Acta Universitatis Carolinae. Mathematica et Physica

Jaroslav Ježek; Tomáš Kepka
Notes on the number of associative triples

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 31 (1990), No. 1, 15--19
Persistent URL: http://dml.cz/dmlcz/142611

Terms of use:

© Univerzita Karlova v Praze, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Notes on the Number of Associative Triples

JAROSLAV JEŽEK, TOMÁŠ KEPKA
Praha*)

Received 2 February 1989

Some questions concerning the number of associative triples in a quasigroup are discussed.
Diskutují se některé otázky, týkající se počtu asociativnich trojic v kvazigrupě.
Дискутируются некоторые вопросы о числе ассоциативных троек в квазигруппе.

1. Introduction

For a quasigroup Q, let

$$
\begin{array}{ll}
\mathrm{A}(Q)=\left\{(x, y, z) \in Q^{3} ; x \cdot y z=x y \cdot z\right\}, & \mathrm{a}(Q)=\operatorname{card}(\mathrm{A}(Q)), \\
\mathrm{B}(Q)=Q^{3}-A(Q), & \mathrm{b}(Q)=\operatorname{card}(\mathrm{B}(Q))
\end{array}
$$

Obviously, $\mathrm{b}(Q)=0$ iff Q is a group. By [3], Q if Q is infinite and nonassociative then $\mathrm{a}(Q)=\mathrm{b}(Q)=\operatorname{card}(Q)$. Now, let Q be finite and $n=\operatorname{card}(Q)$. Then $\mathrm{a}(Q)+$ $+\mathrm{b}(Q)=n^{3}$; for every $x \in Q$ we can define two elements $f(x), e(x) \in Q$ by $f(x) x=$ $=x=x e(x)$; since $f(x) \cdot x e(x)=x=f(x) x . e(x)$, the set $\{(f(x), x, e(x)) ; x \in Q\}$ is contained in $\mathrm{A}(Q)$ and we get $n \leqq \mathrm{a}(Q) \leqq n^{3}$.

Every quasigroup with at most two elements is a group. On the other hand, for every $n \geqq 3$ there are nonassociative quasigroups of order n. We denote by $\mathrm{a}_{\max }(n)$ the maximum and by $\mathrm{a}_{\min }(n)$ the minimum of the numbers $\mathrm{a}(Q)$, for Q running over all the nonassociative quasigroups of order $n \geqq 3$. The numbers $b_{\text {max }}(n)$ and $b_{\text {min }}(n)$ can be defined similarly, and we have $\mathrm{b}_{\max }(n)=n^{3}-\mathrm{a}_{\min }(n)$ and $\mathrm{b}_{\text {min }}(n)=n^{3}-$ $-\mathrm{a}_{\text {max }}(n)$.

For every $n \geqq 1$ denote by assspec (n) the set of the numbers $a(Q)$, where Q runs over the quasigroups of order n. This set, called the associativity spectrum of n, is contained in $\left\{n, n+1, \ldots, n^{3}\right\}$. We have
$\operatorname{asspec}(1)=\{1\}$,

[^0]```
assspec \((2)=\{8\}\),
\(\operatorname{assspec}(3)=\{9,27\}\),
\(\operatorname{assspec}(4)=\{16,24,32,64\}\),
\(\operatorname{assspec}(5)=\{15, \ldots, 57,59,62,63,74,79,80,89,125\}\),
\(\operatorname{assspec}(6)=\{16,19, \ldots, 114,116,117,118,120,121,122,124, \ldots, 128,130, \ldots\)
\(\ldots, 137,141,142,144,148,152,160,162,168,172,184,189,216\}\).
```

Hence

$$
\begin{aligned}
& \mathrm{a}_{\min }(3)=\mathrm{a}_{\max }(3)=9, \\
& \mathrm{a}_{\min }(4)=16, \quad \mathrm{a}_{\max }(4)=32, \\
& \mathrm{a}_{\min }(5)=15, \quad \mathrm{a}_{\max }(5)=89, \\
& \mathrm{a}_{\min }(6)=16, \quad \mathrm{a}_{\max }(6)=189 .
\end{aligned}
$$

These values can be obtained on a computer. A standard backtracking program can be used to generate all $n$-element quasigroups with a fixed permutation for the top row of the multiplication table. For $n=6$ there are 1128960 such quasigroups. Then for each quasigroup generated by the backtracking routine, each number of a certain set of permutations is applied to give an isotopic quasigroup. The number of associative triples in each such quasigroup is counted. For $n=6$ only 12 permutations are needed to get all the nonindempotent quasigroups, and the idempotent case is handled separately. The program was written and the computation for $n=6$ was done by J. Berman using the facilities of the Computer Center at the University of Illinois at Chicago.

The following are examples of a quasigroup $H$ of order 6 with a $(H)=16$ and of a quasigroup $Q$ of order 6 with $a(Q)=189$ :

| $H$ | 1 | 2 | 3 | 4 | 5 | 6 |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $Q$ | 1 | 2 | 3 | 4 | 5 | 6 |  |  |  |  |  |  |
| 1 | 2 | 1 | 4 | 3 | 5 | 6 |  |  |  |  |  |  |  |  |
|  |  | 1 | 2 | 3 | 1 | 5 | 6 | 4 |  |  |  |  |  |  |
| 2 | 1 | 2 | 5 | 6 | 4 | 3 |  | 2 |  | 3 | 1 | 2 | 6 | 4 |

## 2. Examples

2.1. Example. Let $n \geqq 4$ be an even number. Take an abelian group $Q(+)$ of order $n$ and two distinct elements $a, b \in Q-\{0\}$ with $2 a=0$. Let us define a new binary operation, a multiplication, on $Q$ as follows: put $x y=x+y$ for all $x, y \in Q$ such that either $\mathrm{x} \notin\{b, a+b\}$ or $y \notin\{b, a+b\}$; put $b b=(a+b)(a+b)=2 b+a$ and $b(a+b)=(a+b) b=2 b$. It is easy to verify that $Q$ is a commutative loop and that $(x, y, z) \in \mathrm{B}(Q)$ iff either $x \in\{b, a+b\}, y \in\{b, a+b, b-z, a+b-z\}$
and $z \notin\{0, a, b, a+b\}$ or else $x \in\{0, a, b, a+b\}, y \in\{b, a+b, b-x, a+b-x\}$ and $z \in\{b, a+b\}$. Hence $b(Q)=16 n-64$.

As a consequence we get

$$
\begin{gathered}
n^{3}-16 n+64 \in \operatorname{assspec}(n), \\
\mathrm{b}_{\min }(n) \leqq 16 n-64, \\
\mathrm{a}_{\max }(n) \geqq n^{3}-16 n+64
\end{gathered}
$$

for any even number $n \geqq 6$.
2.2. Example. Let $n \geqq 3$ be such that $n \neq 4 k+2$ for any $k$. Then there exist a commutative group $Q(+)$ and an automorphism $f$ of $Q(+)$ such that $f(x) \neq x$ for all $x \in Q-\{0\}$. For example, we can express $n$ as $n=2^{m} d$ where $m \neq 1$ and $d$ is an odd number, take $Q(+)=C_{1}(+) \times \ldots \times C_{m}(+) \times D(+)$ where $C_{i}$ is the two-element group and $D$ is the cyclic group of order $d$ and put $f\left(x_{1}, \ldots, x_{m}, y\right)=$ $=\left(x_{1}+x_{2}, x_{3}, \ldots, x_{m}, x_{1}, 2 y\right)$. Define a multiplication on $Q$ by $x y=f(x+y)$. In this way we obtain a quasigroup $Q$ and it is easy to see that $\mathrm{A}(Q)=\{(x, y, x)$; $x, y \in Q\}$.

As a consequence we get

$$
\begin{gathered}
n^{2} \in \operatorname{assspec}(n), \\
\mathrm{a}_{\min }(n) \leqq n^{2}, \\
\mathrm{~b}_{\max }(n) \geqq n^{3}-n^{2}
\end{gathered}
$$

for any number $n \geqq 3$ such that $n \neq 4 k+2$ for any $k$.
2.3. Example. Let $G(+)$ be an abelian group of an odd order $m \geqq 3$ and let $Q(+)=Z_{2}(+) \times G(+)$. Put $f(a, x)=(a, 2 x)$ for any $(a, x) \in Q$. Then $f$ is an automorphism of $Q(+)$ and we can define a multiplication on $Q$ by $p q=f(p)+q$ for all $p, q \in Q$. Clearly, $Q$ becomes a quasigroup and $\mathrm{A}(Q)=\{((a, 0),(b, y),(c, z))$; $\left.a, b, c \in Z_{2}, y, z \in G\right\}$.

As a consequence we get

$$
\begin{gathered}
2 n^{2} \in \operatorname{assspec}(n), \\
\mathrm{a}_{\min }(n) \leqq 2 n^{2}, \\
\mathrm{~b}_{\max }(n) \geqq n^{3}-2 n^{2}
\end{gathered}
$$

for every number $n \geqq 6$ such that $n=4 k+2$ for some $k$.

## 3. The group distance and the numbers $b_{\text {min }}(n)$

Let $Q\left({ }^{*}\right)$ and $Q(\circ)$ be two quasigroups with the same underlying set $Q$. We put $\operatorname{dist}\left(Q\left(^{*}\right), Q(\circ)\right)=\operatorname{card}\left(\left\{(x, y) \in Q^{2} ; x * y \neq x \circ y\right\}\right)$. This cardinal number is called the distance of the two quasigroups; it is easy to see that it is not less than 4 , provided that the two quasigroups are different.

For a quasigroup $Q$ denote by $\operatorname{gdist}(Q)$ the minimum of the numbers dist $(Q, Q(*))$, $Q(*)$ being an arbitrary group with underlying set $Q$. Clearly, gdist $(Q)=0$ iff $Q$ is a group.
For $n \geqq 3$, let gdist $(n)$ designate the minimum of the numbers gdist ( $Q$ ), where $Q$ is a nonassociative quasigroup of order $n$; further, put gdist $(2)=4$. Obviously, if $m \geqq 2$ and if $m$ divides $n$ then $\operatorname{gdist}(n) \leqq \operatorname{gdist}(m)$. In particular, $\operatorname{gdist}(n) \leqq$ $\leqq \operatorname{gdist}(p), p$ being the least prime number dividing $n$, and we have gdist $(n)=4$ for every even number $n$. Using mechanical means (or making a tedious handwork), one can establish

$$
\operatorname{gdist}(3)=6, \quad \operatorname{gdist}(5)=8, \quad \operatorname{gdist}(7)=9, \quad \operatorname{gdist}(11)=11 .
$$

By [2], we have $e \ln p+3<\operatorname{gdist}(p)$ and according to a private communication of A. Drápal, gdist $(p)<4 \sqrt{\prime}^{\prime} p$ for every prime number $p \geqq 3$.
A. Drápal has found in [1] some connections between the numbers $b(Q)$ and gdist $(Q)$. Namely, he proved the following two propositions.
3.1. Proposition. Let $Q$ be a finite quasigroup of order $n$; put $b=\mathrm{b}(Q)$ and $g=$ $=\operatorname{gdist}(Q)$. Then:

$$
\begin{aligned}
& 4 g n-2 g^{2}-24 g \leqq b \leqq 4 g n ; \\
& 4 g n-2 g^{2}-16 g \leqq b, \text { provided that } g \leqq 24 ; \\
& 3 g n<b, \quad \text { provided that } 1 \leqq b<3 n^{2} / 32 .
\end{aligned}
$$

3.2. Proposition. Let $n \geqq 3$; put $b=\mathrm{b}_{\text {min }}(n)$ and $g=$ gdist $(n)$. Then $4 n g-2 g^{2}-$ $-24 g \leqq b \leqq 4 n g$ and $3 n g<b$. If $b<3 n^{2} / 32, g^{2}+14 g+13<2 n$ and if $Q$ is a quasigroup of order $n$ such that $\mathrm{b}(Q)=b$ then gdist $(Q)=g$.
3.3. Proposition. Let $n \geqq 3$ be such that gdist $(n)<3 n / 128$. Then $\mathrm{b}_{\min }(n)<3 n^{2} / 32$.

Proof. Put $g=\operatorname{gdist}(n)$. Let $Q$ be a quasigroup of order $n$ such that gdist $(Q)=g$. By $3.1(1), \mathrm{b}_{\text {min }}(n) \leqq \mathrm{b}(Q) \leqq 4 g n$. Since $g<3 n / 128$, we have $4 g n<3 n^{2} / 32$.
3.4. Proposition. Let $n \geqq 29124$. Then $\mathrm{b}_{\text {min }}(n)<3 n^{2} / 32$.

Proof. If $n \geqq 29128$ then $4 \sqrt{ } / n<3 n / 128$ and the result follows from 3.3. The number 29127 is divisible by 3, the number 29125 by 5 and the numbers 29126 and 29124 are even.
3.5. Proposition. Let $n \geqq 29124$ be not a prime number and let $Q$ be a quasigroup of order $n$ such that $\mathrm{b}(Q)=\mathrm{b}_{\min }(n)$. Then gdist $(Q)=\operatorname{gdist}(n)$.

Proof. By $3.4, \mathrm{~b}_{\min }(n)<3 n^{2} / 32$. Denote by $p$ the least prime number dividing $n$. Then $p-1 \leqq 70$ and $16 p+56 \sqrt{ } p+13<2 n$. The result follows from 3.2.

If $n$ is even then a considerably more complete result is known (see [1]):
3.6. Proposition. Let $n \geqq 168$ be even. Then $b_{\min }(n)=16 n-64$ and $\mathrm{a}_{\max }(n)=$ $=n^{3}-16 n+64$.
3.7. Proposition. Let $n \geqq 194$ be even and let $Q$ be a quasigroup of order $n$ such that $\mathrm{b}(Q) \leqq 18 n$. Then $\mathrm{b}(Q) \in\{0,16 n-64,16 n-56,16 n-48,16 n-36,16 n-$ $-32\}$.
Proof. Assume that $Q$ is not a group. We have $\mathrm{b}(Q) \leqq 18 n<3 n^{2} / 32$ and so gdist $(Q)<6$ by $3.1(3)$. Now, it is easy to show that $\operatorname{gdist}(Q)=4$ and the result follows from Proposition 10.4 of [1].
3.8. Proposition. Let $n$ be an even number, $6 \leqq n \leqq 166$. Then $3 n^{2} / 32 \leqq \mathrm{~b}_{\text {min }}(n) \leqq$ $\leqq 16 n-64$.
Proof. The inequality $\mathrm{b}_{\text {min }}(n) \leqq 16 n-64$ follows from 2.1. Now, let $Q$ be a quasigroup of order $n$ with $b=\mathrm{b}(Q)=\mathrm{b}_{\text {min }}(n)$. Suppose that $b<3 n^{2} / 32$. By 3.1 (3), $g=\operatorname{gdist}(Q)<n / 32$. Since $g \geqq 4$, we have $n \geqq 130$. We have $\operatorname{gdist}(n)=4$ and $g=4$ by 3.2. By Proposition 10.4 of [1] we get $b \geqq 16 n-64$, a contradiction.
3.9. Remark. By $3.8,2584 \leqq \mathrm{~b}_{\text {min }}(166) \leqq 2592$. Let $Q$ be a quasigroup of order 166 with $\mathrm{b}(Q)=\mathrm{b}_{\text {min }}(166)$. Then either $\operatorname{gdist}(Q)=4\left(\right.$ and then $\left.\mathrm{b}_{\text {min }}(166)=2592\right)$ or gdist $(Q) \geqq 320$ (use 3.1 ).
3.10. Remark. We have $b_{\min }(6)=27$, so that 3.6 is not true for $n=6$. The situation for $8 \leqq n \leqq 166$ is not clear.
3.11. Remark. In contrast to the numbers $b_{\min }(n)$ and $a_{\max }(n)$, almost nothing is known about the numbers $\mathrm{a}_{\min }(n)$. It follows from 2.2 and 2.3 that

$$
\begin{aligned}
& n \leqq \mathrm{a}_{\min }(n) \leqq n^{2} \quad \text { for } \quad n \leqq 3, \quad n \neq 4 k+2, \\
& n \leqq \mathrm{a}_{\text {min }}(n) \leqq 2 n^{2} \quad \text { for every } \quad n \leqq 3 .
\end{aligned}
$$

It is not clear whether $n<\mathrm{a}_{\text {min }}(n)$ for every $n \geqq 3$. By [3], if $Q$ is a quasigroup of order $n \geqq 3$ such that $\mathrm{a}(Q)=n$, then $Q$ is idempotent and not isotopic to a group.

## References

[1] Drápal A.: On quasigroups rich in associative triples. Discrete Math. 44 (1983), 251-365.
[2] Drápal A., Kepka T.: On a distance of quasigroups and groups. (To appear).
[3] Kepka T.: A note on the associative triples of elements in cancellation groupoids. Comment. Math. Univ. Carolinae 21 (1980), 479-487.


[^0]:    *) Department of Mathematics, Charles University, 18600 Praha 8, Sokolovská 83, Czechoslovakia.

