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1. Introduction 

In this note, there is given an alternative and simpler proof of the interesting 
Fabian theorem (see [3] and compare [4]) concerning the set of all points where 
a monotone multivalued mapping acting in Banach spaces is singlevalued and 
norm-to-norm upper semicontinuous. We show that if X is a Banach space and 
T: X -• 2X* a monotone mapping with D = int D(T) =}= 0 such that T is singlevalued 
and hemiclosed at w0 e D, then T is norm-to-weak* upper semicontinuous at w0. 
Moreover, we give another and simple proof of the fact that a subdifferential map 
of a convex continuous function is maximal monotone. 

Recall that Kenderov [10], [11], proved the following important results: (i) If X 
is a Banach space which admits an equivalent norm such that its dual norm on X* 
is rotund and T: X -> 2X* is monotone with D = int D(T) 4= 0, then there exists 
a dense Gs subset C(f) of D such that Tis singlevalued at the points of C(f), where 
C(f) is a set of all points of D, where the function f of the minimum modulus of T 
is continuous; (ii) A Banach space X is an Asplund space if and only if for each 
monotone mapping T: X -» 2X* with D = int D(T) 4= 0, there exists a dense Ga 

subset D0 c D such that Tis singlevalued and norm-to-norm upper semicontinuous 
on D0. 

Note that a rather different result has been proved by Kenderov and Robert [12]. 
A short survey of the recent results concerning the topological properties of monotone 
mappings is contained, among others, in [13]. 

2. Notions and notations 

Let X be a normed linear space, X* its dual, 2X* the system of all subsets of X*, 
T:X -> 2X* a mapping, D(T) = {ueX: T(u) =f= 0} its domain, G(T) = {(u, u*)e 
eX x X*:ue D(T), u* e T(u)} its graph in the space X x X*. Recall that a mapping 
T: X -» 2X* is said to be: (i) monotone if fo* each u, v e D(T) and each u* e T(u) 
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and v* G F(v), there is <u* — v*, u — v> = 0; (ii) maximal monotone (see [1]), 
if Pis monotone and its graph G(T) is not contained as a proper subset in the graph 
of any other monotone map; (iii) upper semicontinuous at u0 e D(T), if for each 
open subset W of X* such that F(u0) <= W, there exists an open neighborhood U 
of u0 such that T(u) c Wfor each ueU n D(T); (iv) locally bounded at u0 e D(T), 
if there exists a neighborhood V of u0 such that T(V) = {T(u): ueVn D(T)} is 
bounded in X*; (v) T = df is a subdifferential map on a convex subset M a X, if 
f:M-+R is a convex continuous function and M B U -> df(u), where cf(u) = 
= {u*eX*: <u*, v - u> ^ f (v ) - f ( u ) for each veM}. We shall say that X* is 
an (H)-space, if for each (u*) a X*, u* -> u* weakly*, u* e l * , [)u*|| -> [)u*||, we 
have that u* -> u* in the norm of X*. For a given set A <zz X, int A, inta A, denote 
the interior of A and the algebraic interior of A, respectively. Furthermore, we shall 
use the standard notions given in Diestel [2], Giles [7] and Phelps [14]. 

3. Maximal monotone mappings 

Let X be a Banach space, T: X -+ 2X* a maximal monotone mapping with D = 
= int D(T) + 0. According to Kenderov [10], we define a function f:X -* R+ u 
u {+ oo} by 
(1) f(u) = inf{[|u*I[:u*Gr(u)}, ueX. 

Since T(u) is weakly* closed for each u e D(T) and T is locally bounded 
on D, we have that T(u) is weakly* compact for each u e D and hence f(u) = 
= min {[|u*[|: u* G F(u)} for each u e D. The function f is lower semicontinuous 
on X and finite on D and therefore f is continuous on a dense Gd subset, say C(f), 
of D. 

Next, we shall use the following 

Lemma 1 [6]. LetX he a Banach space, T: X -> 2X* a maximal monotone mapping 
with D = int D(T) + 0. If u0 G C(f), un GD, un -> u0, u* e T(un), u* e T(u0), 
then ||u*|| - [lu*[J. 

Proof. Since Pis norm-to-weak* upper semicontinuous on D and the norm of X* 
is weakly* lower semicontinuous, we have that liminf [|u*[| = [|w*[|. We shall prove 

n-*oo 

that limsup|u*[j ^ ||w*f. Suppose, on the contrary, that limsup [|u*|[ > [|u*[|. 
n-» oo n-*ac 

Without loss of generality one can assume that [|u*[| > [|w*[[ + a for infinitely 
many indexes and some a > 0. Choose vneX, ^vn\\ = 1 such that <u*, v„> = 

= IW*I - " _ 1 . T h e n < u * , v„> > []u*|[+a-tt_ 1 for each n. We have that un+ n_1v„GL) 
for sufficiently large n. Now, choose vn e T(un + « -1v„) such that [)v*|| = 
= f(un + n-1^). By monotonicity of T, <u*, v„> = <v*, v„>. Therefore f(u0) + 
+ a - rr1

 = \ull + a - n"1 < <un*, v„> = <v„*, v„> ̂  [|v*[( = f(un + H " 1 ^ ) , a 
contradiction to the fact thatf is continuous at u0. 
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Under the assumptions of Theorem 1, the Fabian theorem ([3]) asserts that the 
set C(F) of all points of D, where Tis singlevalued and norm-to-norm upper semi-
continuous, is a dense G5 subset of D. In fact, Fabian has proved the following. 

Theorem 1. Let X be a Banach space which admits an equivalent norm on X 
such that X* in its dual norm is a rotund (H)-space. If T: X ~> 2X* is maximal 
monotone with D = int D(T) =N 0, then the set C(f) of all points of D, where T is 
singlevalued and norm-to-norm upper semicontinuous, is equal to the dense G5 

subset C(f) of D, where the function f defined by (l) is continuous in D. 

Proof. Assume that |] • |] is a dual norm on X* such that (X*, || • []) is a rotund 
(H)-space. First of all, the function f is continuous on a dense Gd subset C(f) of D. 
According to the Kenderov theorem, T is singlevalued at the points of a dense Gd 

subset C(f) of D. Let w0 e C(f) be arbitrary, (un) c D(T), un -• w0 and w* e T(un). 
Since T is norm-to-weak* upper semicontinuous on D, we have that w* -> F(w0) 
weakly* in X*. By Lemma 1 and our hypothesis, we conclude that w* -> T(u0) in 
the norm of X* and therefore w0 e C(T), which proves that C(f) .= C(T')- Assume 
now that w0 e C(T). Since f is lower semicontinuous on X, it is sufficient to prove 
that f is upper semicontinuous at w0. Let (un) cz D(T), un -> w0, w* e T(un). By our 
hypothesis for a given e > 0, there exists an integer n0 such that [|w* — T(w0)|| = e 
for each n = n0. Moreover,f(w0) = H-T(u0)|| andf(w„) ^ [|w*[] for each n. Therefore 
f(un) = |ii*|| = \\T(u0)l + £ = e +f(w0) for each n = n0. Hence u0eC(f) and 
therefore C(f) = C(T), which completes the proof. 

Let us remark that a Theorem 1 gives at once the following result. Let X be a Hilbert 
space, T: X -> 2A a strongly monotone mapping with D = int D(T) =}= 0. Then the 
set of all points of D, where T is singlevalued and norm-to-norm upper semicon­
tinuous, is equal to the dense Gd subset C(f) of D, where the function f is defined 
by(l) . 

Corollary 1. Let X be a Banach space which admits an equivalent norm such 
that X* in its dual norm is a rotund (H)-space. Assume that M <= X is an open 
convex subset and that <p: M -> R is a convex continuous function on M. Then 
the set of all points of M, where <p is Frechet differentiable, is equal to a dense G3 

subset C(f) of M of the points of the continuity of the function f: M -> R+ defined 
by f(w) = min {||w*||: w* e d<p(u)), ueM. 

Proof. First of all, T = d<p is maximal monotone on M with D(dq>) = M (see [1], 
[14]): Now, the result follows at once from Theorem 1 and the fact that <p is Frechet 
differentiable at some u0e M if only if T is singlevalued and norm-to-norm upper 
semicontinuous at w0 (see [14], [5]). 

Recall that a Banach space X satisfies the assumption of Theorem 1 if one of the 
following three conditions is fulfilled: (i) X is reflexive; (ii) X* is separable; (iii) X and 
X* are both weakly compact generated (see [2], [7]). 
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Definition 1. Let X be a normed linear space. A mapping T: X -> 2X* is said to 
be hemiclosed at u0 e inta D(T) if for every zeX and each null-sequence of positive 
numbers (tn) and u* e T(un) such that ||w*| = C for some constant C > 0, where 
un = uo + Kz and un e D(T) for sufficiently large n, then there exists a subnet 
(w*J of(un) having the weak* limit point w*, and w* e F(w0). 

Proposition 1. Let X be a Banach space T: X -> 2X* a monotone mapping with 
D = int D(T) =# 0. If T is singlevalued and hemiclosed at u0 e D, then T is norm-
to-weak* upper semicontinuous at u0. 

Proof. Fix z eX and let (tn) be a null-sequence of positive numbers. Then une D 
for sufficiently large n, where un = w0 + tnz. Choose w* e T(un). Since T is locally 
bounded on D, we conclude that there exist a subnet (w*J of (w*) and a point w* e X* 
such that w*a -> w* weakly*. By our hypotheses, w* = T(w0), and therefore the whole 
sequence (w*) converges weakly* to T(w0). Now, using similar arguments as inKato 
[8] for multivalued monotone mappings, we conclude that T is norm-to-weak* 
upper semicontinuous at w0. 

Definition 2. Let X be a normed linear space. We shall say that a mapping 
T: X -> 2X* has a property (P) at u0 e D(T) if the following condition is satisfied: 
If(ua) c: D(T) is a net, ua -> w0 in the norm of X, w* e T(ux) is such that ()w*|| g C 
for some constant C > 0, then there exists a subnet (w*.) of (w*) with the weak* 
limit point w* such that w* e T(w0). 

Lemma 2. Let X be a normed linear space, T: X -> 2X* a mapping with D(T) C X. 
IfTis locally bounded and possesses the property (P) at u0 e D(T), then Tis norm-
to-weak* upper semicontinuous at w0. 

Proof: standard, compare [9]. 

Lemma 3 ([14, § 6]). Let X be a normed linear space, M <= X an open subset, 
T: M —> 2X* a monotone and norm-to-weak* upper semicontinuous mapping. 
If T(u) is nonempty, convex and weak* closed for all ueM, then T is maximal 
monotone in M. 

Proposition 2. LetX be a Banach space, M c X and open convex subset, f: M -> R 
a convex continuous function. Then the subdifferential map df is maximal monotone 
in M. 

Proof. Since df is locally bounded on M (see [7]), according to Lemmas 2, 3, it 
suffices to prove that df satisfies the condition (P) at the points of M. Indeed, let 
w0 e M be arbitrary, (un) <= M, un -> w0 and w* e df(un). Then (w*) is bounded and 
hence there exist a subnet (w*J of (w*) and a point w* eX* such that w*a -> w* 
weakly* in X*. We have <w*a, v — un<x} g f(v) — f(w..J for each v e M. Passing to 
the limit, we get that <w*, v — w0> ^ f(v) — f(w0), for each v e M, i.e. w* e df(u0), 
which finishes the proof. 
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