vi) Torsion parts of all N-pure-high subgroups of G are exactly all pure N,-high
subgroups of G, and exactly all pure N-high subgroups of N + G, (resp. T).

Proof. The assertions (i), (ii), (vi) follow immediately from 2.5. Since H, is N,-high
in G,, G[p] = N[p] ® H[p] for each prime p.

(iv) If g € G and pg € H then pg = ph for some he H, g — h e G[p] = N(p) ®
@® H[p] and g € N[p] @ H. Note that if pe R then g € H — see 2.2 (ii).

(v) If ge M and pg € H then pg = ph for some h e H. Consequently g — he
eM[p] = H[p] and ge H.

2.7. Corollary. Let N be a subgroup of a group G and H an N-pure-high sub-

group of G. The following assertions are equivalent:
(i) H is N-high in G.

(ii) N @ H is essential in G.

(ili) (N @ H)[H is essential in G/H.

(iv) (H + G,)/G, is (N + G,)/G-high in G/G,.

(v) G/(N @ H) is torsion.

Proof. (i) — (ii) Well-known and easy.

(if) — (iii) Let g€ G\N @ H. If k is the least natural number such that kg €
€N @ H (see (ii)) then kg + H is a nonzero element of (N @ H)[H by 2.6 (iv).

(iii) —» (iv) Obviously (H + G,)/G,n (N + G)/G, = 0. Let K/G, be an
(N + G,)/G-high subgroup of G/G, containing (H + G,)/G, and k € K. There is an
integer r such that rk = n + h, where n € N and h € H (see (iii)). Hencen = rk — h e
eKn N =N, o(n)rk = o(n) h = o/n) rh for some he H. Consequently k — h e
€G, ie. ke H + G,.

(iv) — (v) For each g € G there is an integer r such that (g + G,) = (h + G,) +
+ (n + G,), where he H and n e N (see (iv)). Hence rg = h + n + t, where t € G,,
and o(t)rge H ® N.

(v) » (i) If M is an N-high subgroup of G containing H then M/H =
~ (M @ N)/(H® N) = G/(N ® H) and M/H is torsion by (v). Hence M = H
by (2.6) (v). :
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If H is an N-high subgroup of G then H is N n S-high in each subgroup S of G
which contains H. A similar result holds for N-pure-high subgroups.

2.8. Lemma. Let N be a subgroup of a group G and H be an N-pure-high
subgroup of G. If S is a pure subgroup of G containing H then H is N n S-pure-high
in S.

Proof. Easy.
In a sense, the next corollary is dual to the theorem 2.5. Corollary 2.10 after-
wards gives a supplementary result.

2.9. Corollary. Let N be a subgroup of a group G and H be an N-pure-high
subgroup of G.

(i) If S is a pure subgroup of G such that H < S < H + G, then H is pure
N n S-high in S.

(i) H is pure N-high in H + G,.

Proof. If S is a pure subgroup of G such that H =€ S < H + G, then H is
N n S-pure-high in S by 2.8. Since S € H + G,, S[(H @ (N n S)) is torsion and H
is pure N n S-high in S by 2.7. It is easy to see that H + G, is pure in G and N n
N (H + G,) = N,. Hence H is pure N-high in H + G, by (i).

2.10. Corollary. Let N be a subgroup of a group G and H an N-pure-high sub-
group of G. If K/G, is an (N + G,)/G-high subgroup of G/G, containing (H + G,)/G,
then H is N,-pure-high in K.

Proof. Since G/G, is torsion free, K/G, is pure in G/G, and K is pure in G.
Obviously K n H = N,. Finally, H is N,-pure-high in K by 2.8.

3. Splitting pure N-high subgroups

3.1. Theorem. Let N be a subgroup of a group G and (G/N), = TIN. If H =
= H, ® B is a splitting N-pure-high subgroup of G then for each subgroup Y of G
with G, = Y < T there is a Y-pure-high subgroup X of G such that B is N n X-high
in X. Further B is a T-pure-high subgroup of G.

Proof. Obviously B is pure in G and B Y = 0 (see 2.5). Let X be a Y-pure-high
subgroup of G containing B and S be an N n X-high subgroup of X containing B.
Since S is pure in X (X is torsion free) and hence in G, H, @ S is pure in G and
(H, ® S)n N = 0 by 2.1. Consequently S = B. For the rest put Y = T.

Note that N n X-high subgroups of X are exactly Tn X-high since N n X is
essential in TN X.
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Conversely, if A is a pure N,-high subgroup of G, and B is an N n X-high
subgroup of a Y-pure-high subgroup X of G then A @ B is contained in some N-
pure-high subgroup H of G by 2.1. Obviously H, = 4, Hn X = B and it is easy
to see that H/A @ B is torsion free. If Y = T (i.e. B is T-pure-high in G) then Bis
A-pure-high in H. If Y= G, then HNn (G, ®X) =A@ B. For, if h =t + x¢€
eHN (G, ®X) then o(t) h = o{t)xe HN X = B, o(t) h = o(t) b for some b € B,
h—beG,nH=Aand he A® B.

3.2. Theorem. Let N be a subgroup of a group G and (G/N), = T|N, let Y be
a subgroup of G such that G, < Y< T and X be a pure Y-high subgroup of G.
If A is a pure N,-high subgroup of G, and Ban N n X-high subgroup of X then 4 @ B
is a splitting pure N-high subgroup of G.

Proof. Since X is torsion free, B is pure in X and hence in G. By 2.1, A ® B
is pure in G and (4 @ B)n N = 0. Let H be an N-high subgroup of G containing
A @ B; obviously H, = A. Let he H. Since X is Y-high in G, kh = x + y for some
x € X, y e Yand an integer k. Since B is N n X-high in X and A is N n Y-highin Y
(see 2.5), we have rx = b + n and my = a + i, where be B, ae A, n,ie N and
m, r are integers. Hence kmrh = mb + mn + ra + rn, further kmrh — mb — ra =
=mn+rieHNnN =0, ie. kmrhe A @ B. Since A @ B is pure in G, kmrh =
= kmr(@ + b), where aeA, beB. Consequently, h —a —beH,=A and
he A @ B.

3.3. Corollary. Let N be a subgroup of a splitting group G = G, ® X. If 4 is
a pure N,-high subgroup of G, and B is N n X-high subgroup of X then A @ B
is a splitting pure N-high subgroup of G.

3.4. Corollary. Let G be a group. The following assertions are equivalent:
(i) G is splitting.

(ii) For each subgroup N of G there is a splitting pure N-high subgroup of G.

(ili) For each subgroup N of G there is a pure N-high subgroup of G.

(iv) There is a pure G,-high subgroup of G.

Proof. (i) — (ii) follows from 3.3, (ii) — (iii) — (iv) is trivial, (iv) - (i) is easy
and well-known.

The equivalence (i) « (iii) from 3.4 is proved in [1] (theorem 5). On the other
hand, it is proved in [7] (corollary of 3.1) that a reduced group G splits if and only
if some N-high subgroup of G splits, where N < G! n G,. For the equivalence
(i) <> (iv) of 3.4 see [12] (proposition 5.1) and [1] (corollary on p. 481).

Note that if one N-pure-high subgroup of a group G splits then all N-pure-high
subgroups need not split (even if G itself splits) — see [8] (examplc on p. 190).
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3.5. Theorem. Let N be a subgroup of a group G and (G/N), = T|N. All splitting
pure N-high subgroups of G are exactly all direct sums of a pure N,-high subgroup
of G, and a pure T-high subgroup of G.

Proof. If H = H, ® B is a pure N-high subgroup of G then H, is a pure N,-high
subgroup of G, by 2.5 and B is a T-pure-high subgroup of G by 3.1. If g € G then kg =
= n + h,where n e N, h € H and k is a nonzero integer. Hence kg e T ® B, G/T@ B
is a torsion group and B is T-high in G by 2.7. Conversely, if A is a pure N,-high
subgroup of G, and B a pure T-high subgroup of G then A @ B is a pure N-high
subgroup of G by 3.2.

Remark that T-high subgroups of G are exactly N + Ghigh (see 2.3 (iii)).

3.6. Theorem. Let N be a subgroup of a group G. A subgroup H = H, ® B
is pure N-high in G if and only if H, is a pure N -high subgroup of G, and (G, & B)/G,
is an (N + G,)/G,-high subgroup of G/G,.

Proof. Let H = H, @ B be a pure N-high subgroup of G. Thus (B ® G,)/G, N
N (N + G,)[G, = 0; let K/G, be an (N + G,)/Ghigh subgroup of G/G, containing
(B® G))/G,. If keK then rk =n + h, where neN, he H and r is a nonzero
integer, since H is N-high in G. Hence tk — h=neNnK = G,andrk =n + he
€ G, ® B. Since G, @ B is absorbing in G, k€ G, @ B. The rest follows from 2.5.

Conversely, let 4 be a pure N,-high subgroup of G ane (B @ G,)/G, be an
(N + G,)/G-high subgroup of G/G,. Since B is pure in G, A @ B is pure in G and
(A® B)n N =0 by 2.1. If H is an N-high subgroup of G containing 4 @ B then
G,®B<G,+H and (H + G)/G,n(N + G)/G, = 0. Hence G, ® B =
=G,+ H If he H then h =t + b, where te G, and be B, Now te H, = A and
he A ® B. Consequently H = A @ B.

4. Intersection of N-pure-high subgroups

The well-known theorem of Gritzer and Schmidt (9.6, [5]) describes the inter-
section of all complements to a direct summand N of a group G. The intersection of
all N-high subgroups has been described by F. V. Krivonos in 1975:

4.1. Theorem (Proposition 9, [10]). If N is a nonzero subgroup of a group G
andR = {peP;N, = 0} then @ G, is the intersection of all N-high subgroups of G.

peR

Proof. Let H be an N-high subgroup of G and 4 = @ G,,.
PeR
Ifh+a=n(heH,ae A neN)theno(a)n = o{a)he HN N = 0 and hence
n = 0. Consequently (H + A)n N =0and A < H.
If ge G is an element of infinite order such that (g> " N =0 and neN is
a nonzero element then (g + ") "N = 0. If ge G\N, ne N and o(g) = o(n) =
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= peP\R then (g + n) "N = 0. In the both cases, an N-high subgroup of G
containing (g + n) does not contain the element g. Hence A is the intersection of
all N-high subgroups of G.

Remark that K. Benabdallah and J. M. Irwin proved that the intersection of
all N-high subgroups of a primary group G is trivial whenever N is a nontrivial
subgroup of G (Lemma 1.2, [2]). For the original proof of 4.1 see [10]. The first
step of our proof corresponds with our assertion 2.2 (i), the second step partially
corresponds with the proof of the following theorem.

4.2. Theorem. If N is a subgroup of a group G and R = {pe P; N, = 0} then

@ G, is the torsion part of the intersection of all N-pure-high subgroups of G.
peR

Proof. With respect to 2.2 it is sufficient to prove that for each prime pe P\ R
and each element g € G[p] \ N there is an N-pure-high subgroup of G which does
not contain the element g. We consider three cases:

Case 1: There are elements at least of two different p-heights in N[p].

In this case there is an element ne N[p] such that the element g + n is of finite
p-height. Hence the element g + n can be embedded in a finite cyclic direct summand
Y of G that is disjoint from N (27.2, [5]). Finally, Y can be embedded in an N-pure-
high subgroup X of G and obviously g ¢ X.

Case 2: N[p] < p“G,.

If n € N[ p] is a nonzero element then there is an N -high subgroup Y of G, containing
{g + n). Now, Yis pure in G, by theorem 1.2 and hence Y can be embedded in an
N-pure-high subgroup X of G. It is easy to see that g ¢ X.

Case 3: N[p] < p*G,\ p**!G,.

If there is a nonzero element n € N[ p] such that g + n is of finite p-height then we
proceed as in the case 1. Suppose g + ne p“G, for each nonzero ne N[p]. If
p**!' G[p] # p* G[p] then there is a direct summand Y of G, such that Y[p] =
= p**! G[p] by theorem 4.4, [7]; if X is an N-pure-high subgroup of G containing Y
then g ¢ X. If p**! G[p] = p® G[p] then G, = B @ D, where B is bounded and D
is divisible, and D can be embedded in an N-pure-high subgroup X of G; obviously
g¢X.

4.3. Corollary. Let N be a subgroup of a group G and R = {pe P; N, = 0}.
If G/N is a torsion group then @ G, is the intersection of all pure N-high subgroups

PER
of G.

Proof. The N-pure-high subgroups of G are exactly the pure N-high subgroups
of G and all these subgroups are torsion, since G[N is torsion (see 1.3 and 1.4). Our
corollary follows now from 4.2,

Note that K. Benabdallah and J. M. Irwin proved that the intersection of all
pure N-high subgroups of a primary group G is trivial whenever N is a nontrivial
subgroup of G (lemma 1.2, [3]).
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4.4. Proposition. Let N be a subgroup of a group G, (G/N), = TN. If Yis a sub-
group of G such that G, < Y T, X is a Y-pure-high subgroup of G such that
NnX #+ 0and (G/(X ® Y)), = K/(X @ Y) then the intersection of all N-pure-high
subgroups of G contains no element of infinite order from K.

Proof. With respect to the theorem 2.5 it is sufficient to consider an element
g € G\ T such that kg e X @ Y for a nonzero integer k. Hence kg = x + y, where
xeX and ye Y. Since g ¢ T, we have x ¢ T.
Casel: y¢ ® G,(R={peP; N, =0}).

peR

Let A be a pure N,-high subgroup of G, such that y ¢ A (see 4.3), let B be an N n X-
high subgroup of X containing x. By 2.1, 4 @ B is contained in an N-pure-high
subgroup H of G. If x + yeH then ye Hn Y= H, = A — a contradiction.
Hence g ¢ H.

Case2: ye ® G,

PeR

Let A be a pure N,-high subgroup of G, and B be an N n X-high subgroup of X
which does not contain x (see 4.1). By 2.1, A @ B is contained in an N-pure-high
subgroup Hof G. If x + ye Hthen xe H by 2.2and xe H n X = B — a contradic-
tion. Hence g ¢ H.

4.5. Corollary. Let N be a subgroup of a group G, (G/N), = TIN. If Y is a sub-
group of G such that G, = Y < T and X is a pure Y-high subgroup of G such that
N n X # 0then @ G, is the intersection of all splitting pure N-high subgroups of G.

PeR

Proof. According to proof of 4.4 (in both cases we have 4 @ B = H by 3.2).

4.6. Corollary. Let N be a subgroup of a splitting group G. If N is not torsion

then @ G, is the intersection of all splitting pure N-high subgroups of G.
PeR
Corollary 4.6 can be easily proved also by means of theorem 3.6.

If N is a torsion subgroup of a splitting group G then the intersection of all
pure N-high subgroups of G can contain also elements of infinite order as the fol-
lowing example shows.

4.7. Example. Let G = {a) @ {b), where o(a) = 2 and o(b) = 0. The sub-
groups {b> and {a + b) are obviously pure G,-high in G. It is easy to see that the
subgroup <kb), where k + +1, and {a + kb), where k + +1 is an odd integer,
are not G,-pure-high in G. Further

2(a + 2kb) = 4kbe<a + 2kb> N 4G .

If {a + 2kb) is pure in G, 4kb € 4(a + 2kb),i.e. 4kb = 4ra + 8rkb,4k(1 — 2r) b=
= o and k = 0. Hence the subgroups {a + 2kb), where k #+ 0 is an integer, are not
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pure in G. Consequently, there are only two G,-pure-high subgroups of G. They are
G,-high in G and moreover, they are complements of G,. Finally, (2b) is the inter-
section of all pure G,-high subgroups of G.

5. An example

In the following theorem we shall investigate the well-known group from example
2, § 100 [5].

5.1. Theorem. Let p,, p,,... be different primes, and A = []<a;), where
i=1

o(a;) = pi. Let G = (A, by, by, b,, ...», where by = (a,, a,,...)€ A and for each
j=1,2,..., b; has 0 for its j-th coordinate and satisfies

pibj=(ay,..,a;-1,0,a;,4,...) = by — a;.

Then

(i) If S is a pure subgroup of G then either S is torsion or S is a direct com-
plement of a finite subgroup in G.

(i) If N is a finite subgroup of G then each N-pure-high subgroup of G is a direct
complement of N in G.

(iti) If N is an infinite subgroup of#§ then the unique N-pure-high subgroup
of Gis @ G,,where R ={peP; N, =&

R

PpEi
(iv) 0 is N-pure-high in G if and only if G, = N.
The proof of this result is based on the next lemmas. It is easy to see that G, =

=A4,=0 <ai>‘
i=1

5.2. Lemma. Let X be a subgroup of G. If X is not torsion then there is a natural
number m such that mb, € X.

Proof. Let x =t + koby + kb, + ... + k,b, be an element of infinite order
(x€ X, te G, k; are integers). Then

(P1p2 .- Pw) X =t + kb,

where k is an integer and t' € G,. Hence there is a natural number m such that
mby, e X.

5.3. Lemma. Let S be a pure subgroup of G and g € G.

(i) If kp*g € S for an integer k and a prime p then kpg € S.

(ii) If m is the least natural number such that mg € S then m is square-free.

Proof. Let kp?g € S. Then kp*g = kp?s for some s € S and hence kp*(g — s) =
= 0 and g — s € G,. With respect to the form of G,, kp(g — s) = o0 and kpg e S.
Obviously, (i) implies (ii).

31



5.4. Lemma. Let S be a pure subgroup of G and m be the least natural number
such that mb, € S. Then

(i) m is square-free.
(i) If (pj, m) = 1 then a; € S, S is p;-absorbing in G and m is the least natural
number with mb, € S.

(iii) If m = p;m; then a; ¢ S and m; is the least natural number with m;b; € S.

(iv) S, = @ {ap.

itm
(v) mG ; S.
(Vi) G=S® ®<ay.
i=1
pilm

Proof. By lemma 5.3, m is square-free.
Suppose (p;, m) = 1. We have

mp;b, = mp,(p;b; + a;) = mp}b;eS.

Since b; is divisible by p;, it is mb; € S by lemma 5.3. Further, ma; = mb, — mp;b; €
€ S and hence a;€ S. If g € G and p;g € S then p;g = p;s for some s € S and hence
pj(g —$)=o0, ie. g —sela;) = S and geS. Consequently, S is p;-absorbing
in G. Finally, if 7ib;€ S and m < m th& mp;b; = m(b, — a;) = mb, — ma; and
mb, € S — a contradiction with the definition of m.

Suppose m = p;m;. We have

mbo = m(p;b; + a;) = mp;b; = m;pib;eS.

Since b; is divisible by p; it is mjb;e S by lemma 5.3. Further mja; =
= mjby — p;b;) = mjb, — mb;¢S and hence a;¢S. If mb;eS and m < m;
then p;mb, = p;m(p;b; + a;) = pf-rﬁbje S — a contradiction with the definition
of m.

The assertions (iv), (v) follow from (ii), (iii). Write T = @ <a;). If g € G then

pilm
mge S and mg = ms for some se€S. Hence g —s=1teT, geS + T, ie. G =

=S + T. By (iv), Sn T = 0 and consequently G = S @ T.

Proof of theorem 5.1. If S is a pure subgroup of G and S is not torsion then by
lemma 5.2 there is a natural number m such that mb, € S; let m be the least natural
number with this property. By lemma 5.4, S is a complement of a finite subgroup of G.

Let N be a finite subgroup of G and S be an N-pure-high subgroup of G. By 2.6
(iii), G, = N @ S,. Since N is a direct summand of G and each complement of N
in G contains S,, S is not torsion. By lemma 5.4, G = N @ S.

Let N be an infinite subgroup of G. If S is a pure subgroup of G and S is not
torsion then N n S % 0. For, if N is not torsion then there is a natural number k
such that kb, € N n S by lemma 5.2 and if N is torsion then N n S # 0 by lemma 5.4.
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Consequently, each N-pure-high subgroup of G is torsion. With respect to the form
of G,, H = @ {a;) is the unique N-pure-high subgroup of G by 2.2 (R = {peP;
pieR
N, = 0}) and hence G, = N, @ H.
If N contains G, then 0 is N-pure-high in G by (iii). If 0 is N-pure-high in G then N
is infinite by (ii) and N 2 G, by (iii).

5.5. Remark. The group G is obviously of torsion-free rank 1, G does not split

(see 5.1 (1)).

If N is a finite subgroup of G then the intersection of all N-pure-high subgroups
of G contains elements of infinite order by lemma 5.4 (compare with 4.3—4.6).

If N is an infinite torsion subgroup of G then G/N is not torsion, there is a unique
N-pure-high subgroup H of G, H is torsion and H is not N-high in G.

If N is a subgroup of G which is not torsion then G/N is torsion, there is a unique
N-pure-high subgroup H of G, H is torsion and N-high in G.
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