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In this note we study equatorial motion of electrically neutral test particles around the magneti­
zed Kerr-Newman black hole. We derive the form of the effective potential governing radial 
motion in a weak-field limit. The shape of the effective potential curves and existence of their 
local minimum are evidently affected by strength of the magnetic field. 

Prace se zabyva pohybem neutralnich testovacich gastic kolem magnetizovane Kerrovy-
Newmanovy cerne diry. Je odvozen tvar efektivniho potencialu pro radialni slo2ku pohybu 
v limits slabeho magnetickSho pole. 

Hccjie/ryeTC* .znuraceHHe HeftTpajrtHBix npo6Hwx HacTHn BOKpyr 3aMarHHHeHH0ft nepHoft flwpbi 
Keppa-HbioMeHa. IIoKa3aHa noTeHUHajibHaa icpraa* paflnajitHofi cocraBJuaomeft ABHxeHH* 
B npeflejie cjia6oro nojw. 

1. Introduction 

In this paper we shall deal with magnetized black hole solutions of Ernst and 
Wild [1], which were derived by applying the Ernst procedure [2] to the ordinary 
Kerr-Newman spacetime. Exact solutions representing a black hole immersed 
in an external magnetic field are important for several reasons. They enable us to 
elucidate the influence of the magnetic field on geometry of the horizon [3, 4, 5], 
to generalize well-known uniqueness theorems for black holes [6], and to study 
mutual interaction of the black hole's mass, rotation and charge with the magnetic 
field [7]. These solutions also provide us with a nontriyial comparison of the exact 
theory with approximate results [8, 9]. Astrophysicists are not very enthusiastic 
about magnetized models of black holes, because they are not asymptotically flat. 
(Asymptotical flateness is essential for the generally accepted Hawking's definition 
of a black hole.) Nevertheless, they still may be of some astrophysical importance — 
at least in a weak-field limit — in connection with the Blandford-Znajek [10] electro-
dynamical model of active galactic nuclei. (According to our present knowledge, 
these objects are probably energized by massive black holes rotating in an external 
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magnetic field.) Besides, magnetized black holes have several very remarkable features, 
which make them interesting in their own right (for further details and references 
see Ref. 7). Some insight into interesting effects which occur in these spacetimes can 
be obtained, as usually, by studying the geodesic motion. This has already been 
done in special cases by several authors [11 — 14]. 

In this note we shall study the effective potential for geodetical motion in the 
equatorial plane of the black hole. We restrict ourselves to a weak-field limit for 
reasons given below. We start out by rewritting the line element of Ernst and Wild 
in a suitable form. Then, in Sec. 3, we derive and analyse in detail the form of the 
effective potential governing radial motion. A short summary concludes the paper. 
Independent investigation of a similar problem was recently given by Esteban [15]. 

2. The line element 

The metric of the magnetized Kerr-Newman black hole [1] can be expressed 
in a standard form-of the stationary axisymmetric line element in spheroidal co­
ordinates (x°,xl, x2, x3) = (t, r, 9, <f>): 

(1) gap dx* dxp = -e2v dt2 + e2*(dct> - co dt)2 + e2X dr2 + e2fl d02 . 

Functions 

C
2' = |A |2 QIA-1 , e2* = |A |"2 Q~k

2A sin2 9 , 

e» = \A\2QlA-\ e2> = \A\2
Q

2
k 

depend on a magnetic field strength parameter B0 through functions A and co, which 
approach their Kerr-Newman values 

(3) A = 1 , co = a(2Mr - Q2) A'1 

for B0 = 0. In Eq. (2) 

A = r2 + a2 - 2Mr + Q2 , Q2 = r2 + a2 cos2 0 , 

A = (r2 + a2)2 - Aa2 sin2 6 . 

M, Q, and a are the parameters, which in the Kerr-Newman spacetime denote mass, 
electric charge, and angular momentum of the black hole, respectively. The spacetime 
(1) is supposed to contain a black hole with a horizon located at r = r+ = M + 
+ (M2 — Q2 — a2)112. The form of A can be derived by straightforward application 
of the Ernst magnetizing procedure. Approximate expression linearized in B0 yields 

(4) A = 1 + B0QarQ~2 sin2 0 - iB0Q(r2 + a2) Q~2 COS 0 . 

Function co is determined by a partial differential equation with a very complex 
solution [16, 17]. We shall not need a precise expression for co in this paper. Let us 

38 



only remark that the terms nonlinear in B0 obscure physical interpretation of co 
and parameters a and Q. For example, holding t, r, cf> fixed, co as a function of 9 
may change — even on the horizon — its sign, and, therefore, can hardly be con­
sidered as an angular velocity. (Of course, the main problem arises from the asympto­
tical nonflatness, as discussed, e.g., in Ref. 6.) Thus hereafter we linearize all ex­
pressions in B0. Naturally this weak-field limit cannot be applied for values of the 
dimensionless parameter /? = B0M ^ 1 and/or distance parameter r > | B 0 | _ 1 . 
An approximate expression for co can be obtained by straightforward manipulation 
from Ref. 1: 

(5) co = a(2Mr - Q2) A"1 - 2B0Qr(r2 + a2) A'1 . 

3. The effective potential 

In this section we derive the form of the effective potential governing geodetical 
motion in the equatorial plane. According to the standard procedure [18] we start 
out from the normalization condition for the tangent four-vector p" of a timelike 
geodesic of a test particle with nonzero mass /i0, 

(6) />"/>„ = -Hi. 

Introducing constants of motion E = —pv $ = p#, putting fi0 = 1, 9 = 7c/2, 
pe = 0, and solving Eq. (6) for pr we arrive at the effective potential 

(7) V = cod> + [(co2 + 8) $2 + y ] 1 / 2 , 

where 

b = [r6 - 2Mr5 + (a2 + Q2) r4 - 4 M W + 4MQ2a2r -

- a2Q4 + 4B0Qar(r4 + a2r2 + 2Ma2r - Q2a2)~\ A'2 , 

y = (r + 2B0Qa)rAA~1 . 
The positive local energy condition for Bardeen's [19] zero-angular-momentum 
observers, 

p(t) = e'v(E - co<P)% 0 , 

excludes the negative sign solution in (7) from further consideration. We can easily 
verify that for B0 = 0 Eq. (7) agrees with the effective potential for the Kerr-Newman 
black hole given, e.g., in the Box 33.5 of "MTW" [20]. 

Note that all terms in Vcontaining B0 vanish if Q = 0. For example in the Schwarz-
schild-Melvin spacetime (Eqs. (1 — 3) with a = Q = 0) our approximate expression 
(7) is reduced to the effective potential of the ordinary Schwarzschild black hole; 
corrections due to the magnetic field are of second order in B0 [11]. Also the effective 
potential of the magnetized Kerr spacetime is identical to the corresponding non-
magnetized case [20]. 
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Fig. 1 shows the behaviour of the effective potential as a function of the dimen-
sionless distance parameter rjr+ for several typical values of the other parameters, 
ajM, QJM, BQM, and <PJM. It is evident that the existence of bound trajectories 
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Fig. 1. The figure shows curves of the effective potential governing radial motion of electrically 
neutral test particles around the nonmagnetized (B0 = 0) Schwarzschild black hole (a), and 
around the magnetized Kerr-Newman black hole with parameters ajM = Q[M = 0.7 (b), resp. 
a\M= —Q\M= —-0.7 (c). The values of magnetic field parameter fi = B0M and specific 

angular momentum I = &JM are given with the curves. 
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depends on the strength of the magnetic field. For rjr+ > 1, due to the unbound 
amount of energy in the magnetic field concentrated around the polar axis, the 
effective potential should grow up to infinity (cf. [11]). However, the growing terms 
are not retained after linearization in B09 indicating a failure of our approximation 

a) */2 

b) */2 

— rlr+ 

Fig. 2. The effective potential W(r, 0) for (generally nonradial) motion of particles with zero rest 
mass around the Schwarzschild black hole (a), and around the Schwarzschild-Melvin blackhole 
with parameter fi = 0.19 (b) (which is a critical value for the equatorial null geodesies; see [11,13]). 

far from the black hole. This effect can easily be seen in the case of the Schwarz­
schild-Melvin spacetime. Now we show that even all photons with nonzero impact 
parameter b = $JE are confined to a limited region around the polar axis; see also 
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[14]. Without restricting ourselves to the equatorial plane, Eq. (6) with fi0 = a = 
= Q = 0 reads 

(8) .- . .^^[Q'.,^^-], 
where the effective potential (Fig. 2) 

(9) W(r, 9) = A4 (1 - — \ r~2 sin"2 0 . 

Clearly PV-> oo whenever Borsin0 -> oo. For b given the effective potential de­
termines the region of r and 9, where the particle may occur (Fig. 3). 

Fig. 3. Similarly to Fig. 2 the effective potential W(r, 0) is constructed. The motion is possible 
only under the "sea level", whose height depends on b (b = 2 in this figure). 
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4. Concluding remarks 

In our note we derived the approximate form of the effective potential for geodesic 
motion around magnetized Kerr-Newman black hole. Our analysis shows that the 
effective potential is affected by the magnetic field already in the first order of the 
expansion in B0. This should be contrasted to the Schwarzschild-Melvin case studied 
previously by several authors, where only the higher order terms in B0 contribute 
to the effective potential and, therefore, a strong magnetic field is required to distort 
timelike geodesies significantly. The exception is the magnetized Kerr black hole, 
in which case the terms linear in B0 also disappear. 
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