Acta Universitatis Carolinae. Mathematica et Physica

Tomáš Kepka; Milan Trch
Groupoids and the associative law II. (Groupoids with small semigroup distance)

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 34 (1993), No. 1, 67--83
Persistent URL: http://dml.cz/dmlcz/142652

Terms of use:

© Univerzita Karlova v Praze, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Groupoids and the Associative Law II. (Groupoids with Small Semigroup Distance)

TOMAŚ KEPKA,*) MILAN TRCH**)

MFF UK Praha

Received 20 January 1991

Groupoids with small semigroup distance are studied.
Studují se grupoidy s malou pologrupovou vzdáleností.

This paper is a continuation of the first part [1]. Here, groupoids with small semigroup distance are investigated.

II. 1 The semigroup distance

1.1 Let $G(\circ), G(*)$ be groupoids with the same underlying set G. We put $\operatorname{dist}(G(\circ), G(*))=\operatorname{card}\left(\left\{(x, y) \in G^{(2)} ; x \circ y \neq x * y\right\}\right)$.

For a groupoid G, let $\operatorname{sdist}(G)=\min \operatorname{dist}(G, G(*))$ where $G(*)$ runs through all semigroups having the same underlying set as G.

If G is finite and of order n, then $0 \leqq \operatorname{sdist}(G) \leqq n^{2}$. If G is infinite, then $0 \leqq \operatorname{sdist}(G) \leqq \operatorname{card}(G)$. Clearly, G is a semigroup iff $\operatorname{sdist}(G)=0$.
1.2 Example. Let S be a set containing at least two-elements and let $x y=y$ for all $x, y \in S$. Then S is a semigroup (the semigroup of right zeros or left units). Take $a, b \in S, a \neq b$ and define an operation * on S by $a * a=b$ and $x * y=$ $=y$ otherwise. Clearly, $\operatorname{sdist}(S, S(*))=1$ and $a *(a * a)=a * b=b$ and $(a * a) * a=b * a=a$. Consequently $S(*)$ is not associative and $\operatorname{sdist}(S(*))=$ $=1$.
1.3 Remark. Let G be a finite groupoid of order n. For every $x \in G$, let

[^0]$\sigma(x)=\operatorname{card}\left(\left\{(x, y) \in G^{(2)} ; y z=z\right\}\right)$. Then $\sum_{x \in G} \sigma(x)=n^{2}$, and hence $\sigma(a) \geqq n$ for at least one $a \in G$. Now, put $x * y=a$ for all $x, y \in G$ so that $G(*)$ is a semigroup with zero multiplication. Clearly, $\operatorname{dist}(G, G(*))=n^{2}-\sigma(a)$ and therefore $\operatorname{sdist}(G) \leqq n^{2}-n$.
1.4 Remark. Let G be a finite groupoid of order n and $G(+)$ be a semigroup (possible non-commutative) with the same underlying set G. Put $M=$ $=\left\{(x, y) \in G^{(2)} ; x y \neq x+y\right\}$ and $m=\operatorname{card}(M)$. Further, let:
\[

$$
\begin{aligned}
& K_{1}=\left\{(x, y, z) \in G^{(3)} ;(x, y) \in M\right\}, \quad K_{2}=\left\{(x, y, z) \in G^{(3)} ;(x y, z) \in M\right\}, \\
& K_{3}=\left\{(x, y, z) \in G^{(3)} ;(x, y z) \in M\right\}, \quad K_{4}=\left\{(x, y, z) \in G^{(3)} ;(y, z) \in M\right\}, \\
& K=K_{1} \cup K_{2} \cup K_{3} \cup K_{4}, \quad k_{i}=\operatorname{card}\left(K_{i}\right) \quad \text { and } \quad k=\operatorname{card}(K) .
\end{aligned}
$$
\]

Now, let $(x, y, z) \notin K$. Then $x y=x+y, x y \cdot z=(x y)+z, x \cdot y z=x+(y z)$, $y z=y+z \quad$ and $\quad x \cdot y z=x+(y z)=x+(y+z)=(x+y)+z=x y \cdot z$. We have proved that $G^{(3)}-K \cong \operatorname{As}(G)$, and hence $\operatorname{Ns}(G)=G^{(3)}-\operatorname{As}(G) \cong$ $\cong G^{(3)}-\left(G^{(3)}-K\right)=K$. Thus $\mathrm{Ns}(G) \cong K, \mathrm{~ns}(G) \leqq k, \mathrm{~ns}(G) \leqq k_{1}+k_{2}+$ $+k_{3}+k_{4}$.

Clearly, $k_{1}, k_{4}=m n$ and $k_{2}, k_{3} \leqq m n^{2}$. Hence $k \leqq 2 m\left(m+n^{2}\right)$ and $\mathrm{ns}(G) \leqq 2 m\left(n+n^{2}\right)$, which yields $m \geqq \mathrm{~ns}(G) / 2\left(n+n^{2}\right)$.

Finally, let $(x, y, z) \in K_{2}-\left(K_{1} \cup K_{3} \cup K_{4}\right)=L_{2}$. Then $x y \cdot z \neq(x y)+z$, $x y=x+y, \quad x \cdot y z=x+(y z), \quad y z=y+z$ and $(x y)+z=(x+y)+z=$ $=x+(y+z)=x+(y z)=x \cdot y z$ so that $x y \cdot z \neq x \cdot y z$ and we have proved that $L_{2} \cong \mathrm{Ns}(G)$. Similarly, $L_{3}=K_{3}-\left(K_{1} \cup K_{2} \cup K_{4}\right) \cong \mathrm{Ns}(G)$.
1.5 Remark. Let G be a finite antiassociative groupoid of order n and let $m=\operatorname{sdist}(G)$. By $1.4 m>n^{3} / 2\left(n+n^{2}\right)=n / 2-n^{2} / 2\left(n+n^{2}\right)$. If n is even, $n=2 t$, then $m>t-t^{2} /\left(t+2 t^{2}\right)>t-1 / 2$ and hence $m \geqq t$. If n is odd, $n=2 s+1$, then $m \geqq s+1 / 2-n^{2} / 2\left(n+n^{2}\right)>s$, and hence $m \geqq s+1$. In both cases, $m \geqq n / 2$.
1.6 Example. Let G be a non-empty set of order $n, f \in \mathscr{S}(G)$ and $x y=f(y)$ for all $x, y \in G$. Further, let $G(+)$ be a semigroup such that $m=$ dist$(G, G(+))=\operatorname{sdist}(G)$.

Then $k_{1}, k_{2}, k_{3}, k_{4}=m n$ (see 1.4), so that $\mathrm{ns}(G)<4 m n$ and $m \geqq \mathrm{~ns}(G) / 4 n$.
Now, suppose that $f(x) \neq x$ for every $x \in G$. Then G is antiassociative, $\operatorname{ns}(G)=n^{3}$ and we have $m \geqq n^{2} / 4$.
II. 2 Groupoids with small semigroup distance - introduction
2.1 Let G be a groupoid (the binary operation of which is denoted multiplicatively) and let $a, b, c \in G$. Define a binary operation $*$ on G by $x * y=x y$ if $(x, y) \neq(a, b)$ and $a * b=c$. We obtain a groupoid $G(*)=G[a, b, c]$ such that $\operatorname{dist}(G, G(*)) \leqq 1$; clearly $\operatorname{dist}(G, G(*))=1$ iff $c \neq a b$.
2.2 In the remaining part of this section, let G be a semigroup $a, b, c \in G$, $a b \neq c \quad$ and $\quad G(*)=G[a, b, c]$. Put $\mathscr{A}=\operatorname{As}(G(*))=\left\{(x, y, z) \in G^{(3)}\right.$; $(x * y) * z=x *(y * z)\}$ and $\mathscr{B}=\operatorname{Ns}(G(*))=G^{(3)}-\mathscr{A}$.
2.3 Lemma. Let $x, y, z \in G$.
(i) If $x \neq a$ and $z \neq b$, then $(x, y, z) \in \mathscr{A}$.
(ii) If $y \neq b$ and $z \neq b$, then $(a, y, z) \in \mathscr{A}$ iff $y z \neq b$.
(iii) If $x \neq a$ and $y \neq a$, then $(x, y, b) \in \mathscr{A}$ iff $x y \neq a$.
(iv) If $z \neq b$ and $b z \neq b$, then $(a, b, z) \in \mathscr{A}$ iff $c z=a b z$.
(v) If $z \neq b$ and $b z=b$, then $(a, b, z) \in \mathscr{A}$ iff $c z=c$.
(vi) If $x \neq a$ and $x a \neq a$, then $(x, a, b) \in \mathscr{A}$ iff $x c=x a b$.
(vii) If $x \neq a$ and $x a=a$, then $(x, a, b) \in \mathscr{A}$ iff $x c=c$.

Proof. (i) $(x * y) * z=(x y) * z=x y \cdot z=x \cdot y z=x *(y z)=x *(y * z)$.
(ii) $(a * y) * z=(a y) * z=a y \cdot z$ and $a *(y * z)=a *(y z)$. If $y z \neq b$, then $a * y z=a y \cdot z$. If $y z=b$, then $a *(y z)=c \neq a b=a y \cdot z$.
(iii) Dual to (ii).
(iv) and (v). $(a * b) * z=c * z=c z$ and $a *(b * z)=a *(b z)$. If $b z \neq b$, then $a *(b z)=a b z$. If $b z=b$, then $a *(b z)=c$.
(vi) and (vii). Dual to (v) and (iv), respectively.
2.4. Lemma. Let $y \in G$ be such that $a \neq y \neq b$.
(i) If $a y \neq a$, then $(a, y, b) \in \mathscr{A}$ iff $y b \neq b$.
(ii) If $a y=a$, then $(a, y, b) \in \mathscr{A}$ iff $y b=b$.

Proof. $(a * y) * b=(a y) * b$ and $a *(y * b)=a *(y b)$. If $a y \neq a, y b \neq b$, then $(a y) * b=a y b=a *(y b)$. If $a y \neq a, y b=b$, then $(a y) * b=a y b=$ $=a b \neq c=a *(y b)$. If $a y=a, y b \neq b$, then $(a y) * b=c \neq a b=a y b=$ $=a *(y b)$. If $a y=a, y b=b$, then $(a y) * b=c=a *(y b)$.
2.5 Lemma. Let $a \neq b$.
(i) If $a \neq a^{2}$ and $b \neq c$, then $(a, a, b) \in \mathscr{A}$ iff $a c=a^{2} b$.
(ii) If $a=a^{2}$ and $b \neq c$, then $(a, a, b) \in \mathscr{A}$ iff $a c=c$.
(iii) If $a \neq a^{2}$ and $b=c$, then $(a, a, b) \in \mathscr{A}$ iff $b=a^{2} b$.
(iv) If $a=a^{2}$ and $b=c$, then $(a, a, b) \in \mathscr{A}$.
(v) If $b \neq b^{2}$ and $a \neq c$, then $(a, b, b) \in \mathscr{A}$ iff $c b=a b^{2}$.
(vi) If $b=b^{2}$ and $a \neq c$, then $(a, b, b) \in \mathscr{A}$ iff $c b=c$.
(vii) If $b \neq b^{2}$ and $a=c$, then $(a, b, b) \in \mathscr{A}$ iff $a=a b^{2}$.
(viii) If $b=b^{2}$ and $a=c$, then $(a, b, b) \in \mathscr{A}$.

Proof. $(a * a) * b=a^{2} * b$ and $a *(a * b)=a * c$. If $a \neq a^{2}, b \neq c$, then $a^{2} * b=a^{2} b$ and $a * c=a c$. If $a=a^{2}, b \neq c$, then $a^{2} * b=c, a * c=a c$. If $a \neq a^{2}, b=c$, then $a^{2} * b=a^{2} c=a^{2} b, a * c=a * b=b$. If $a=a^{2}, b=c$, then $a^{2} * b=a * b=c, a * c=a * b=c$. The rest is dual.
2.6 Lemma. Let $a=b$. Then $(a, a, a) \in \mathscr{A}$ iff $a c=c a$.

Proof. $(a * a) * a=(a * b) * a=c * a$ and $a *(a * a)=a *(a * b)=a * c$.

If $a \neq c$, then $c * a=c a$ and $a * c=a c$. If $a=c$, then $c * a=a * c$ and $a c=c a$.

2.7 Define the following sets:

$A=\{(a, y, z) ; y, z \in G, y \neq b \neq z, y z=b\}$,
$A^{\prime}=\{(y, z) ;(a, y, z) \in A\}$,
$B=\{(x, y, b) ; x, y \in G, x \neq a \neq y, x y=a\}$,
$B^{\prime}=\{(x, y) ;(x, y, b) \in B\}$,
$C_{1}=\{(a, b, z) ; z \in G, z \neq b, b z \neq b, c z \neq a b z\}$,
$C_{1}^{\prime}=\left\{z ;(a, b, z) \in C_{1}\right\}$,
$C_{2}=\{(a, b, z) ; z \in G, z \neq b, b z=b, c z \neq c\}$,
$C_{2}^{\prime}=\left\{z ;(a, b, z) \in C_{2}\right\}$,
$D_{1}=\{(x, a, b) ; x \in G, x \neq a, x a \neq a, x c \neq x a b\}$,
$D_{1}^{\prime}=\left\{x ;(x, a, b) \in D_{1}\right\}$,
$D_{2}=\{(x, a, b) ; x \in G, a \neq x, x a=a, x c \neq c\}$,
$D_{2}^{\prime}=\left\{x ;(x, a, b) \in D_{2}\right\}$,
$E_{1}=\{(a, y, b) ; y \in G, a \neq y \neq b, a y=a, y b \neq b\}$,
$E_{1}^{\prime}=\left\{y ;(a, y, b) \in E_{1}\right\}$,
$E_{2}=\{(a, y, b) ; y \in G, a \neq y \neq b, a y \neq y, y b=b\}$,
$E_{2}^{\prime}=\left\{y ;(a, y, b) \in E_{2}\right\} ;$
Further, let:
$F_{1}=\{(a, a, b)\}$ if $a \neq b$ and either $a \neq a^{2}, b \neq c, a c=a^{2} b$ or $a \neq a^{2}, b=c$, $b \neq a^{2} b$ or $a=a^{2}, b \neq c, a c \neq c$ and $F_{1}=\emptyset$ in the opposite case,
$F_{2}=\{(a, b, b)\}$ if $a \neq b$ and either $b \neq b^{2}, a \neq c, c b \neq a b^{2}$ or $b \neq b^{2}, a=c$, $a \neq a b^{2}$ or $b=b^{2}, a \neq c, c \neq c b$ and $F_{2}=\emptyset$ in the opposite case,
$F_{3}=\{(a, a, a)\}$ if $a=b, a c \neq c a$ and $F_{3}=\emptyset$ in the opposite case.
Let $\alpha, \beta, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2}, \varepsilon_{1}, \varepsilon_{2}, \varphi_{1}, \varphi_{2}$ and φ_{3} designate the cardinalities of the sets $A, B, C_{1}, C_{2}, D_{1}, D_{2}, E_{1}, E_{2}, F_{1}, F_{2}$ and F_{3}, respectively.
2.8. Lemma. The sets $A, B, C_{1}, C_{2}, D_{1}, D_{2}, E_{1}, E_{2}, F_{1}, F_{2}, F_{3}$ are pair-wise disjoint and their union is equal to \mathscr{B}. Consequently, $\mathrm{ns}(G(*))=\operatorname{card}(\mathscr{B})=$ $=\alpha+\beta+\gamma_{1}+\gamma_{2}+\delta_{1}+\delta_{2}+\varepsilon_{1}+\varepsilon_{2}+\varphi_{1}+\varphi_{2}+\varphi_{3}$.

Proof. See 2.3, 2.4, 2.5, 2.6 and definitions of the sets $A, B, C_{1}, C_{2}, \ldots, F_{3}$.
2.9 Proposition. The groupoid $G(*)$ is a semigroup iff the following fivteen conditions are satisfied:
(1) If $b=y z$ for some $y, z \in G$, then $b \in\{y, z\}$.
(2) If $a=x y$ for some $x, y \in G$, then $a \in\{x, y\}$.
(3) If $z \in G$ and $z \neq b \neq b z$, then $c z=a b z$.
(4) If $z \in G$ and $z \neq b=b z$, then $c z=c$.
(5) If $x \in G$ and $x \neq a \neq x a$, then $x c=x a b$.
(6) If $x \in G$ and $x \neq a=x a$, then $x c=c$.
(7) If $y \in G$ and $a \neq y \neq b, a y=a$, then $y b=b$.
(8) If $y \in G$ and $a \neq y \neq b, y b=b$, then $a y=a$.
(9) If $a \neq b, a \neq a^{2}$ and $b \neq c$, then $a c=a^{2} b$.
(10) If $a \neq b, a \neq a^{2}$ and $b=c$, then $b=a^{2} b$.
(11) If $a \neq b, a=a^{2}$ and $b \neq c$, then $c=a c$.
(12) If $a \neq b, b \neq b^{2}$ and $a \neq c$, then $c b=a b^{2}$.
(13) If $a \neq b, b \neq b^{2}$ and $a=c$, then $a=a b^{2}$.
(14) If $a \neq b, b=b^{2}$ and $a \neq c$, then $c=c b$.
(15) If $a=b$, then $a c=c a$.

Proof. $G\left({ }^{*}\right)$ is a semigroup iff $\mathscr{B}=\emptyset$, and hence the result follows from 2.8 and the definitons of the sets A, B, \ldots, F_{3}.

II. 3 Semigroups of left zeros

3.1 Lemma. Suppose that G is a semigroup of left zeros (i.e. $x y=x$ for all $x, y \in G)$. Then $\mathscr{B}=\{(a, y, b) ; y \in G, a \neq y \neq b\} \cup K$, where $K=\{(a, a, b)\}$ if $a \neq b \neq c, K=\{(a, a, a)\}$ if $a=b$ and $K=\emptyset$ if $a \neq b=c$.

Proof. The result follows easily form 2.8 and the definitions of the sets A, B, \ldots, F_{3} (take into account that $a b \neq c$ implies $a \neq c$ in this case).
3.2 Lemma. Suppose that G is a semigroup of right zeros (i.e. $x y=y$ for all $x, y \in G)$. Then $\mathscr{B}=\{(a, y, b) ; y \in G, a \neq y \neq b\} \cup L$, where $L=\{(a, b, b)\}$ if $b \neq a \neq c, L=\{(a, a, a)\}$ if $a=b$ and $L=\emptyset$ if $b \neq a=c$.

Proof. Dual to that of 3.1.
3.3 Lemma. Suppose that G is a finite semigroup of left (rights) zeros with $n \geqq 2$ elements.
(i) If $a \neq b \neq c(b \neq a \neq c)$, then $\mathrm{ns}\left(G\left(^{*}\right)\right)=n-1$.
(ii) If $a \neq b=c(b \neq a=c)$, then $\mathrm{ns}(G(*))=n-2$.
(iii) If $a=b$, then $\operatorname{ns}(G(*))=n$.

Proof. This is an immediate consequence of 3.1 and 3.2.
3.4 Proposition. Let G be a semigroup of left (right) zeros and $a, b, c \in G$. Then $G[a, b, c]$ is associative iff either $a=c(b=c)$ or $\operatorname{card}(G)=2$ and $a \neq b=c$ ($b \neq a=c$).

Proof. This is an easy consequence of 3.1 and 3.2.

II. 4 Semigroup with zero multiplication

4.1 Throughout this section let G be a semigroup with zero multiplication (i.e. G contains a dominant element 0 and $x y=0$ for all $x, y \in G)$.

Let $a, b, c \in G, \quad c \neq 0$ (i.e. $a b \neq c$) and let $G(*)=G[a, b, c], \mathscr{B}=$ $=\operatorname{Ns}(G(*))$.
4.2 Lemma. Let $a \neq 0 \neq b$ and $a \neq b$.
(i) If $a \neq c$, then $\mathscr{B}=\{(a, b, b)\}$.
(ii) If $b=c$, then $\mathscr{B}=\{(a, a, b)\}$.
(iii) If $a \neq c \neq b$, then $\mathscr{B}=\emptyset$.

Proof. Use 2.8 and the definitons of the sets A, B, \ldots, F_{3} (see 2.7).
4.3 Lemma. If $a=b \neq 0$, then $\mathscr{B}=\emptyset$.

Proof. Use 2.8.
4.4 Lemma. Let $0=a \neq b$, then $\mathscr{B}=\{(x, y, b) ; x, y \in G, x \neq 0 \neq y\} \cup$ $\cup\{(x, 0, b) ; x \in G, x \neq 0\} \cup\{(0, y, b) ; y \in G, 0 \neq y \neq b\} \cup K$, where $K=$ $=\{(0,0, b)\}$ if $b \neq c$ and $K=\emptyset$ if $b=c$.

Proof. Use 2.8.
4.5 Lemma. Let $0=b \neq a$. Then $\mathscr{B}=\{(a, y, z) ; y, z \in G, \quad y \neq 0 \neq z\} \cup$ $\cup\{(a, 0, z) ; z \in G, \quad z \neq 0\} \cup\{(a, y, 0) ; \quad y \in G, a \neq y \neq 0\} \cup L$, where $L=$ $=\{(a, 0,0)\}$ if $a \neq c$ and $L=\emptyset$ if $a=c$.

Proof. Use 2.8.
4.6 Lemma. Let $a=b=0$. Then $\mathscr{B}=\{(0, y, z) ; \quad y, z \in G, \quad y \neq 0 \neq z\} \cup$ $\cup\{(x, y, 0) ; \quad x, y \in G, \quad x \neq 0 \neq y\} \cup\{(0,0, z) ; \quad z \in G, \quad z \neq 0\} \cup\{(x, 0,0) ;$ $x \in G, x \neq 0\}$.

Proof. Use 2.8

4.7 Lemma. Suppose that G is finite with $n \geqq 2$ elements.
(i) If $a \neq 0 \neq b, a \neq b$ and $a \neq c \neq b$, then $\operatorname{ns}(G(*))=0$.
(ii) If $a \neq 0 \neq b, a \neq b$ and $a=c \quad(b=c)$, then $\operatorname{ns}(G(*))=1$.
(iii) If $a=b \neq 0$, then $\mathrm{ns}(G(*))=0$.
(iv) If $0=a \neq b \neq c(0=b \neq a \neq c)$, then $\operatorname{ns}(G(*))=n^{2}-1$.
(v) If $0=a$ and $b=c(0=b$ and $a=c)$, then $\operatorname{ns}(G(*))=n^{2}-2$.
(vi) If $0=a=b$, then $\mathrm{ns}(G(*))=2 n(n-1)$.

Proof. This follows immediately from 2.2, 2.3, 2.4, 2.5 and 2.6.
4.8 Proposition. Let G be a semigroup with zero multiplication and $a, b, c \in G$. Then $G[a, b, c]$ is associative iff either $c=0$ or $a \neq 0 \neq b, a \neq b$, $a \neq c \neq b$ or $a=b \neq 0$.

Proof. Combine 2.2, 2.3, 2.4, 2.5 and 2.6.
4.9 Let $n \geqq 2$. Define a binary operation * on the set $\{0,1, \ldots, n-1\}$ by $x * y=0$ if $(x, y) \neq(0,0)$ and $0 * 0=1$. Then we obtain an n-element groupoid, denote it by $R_{n}(*)$, which is not associative and such that $\mathrm{ns}\left(R_{n}(*)\right)=2 n(n-1)$ and $\operatorname{sdist}\left(R_{n}(*)\right)=1$.

II.5 Cancellation semigroups

5.1 In this section, let G be a cancellation semigroup (i.e. $x y \neq x z$ and $y x \neq z x$ if $x, y, z \in G, y \neq z$). G may (but neednot) contain a neutral element which (if it exists) is unique and is denoted by 1 (thus for $x \in G, x \neq 1$ means that x is not a neutral element of G).

Let $a, b, c \in G, a b \neq c, G(*)=G[a, b, c]$ and $\mathscr{B}=\operatorname{Ns}(G(*))$.
5.2 Lemma. If $x, y \in G$ and $x y=x(x y=y)$, then $y=1(x=1)$.

Proof. Easy.
5.3 Lemma. Let $a \neq 1 \neq b$. Then $\mathscr{B}=\{(a, y, z) ; \quad y, z \in G, \quad y \neq b \neq z$, $y z=b\} \cup\{(x, y, b) ; x, y \in G, x \neq a \neq y, x y=a\} \cup\{(a, b, z) ; z \in G, z \neq b\} \cup$ $\cup\{(x, a, b) ; \quad x \in G, \quad x \neq a\} \cup K$, where $K=\{(a, a, b),(a, b, b)$,$\} if either$ $a \neq b \neq c \neq a$ or $a \neq b=c, a^{2} \neq 1$ or $b \neq a=c, b^{2} \neq 1, K=\{(a, a, b)\}$ if $a=c \neq b, b^{2}=1, K=\{(a, b, b)\}$ if $b=c \neq a, a^{2}=1, K=\{(a, a, a)\}$ if $a=b, a c \neq c a$ and $K=\emptyset$ in the remaining cases.

Proof. Use 2.8, 3.2 and definitions of the sets A, B, \ldots, F_{3} (see 2.7).
5.4 Lemma. Let $1=a \neq b$. Then $\mathscr{B}=\{(1, y, z) ; \quad y, z \in G, \quad y \neq b \neq z$, $y z=b\} \cup\{(x, y, b) ; \quad x, y \in G, \quad x \neq 1 \neq y, \quad x y=1\} \cup\{(1, b, z) ; \quad z \in G$, $1 \neq z \neq b)\} \cup\{(x, 1, b) ; x \in G, x \neq 1\} \cup L$, where $L=\{(1, b, b)\}$ if either $1 \neq c$ or $c=1 \neq b^{2}$ and $L=\emptyset$ otherwise.

Proof. Similar to that of 3.3 (notice that $c \neq a b=b$).
5.5 Lemma. Let $1=b \neq a$. Then $\mathscr{B}=\{(a, y, z) ; \quad y, z \in G, \quad y \neq 1 \neq z$, $y z=1\} \cup\{(x, y, 1) ; x, y \in G, x \neq a \neq y, x y=a\} \cup\{(a, 1, z) ; z \in G, z \neq 1) \cup$ $\cup\{(x, a, 1) ; 1 \neq x \neq a) \cup L$, where $L=\{(a, a, 1)\}$ if either $1 \neq c$ or $c=$ $=1 \neq a^{2}$ and $L=\emptyset$ otherwise.

Proof. Dual to that of 5.4.
5.6 Lemma. Let $a=b=1$. Then $\mathscr{B}=\{(1, y, z) ; \quad y, z \in G, \quad y \neq 1 \neq z$, $y z=1\} \cup\{(x, y, 1) ; x, y \in G, x \neq 1 \neq y, x y=1\} \cup\{(1,1, z) ; z \in G, z \neq 1) \cup$ $\cup\{(x, 1,1) ; x \in G, x \neq 1\}$.

Proof. Similar to that of 5.3 (notice that $1=a b \neq c$).
5.7 Lemma. Let G be finite with $n \geqq 2$ elements (then G is a group).
(i) If $a \neq 1 \neq b \neq a \neq c \neq b$, then $\operatorname{ns}(G(*))=4 n-4$.
(ii) If $a \neq 1 \neq b=c \neq a, a^{2} \neq 1$, then $\operatorname{ns}(G(*))=4 n-4$.
(iii) If $a \neq 1 \neq b \neq a=c, b^{2} \neq 1$, then $\mathrm{ns}(G(*))=4 n-4$.
(iv) If $a \neq 1 \neq b, a \neq b-c, a^{2}=1$, then $\mathrm{ns}(G(*))=4 n-5$.
(v) If $a \neq 1 \neq b, a=c \neq b, b^{2}=1$, then $\mathrm{ns}(G(*))=4 n-5$.
(vi) If $a=b \neq 1$, $a c \neq c a$, then $\mathrm{ns}(G(*))=4 n-5$.
(vii) If $a \neq 1 \neq b$ and $a=b, a c=c a$, then $\mathrm{ns}(G(*))=4 n-6$.
(viii) If $a=1 \neq b$ and $c \neq 1$, then $\operatorname{ns}(G(*))=4 n-5$.
(ix) If $a=1 \neq b$ and $c=1 \neq b^{2}$, then $\operatorname{ns}(G(*))=4 n-5$.
(x) If $a=1 \neq b$ and $c=1=b^{2}$, then $\mathrm{ns}(G(*))=4 n-6$.
(xi) If $b=1 \neq a$ and $c \neq 1$, then $\mathrm{ns}(G(*))=4 n-5$.
(xii) If $b=1 \neq a$ and $c=1 \neq a^{2}$, then $\mathrm{ns}(G(*))=4 n-5$.
(xiii) If $b=1 \neq a$ and $c=1=a^{2}$, then $\mathrm{ns}(G(*))=4 n-6$.
(xiv) If $a=1=b$, then $\mathrm{ns}(G(*))=4 n-4$.

Proof. Use 5.3, 5.4, 5.5 and 5.6.
5.8 Proposition. Let G be a cancellation semigroup and $a, b, c \in G$. Then $G[a, b, c]$ is associative iff $a b=c$.

Proof. Combine 5.3, 5.4, 5.5 and 5.6.

II. 6 The case of irreducible elements

6.1 In this section, let G be a semigroup and $a, b, c \in G$ be such that $a, b \notin G^{2}=\{x y ; \quad x, y \in G\}$ and $a b \neq c$. Put $G(*)=G[a, b, c]$ and $\mathscr{B}=$ $=\mathrm{Ns}(G(*))$.
6.2 Lemma. (i) If $a \neq b \neq c \neq a$, then $\mathscr{B}=\{(a, b, z) ; z \in G, c z \neq a b z\} \cup$ $\cup\{(x, a, b) ; x \in G, x c \neq x a b\}$.
(ii) If $c=a \neq b$, then $\mathscr{B}=\{(a, b, z) ; z \in G, c z \neq a b, z \neq b\} \cup\{(x, a, b)$; $x \in G, x c \neq x a b\} \cup\{(a, b, b)\}$.
(iii) If $c=b \neq a$, then $\mathscr{B}=\{(a, b, z) ; x \in G, c z \neq a b z\} \cup\{x, a, b) ; x \in G$, $x \neq a, x c \neq x a b\} \cup\{(a, a, b)\}$.
(iv) If $a=b$ and $a c \neq c a$, then $\mathscr{B}=\left\{(a, a, z) ; \quad z \in G, z \neq a, c z \neq a^{2} z\right\} \cup$ $\cup\left\{(x, a, a) ; x \in G, x \neq a, x c \neq x a^{2}\right\} \cup\{(a, a, a)\}$.
(v) If $a=b$ and $a c=c a$, then $\mathscr{B}=\left\{(a, a, z) ; z \in G, \quad z \neq a, c z \neq a^{2} z\right\} \cup$ $\cup\left\{(x, a, a) ; x \in G, x \neq a, x c \neq x a^{2}\right\}$.

Proof. Use 2.8 and the definitions of the sets A, B, \ldots, F_{3} (see 2.7).
6.3 Lemma. If G is finite with $n \geqq 2$ elements, then $\mathrm{ns}(G(*)) \leqq 2 n$.

Proof. This follows immediately from 6.2.
6.4 Proposition. Let G be a semigroup and $a, b, c \in G$ such that $a, b \notin G^{2}$. Then $G[a, b, c]$ is associative iff either $a b=c$ or $a \neq b \neq c \neq a$ and $c x=a b x$, $x c=x a b$ for each $x \in G$ or $a=b, a c=c a$ and $y c=y a^{2}, c y=a^{2} y$ for each $y \in G, y \neq a$.

Proof. This follows easily from 6.2.

II. 7 Auxiliary results

7.1 In this section, let G be a finite semigroup with $n \geqq 3$ elements and let $a, c \in G$ be such that $a \neq a^{2} \neq c \neq a$. Put $G(*)=G[a, a, c]$ and $\mathscr{B}=$ $=\operatorname{Ns}(G(*))$.
7.2 We shall use the notation form 2.7 and, moreover, we put $R_{1}=$ $=\left\{(c, z) ; \quad z \in C_{1}\right\}, S_{1}=\left\{\left(a^{2}, z\right) ; \quad z \in C_{1}\right\}, R_{2}=\left\{(x, c) ; x \in D_{1}^{\prime}\right\}, S_{2}=\left\{\left(x, a^{2}\right) ;\right.$ $\left.x \in D_{1}^{\prime}\right\}, H=G-\{a\}, K=\{(u, v) ; u, v \in H, u v=a\}, L=\{(u, v) ; u, v \in H$, $u v \neq a\}$ and $\lambda=\operatorname{card}(L)$.
7.3 Lemma. (i) $\operatorname{card}(H)=n-1$.
(ii) $K=A^{\prime}=B^{\prime}$ and $\operatorname{card}(K)=\alpha=\beta$.
(iii) $K \cap L=\emptyset, K \cup L=H^{(2)}$ and $\alpha+\lambda=(n-1)^{2}$.
(iv) $\operatorname{card}\left(R_{1}\right)=\operatorname{card}\left(S_{1}\right)=\gamma_{1}$ and $R_{1} \cap S_{1}=\emptyset$.
(v) $\operatorname{card}\left(R_{2}\right)=\operatorname{card}\left(S_{2}\right)=\delta_{1}$ and $R_{2} \cap S_{2}=\emptyset$.
(vi) $\varphi_{1}=\varphi_{2}=0$.

Proof. Easy.
7.4 Lemma. (i) $\alpha+\gamma_{1} \leqq(n-1)^{2}$ and $\alpha+\gamma_{1}=(n-1)^{2}$ iff $\gamma_{1}=\lambda$ and iff $L \cong R_{1} \cup S_{1}$.
(ii) $\alpha+\delta_{1} \leqq(n-1)^{2}$ and $\alpha+\delta_{1}=(n-1)^{2}$ iff $\delta_{1}=\lambda$ and iff $L \cong R_{2} \cup S_{2}$. Proof. (i) Since $c \neq a \neq a^{2}$ and $c z \neq a^{2} z$ for each $z \in C_{1}$, we have $\gamma_{1}<$ $<\operatorname{card}\left(\left(R_{1} \cup S_{1}\right) \cap L\right) \leqq \lambda$ and $\alpha+\gamma_{1} \leqq \alpha+\lambda=(n-1)^{2}$. Consequently, $\alpha+\gamma_{1}=(n-1)^{2}$ iff $\gamma_{1}=\lambda$ and this is clearly equivalent to the fact that $L \cong R_{1} \cup S_{1}$.
(ii) This is dual to (i).
7.5 Lemma. $2 \alpha+\gamma_{1}+\delta_{1} \leqq 2(n-1)^{2}$ and the equality holds iff $\gamma_{1}=\delta_{1}=$ $=\lambda$. If the latter is true, then $u, v \in\left\{c, a^{2}\right\}, u a \neq a \neq a v, u c \neq u a^{2}$ and $c v \neq a^{2} v$ for each $(u, v) \in L$.

Proof. This is an easy consequence of 5.4.
7.6 Put $E_{3}=\{y ; \quad y \in H, \quad a y=a=y a\}, \quad E_{4}=\{y ; \quad y \in H, \quad a y \neq a \neq y a\}$, $\varepsilon_{3}=\operatorname{card}\left(E_{3}\right)$ and $\varepsilon_{4}=\operatorname{card}\left(E_{4}\right)$.
7.7 Lemma. (i) The sets $E_{1}^{\prime}, E_{2}^{\prime}, E_{3}, E_{4}$ are pair-wise disjoint and their union is equal to H.
(ii) $\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}=n-1$.

Proof. Easy.
7.8 Lemma. $\gamma_{2}+\delta_{2}+\varepsilon_{1}+\varepsilon_{2} \leqq 2(n-1)$ and the equality holds iff $E_{4}=\emptyset$, $E_{1}^{\prime} \cong C_{2}^{\prime}, E_{2}^{\prime} \subseteq D_{2}^{\prime}, E_{3} \subseteq C_{2}^{\prime} \cap D_{2}^{\prime}$. Moreover, this takes place iff the following three conditions are satisfied:
(1) If $y \in H$, then either $a y=a$ or $y a=a$.
(2) If $y \in H$ and $a y=a$, then $c y \neq c$.
(3) If $y \in H$ and $y a=a$, then $y c \neq c$.

Proof. Clearly, $C_{2}^{\prime} \cong E_{1}^{\prime} \cup E_{3}$ and $D_{2}^{\prime} \subseteq E_{2}^{\prime} \cup E_{3}$. Put $\vartheta_{1}=\operatorname{card}\left(C_{2}^{\prime} \cap E_{1}^{\prime}\right)$, $\vartheta_{2}=\operatorname{card}\left(C_{2}^{\prime} \cap E_{3}\right), \quad \vartheta_{3}=\operatorname{card}\left(D_{2}^{\prime} \cap E_{2}^{\prime}\right) \quad$ and $\quad \vartheta_{4}=\operatorname{card}\left(D_{2}^{\prime} \cap E_{3}\right)$. Then $\boldsymbol{\vartheta}_{1}+\boldsymbol{\vartheta}_{2}=\gamma_{2}, \vartheta_{3}+\boldsymbol{\vartheta}_{4}=\delta_{2}$ and we have $\gamma_{2}+\delta_{2}+\varepsilon_{1}+\varepsilon_{2}=\boldsymbol{\vartheta}_{1}+\vartheta_{2}+\vartheta_{3}+$ $+\vartheta_{4}+\varepsilon_{1}+\varepsilon_{2} \leqq 2 \varepsilon_{1}+2 \varepsilon_{2}+2 \varepsilon_{3} \leqq 2(n-1)$. Finally, assume that $\gamma_{2}+\delta_{2}+$ $+\varepsilon_{1}+\varepsilon_{2}=2(n-1)$. Then $\varepsilon_{4}=0, \vartheta_{1}=\varepsilon_{1}, \vartheta_{2}=\vartheta_{4}=\varepsilon_{3}$ and $\vartheta_{3}=\varepsilon_{2}$. The rest is clear.
7.9 Lemma. $\mathrm{ns}(G(*)) \leqq 2 n^{2}-2 n-1$.

Proof. We have $\operatorname{ns}(G(*))=\operatorname{card}(\mathscr{B})=\mu+v+\varphi_{3}$, where $\mu=2 \alpha+\gamma_{1}+\delta_{1}$, $v=\gamma_{2}+\delta_{2}+\varepsilon_{1}+\varepsilon_{2}$ and $\varphi_{3}=1$ if $a c \neq c a, \varphi_{3}=0$ if $a c=c a$ (see 2.7, 2.8 and 7.3).

First, assume that $a^{2} \notin E_{4}$. Then $a^{3}=a, a^{4}=a^{2} \neq a, \quad a^{2} \notin C_{1}^{\prime}, \quad a^{2} \notin D_{1}^{\prime}$, $\left(a^{2}, a^{2}\right) \in L-\left(R_{1} \cup S_{1}\right),\left(a^{2}, a^{2}\right) \in L-\left(R_{2} \cup S_{2}\right)$, and so $\mu \leqq 2(n-1)^{2}-2$ by 7.4. Now, $\mu+v+\varphi_{3} \leqq 2(n-1)^{2}-2+2(n-1)+1=2 n^{2}-2 n-1$ (use 7.8).

Next, let $a^{2} \in E_{4}$. Then $\varepsilon_{4}>1, \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3} \leqq n-2$ and $\nu \leqq 2(n-2)$ by the proof of 7.8. Now, $\mu+v+\varphi_{3} \leqq 2(n-1)^{2}+2(n-2)+1=2 n^{2}-2 n-1$ (use 7.5).

II. 8 Auxiliary results

8.1 In this section, let G be a finite semigroup with $n \geqq 2$ elements and let $a \in G, a \neq a^{2}$. Put $G(*)=G[a, a a]$ and $\mathscr{B}=\operatorname{Ns}(G(*))$. In the sequel, we shall use the notation from 2.7, 7.2 and 7.6.
8.2 Lemma. $C_{2}=C_{2}^{\prime}=D_{2}=D_{2}^{\prime}=\emptyset, \alpha=\beta$ and $\gamma_{2}=\delta_{2}=\varphi_{1}=\varphi_{2}=$ $=\varphi_{3}=0$.

Proof. Obvious.
8.3 Lemma. $\alpha \leqq(n-1)^{2}$ and the equality holds iff $u v=a$ for all $u, v \in H$. Proof. Obvious.
8.4 Lemma. $\gamma_{1}+\delta_{1}+\varepsilon_{1}+\varepsilon_{2} \leqq 2(n-1)$ and the equality holds iff the following three conditions are atisfied:
(1) If $y \in H$, then either $a y \neq a$ or $y a \neq a$.
(2) If $y \in H$ and $a y \neq a$, then $a y \neq a^{2} y$.
(3) If $y \in H$ and $y a \neq a$, then $y a \neq y a^{2}$.

Proof. We have $C_{1} \subseteq E_{4} \cup E_{2}^{\prime}$ and $D_{1}^{\prime} \subseteq E_{4} \cup E_{1}^{\prime}$. Similarly as in the proof of 7.8, we show that $\gamma_{1}+\delta_{1}+\varepsilon_{1}+\varepsilon_{2} \leqq 2 \varepsilon_{1}+2 \varepsilon_{2}+2 \varepsilon_{4} \leqq 2(n-1)$. The rest is easy.
8.5 Lemma. $\mathrm{ns}(G(*)) \leqq 2 n^{2}-2 n-1$.

Proof. By 2.7, 2.8 and $8.2, \operatorname{ns}(G(*))=\operatorname{card}(\mathscr{B})=2 \alpha+\gamma_{1}+\delta_{1}+\varepsilon_{1}+\varepsilon_{2}$. By 8.3 and $8.4,2 \alpha+\gamma_{1}+\delta_{1}+\varepsilon_{1}+\varepsilon_{2} \leqq 2(n-1)^{2}+2(n-1)=2 n(n-1)$. Now, suppose that the equality takes place. Then $\alpha=(n-1)^{2}$ and $\gamma_{1}+\delta_{1}+$ $+\varepsilon_{1}+\varepsilon_{2}=2(n-1)$. By 8.3, $a^{4}=a$ (since $a^{2} \in H$), and so $a^{6}=a^{3}$. On the other hand, by 8.4 (1), $a^{3} \neq a$, and therefore $a^{6} \neq a$. However, $a^{3} \in H$ and $a^{6}=a^{3} \cdot a^{3}=a$ by 8.3 , a contradiction.

II. 9 Auxiliary results

9.1 In this section, let G be a finite semigroup with $n \geqq 2$ elements and let $a, c \in G, a^{2}=a \neq c$. Put $G(*)=G[a, a, c]$ and $\mathscr{B}=\operatorname{Ns}(G(*))$. We shall use the same notation as in 2.7, 7.2, 7.6 and the proof of 7.8.
9.2 Lemma. (i) $K=A^{\prime}=B^{\prime}$ and $\operatorname{card}(K)=\alpha=\beta$.
(ii) $\varphi_{1}=\varphi_{2}=0$.

Proof. Obvious.
9.3 Lemma. (i) $\alpha+\varepsilon_{1} \leqq(n-1)^{2}$ and $\alpha+\varepsilon_{1}=(n-1)^{2}$ iff $\varepsilon_{1}=\lambda$ and iff $u=v$ and $a u=a \neq a u$ for all $(u, v) \in L$.
(ii) $\alpha+\varepsilon_{2} \leqq(n-1)^{2}$ and $\alpha+\varepsilon_{2}=(n-1)^{2}$ iff $\varepsilon_{2}=\lambda$ and iff $u=v$ and $a u \neq a=a u$ for all $(u, v) \in L$.

Proof. (i) Let $y \in E_{1}^{\prime}$. If $y^{2}=a$, then $y^{3}=a y=a$ and $y a=y^{3}=a$, a contradiction. Hence $y^{2} \neq a$ and $(y, y) \in L$. The rest is clear.
(ii) This is dual to (i).
9.4 Lemma. $\gamma_{1}+\gamma_{2}+\delta_{1}+\delta_{2} \leqq 2(n-1)$ and the equality holds iff the following four conditions are satisfied:
(1) If $y \in H$ and ay $\neq a$, then $c y \neq a y$.
(2) If $y \in H$ and $a y=a$, then $c y \neq c$.
(3) If $y \in H$ and $y a \neq a$, then $y c \neq y a$.
(4) If $y \in H$ and $y a=a$, then $y c \neq c$.

Proof. We have $\boldsymbol{\vartheta}_{1} \leqq \varepsilon_{1}, \hat{\vartheta}_{2} \leqq \varepsilon_{3}, \boldsymbol{\vartheta}_{3} \leqq \varepsilon_{2}, \boldsymbol{\vartheta}_{4} \leqq \varepsilon_{3}, \boldsymbol{\vartheta}_{1}+\boldsymbol{\vartheta}_{2}=\gamma_{2}$ and $\vartheta_{3}+\vartheta_{4}=\delta$. Further, put $\vartheta_{5}=\operatorname{card}\left(C_{1}^{\prime} \cap E_{2}^{\prime}\right), \vartheta_{6}=\operatorname{card}\left(C_{1}^{\prime} \cap E_{4}\right), \quad \vartheta_{7}=$ $=\operatorname{card}\left(D_{1}^{\prime} \cap E_{1}^{\prime}\right)$ and $\vartheta_{8}=\operatorname{card}\left(D_{1}^{\prime} \cap E_{4}\right)$. Then $\vartheta_{5} \leqq \varepsilon_{2}, \vartheta_{6} \leqq \varepsilon_{4}, \vartheta_{7} \leqq \varepsilon_{1}$, $\vartheta_{8} \leqq \varepsilon_{4}$ and $\vartheta_{5}+\vartheta_{6}=\gamma_{1}, \vartheta_{7}+\vartheta_{8}=\delta_{1}$. Now, $\gamma_{1}+\gamma_{2}+\delta_{1}+\delta_{2} \leqq \vartheta_{5}+$ $+\vartheta_{6}+\vartheta_{1}+\vartheta_{2}+\vartheta_{7}+\vartheta_{8}+\vartheta_{3}+\vartheta_{4} \leqq 2\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}\right)=2(n-1)$. The rest is clear.
9.5 Lemma. If ac $\neq c a$, then $\operatorname{ns}(G(*)) \leqq 2 n^{2}-2 n-1$.

Proof. We have $m=\operatorname{ns}(G(*))=2 \alpha+\gamma_{1}+\gamma_{2}+\delta_{1}+\delta_{2}+\varepsilon_{1}+\varepsilon_{2}+\varphi_{3}$. Since $a c \neq c a, c^{2} \neq a$ and $(c, c) \in L$. If $\lambda=\varepsilon_{1}=\varepsilon_{2}$ (see 9.3)), then $L=\emptyset$, a contradiction. If $\lambda=\varepsilon_{1}$ and $\gamma_{1}+\gamma_{2}+\delta_{1}+\delta_{2}=2(n-1)$, then $a c=a \neq c a$ (by 9.3(i)) and $c^{2} \neq c$ by 9.4(3). On the other hand, $c a c=c a \neq a,(c a, c) \in L$, $c a=c$ (by 9.3(i)) and $c^{2}=c a c=c a=c$, a contradiction.

Similarly, if $\lambda=\varepsilon_{2}$ and $\gamma_{1}+\gamma_{2}+\delta_{1}+\delta_{2}=2(n-1)$. Thus we have proved that either $\varepsilon_{1}<\lambda$ and $\nu=\gamma_{1}+\gamma_{2}+\delta_{1}+\delta_{2}<2(n-1)$ or $\varepsilon_{2}>\lambda$ and $\nu<$ $<2(n-1)$ or $\varepsilon_{1}<\lambda$ and $\varepsilon_{2}<\lambda$. Combining this with 9.3 and 9.4, we get $m \leqq 2 n^{2}-2 n-1$.
9.6 Lemma. $\operatorname{ns}(G(*)) \leqq 2 n(n-1)$.

Proof. $\operatorname{ns}(G(*))=2 \alpha+\varepsilon_{1}+\varepsilon_{2}+\gamma_{1}+\gamma_{2}+\delta_{1}+\delta_{2}+\varphi_{3}$. If $\varphi_{3}=1$, then the result is proved in 9.5. If $\varphi_{3}=0$, then the result follows from 9.3 and 9.4.
9.7 Lemma. If $\operatorname{ns}(G(*))=2 n(n-1)$, then $a c=c a, \lambda=\varepsilon_{1}=\varepsilon_{2}$ and $\gamma_{1}+\gamma_{2}+\delta_{1}+\delta_{2}=2(n-1)$.

Proof. this is clear from 9.5 and 9.6.
9.8 Lemma. Let $\mathrm{ns}(G(*))=2 n(n-1)$. Then:
(i) $u v=a$ for all $u, v \in H$.
(ii) $x a=a x$ for each $x \in G$.
(iii) G is commutative.

Proof. By 9.3, $L=\emptyset$, and hence (i) is true. Further, $u a=u u^{2}=u^{3}$ for each $u \in H$.

II.10 Auxiliary results

10.1 In this section, let G be a finite semigroup with $n \geqq 2$ elements and let $a, b, c \in G, a \neq b, a b \neq c$. Put $G(*)=G[a, b, c]$ and $\mathscr{B}=\operatorname{Ns}(G(*))$.
10.2 Lemma. $\alpha+\beta \leqq n^{2}-2$.

Proof. Put $H_{1}=G-\{a\}, \quad H_{2}=G-\{b\}, \quad K=\left\{(x, y) ; \quad x, y \in H_{1} \cap H_{2}\right\}$, $L=\left\{(a, y) ; y \in H_{2}\right\}, I=\left\{(x, y) ; x \in H_{1} \cap H_{2}\right\}, J=\left\{(b, y) ; y \in H_{1}\right\}$ and $M=$ $=\left\{(x, b) ; x \in H_{1} \cap H_{2}\right\}$. Then the sets K, L, I, J, M are pair-wise disjoint and $A^{\prime} \cup B^{\prime}$ is contained in $K \cup L \cup I \cup J \cup M$. However, $\operatorname{card}(K)=(n-2)^{2}$, $\operatorname{card}(L)=\operatorname{card}(J)=n-1, \operatorname{card}(I)=\operatorname{card}(M)=n-2, \quad$ and \quad so $\alpha+\beta \leqq$ $\leqq n^{2}-4 n+4+2 n-2+2 n-4=n^{2}-2$.
10.3 Lemma. $\gamma_{1}+\gamma_{2} \leqq n-1, \delta_{1}+\delta_{2} \leqq n-1$ and $\varepsilon_{1}+\varepsilon_{2} \leqq n-2$.

Proof. Obvious.
10.4 Lemma. $\mathrm{ns}(G(*)) \leqq n^{2}+3 n-4$; if $n \geqq 5$, then $\operatorname{ns}(G(*)) \leqq$ $\leqq 2 n^{2}-2 n-1$.

Proof. We have $\varphi_{3}=0$ and $\mathrm{ns}(G(*))=\alpha+\beta+\gamma_{1}+\gamma_{2}+\delta_{1}+\delta_{2}+\varepsilon_{1}+$ $+\varepsilon_{2}+\varphi_{1}+\varphi_{2} \leqq n^{2}-2+2 n-2+n-2+2=n^{2}+3 n-4$ by 2.8 , 10.2 and 10.3 . If $n \geqq 5$, then $n^{2}+3 n-4 \leqq 2 n^{2}-2 n-1$.
10.5 Lemma. Let $n=4$. Then $\mathrm{ns}(G(*)) \leqq 2 n^{2}-2 n-1=23$.

Proof. Suppose, on the contrary, that $\mathrm{ns}(G(*)) \geqq 2 n(n-1)=24$. Then $\operatorname{ns}(G(*))=24=n^{2}+3 n-4$ by 10.4 , and so $\alpha+\beta=n^{2}-2, \varepsilon_{1}+\varepsilon_{2}=n-2$ (see the proof of 10.4). Consequently, $A^{\prime} \cup B^{\prime}=K \cup L \cup I \cup J \cup M$, $L \subseteq A^{\prime}$ and $a y=b$ for aech $y \in H_{2}$ (see the proof of 10.2). From this, $E_{1}=\emptyset$ and $\varepsilon_{1}=0$. Similarly, $M \cong B^{\prime}, x b=a$ for aech $x \in H_{1} \cap H_{2}, E_{2}=\emptyset, \varepsilon_{2}=0$. Thus $0=\varepsilon_{1}+\varepsilon_{2}=n-2$ and $n=2$, a contradiction.
10.6 Lemma. Let $n=3$. Then $\mathrm{ns}(G(*)) \leqq 2 n^{2}-2 n-1=11$.

Proof. Let $G=\{a, b, d\}$. Since G is a finite semigroup, G contains at least one idempotent element. The rest of the proof is divided into three parts.
(i) Let $a^{2}=a$. Then $A^{\prime} \cong\{(a, d),(d, a),(d, d)\}, \quad B^{\prime} \cong\{(b, b),(b, d),(d, b),(d, d)\}$. Since $A^{\prime} \cap B^{\prime}=\emptyset, \alpha+\beta \leqq 6$ and, obviously, $\alpha+\beta+\varepsilon_{1}+\varepsilon_{2} \leqq 6$. Now, $\mathrm{ns}(G(*)) \leqq 6+\gamma_{1}+\gamma_{2}+\delta_{1}+\delta_{2}+\varphi_{1}+\varphi_{2} \leqq 12$ (see 10.3). Suppose that $\alpha+\beta+\varepsilon_{1}+\varepsilon_{2}=6$. Then $b^{2}=a=b d, d a=b$ and either $d^{2}=a$ or $d^{2}=b$. Further, $b a=b^{2} d=a d, \quad b a=d a^{2}=d a=b, a d=d a=b=b a$. Similarly, $a b=a d a=a^{2} d=a d=b$ and $d b=d a b=b^{2}=a$, then $d^{2} a=d \cdot d a=$ $=d b=a \neq b=b a=d^{2} a$, a contradiction. Hence, $d^{2}=a$ and G has the following multiplication table:

G	a	b	d
a	a	b	b
b	b	a	a
d	b	a	a

However, in this case, $\varphi_{1}+\varphi_{2}=1$, and therefore $\mathrm{ns}(G(*)) \leqq 6+4+1=11$.
(ii) Let $b^{2}=b$. This is dual to (i).
(iii) Let $d^{2}=d, \quad a^{2} \neq a, \quad b^{2} \neq b$. Then $A^{\prime} \cong\{(a, a), \quad(a, d), \quad(d, a)\}, \quad B^{\prime} \cong$ $\cong\{(b, b),(b, d),(d, b)\}$ and $\alpha+\beta+\varepsilon_{1}+\varepsilon_{2} \leqq 6$. Suppose $\alpha+\beta+\varepsilon_{1}+\varepsilon_{2}=$ = 6. Then $a^{2}=d a=b, b^{2}=b d=a, a d=b d^{2}=b d=d b=d^{2} a=d a=$ $=b, \quad b=a^{2}=(a d) a=a(d a)=a b=a^{3}=b a=b(b d)=b^{2} d=a d=a$, a contradiction.
10.7 Lemma. Let $n=2$. Then $\operatorname{ns}(G(*)) \leqq 3=2 n^{2}-2 n-1$.

Proof. We can assume $a=c$. Then $(a, a, a) \in \mathscr{B}$ iff $a^{2}=b,(b, b, b) \in \mathscr{B}$ iff $b^{2}=a, \quad(a, b, a) \in \mathscr{B} \quad$ iff $\quad b a=b=a^{2}, \quad(b, a, b) \in \mathscr{B} \quad$ iff $\quad b a=b, a=b^{2}$, $(a, a, b) \in \mathscr{B}$ iff $a^{2}=b, b^{2}=a,(a, b, b) \in \mathscr{B}$ iff $a^{2}=b, b^{2}=a$. However, if $a^{2}=b$, then $b^{2}=b$, since G contains at least one idempotent. The rest is clear.
10.8 Lemma. $\operatorname{ns}(G(*)) \leqq 2 n^{2}-2 n-1$.

Proof. See 10.4, 10.5, 10.6 and 10.7.

II. 11 A construction

11.1 It this section, let I, J and K be three pair-wise disjoint sets such that $I \cup J \neq \emptyset$ and $K=\emptyset$ if $I=\emptyset$. Further, let $a \notin H=I \cup J \cup K, G=H \cup\{a\}$ and let $f: K \rightarrow I$ be a mapping. Now, define a multiplication on G as follows:
(1) $x y=a$ for all $x, y \in H$;
(2) $x a=a x=x$ for each $x \in I$;
(3) $x a=a x=a$ for each $x \in J$;
(4) $x a=a x=f(x)$ for each $x \in K$;
(5) $a a=a$.

Then we obtain a commutative groupoid G.
11.2 Lemma. G is a semigroup iff either $I=\emptyset=K$ (and then G is a semigroup with zero multiplication) or $\operatorname{card}(I)=1$ and $J=\emptyset$.

Proof. Let $x, y, z \in G$. If $x \cdot y z=a$ and $x y \cdot z=a$, then $x \cdot y z=x y \cdot z$. If $x=z$, then $x \cdot y z=x y \cdot z$, since G is commutative. Hence, assume that $x \cdot y z \neq a$ and $x \neq z$ (the other case being similar). Then we have either $x=a$, $y z \neq a$ or $x \neq a, y z=a$. The rest of the proof is divided into several parts.
(i) Let $x=a, y z \neq a$. Then $y=a, z \neq a$ and $z \in I \cup K$. If $z \in I$, then $a \cdot a z=a z=z=a^{2} \cdot z$. If $z \in K$, then $a \cdot a z=a f(z)=f(z)=a z=a^{2} \cdot z$. Thus $x \cdot y z=x y \cdot z$ in this case.
(ii) Let $x \neq a, y z=a$. Then $x \in I \cup K$ and either $y \neq a \neq z$ or $y=a=z$ or $y \in J, z=a$ or $y=a, z \in J$.
(iia) Let $x \in I, y \neq a \neq z$. Then $x \cdot y z=x a=x, x y \cdot z=a z$, and therefore $x \cdot y z=x y \cdot z$ iff $z \in K$ and $f(z)=x$ (we have assumed $x \neq z$).
(iib) Let $x \in I, y=a=z$. Then $x \cdot y z=x a=x=x a \cdot a=x y \cdot z$.
(iic) Let $x \in I, y \in J, z=a$. Then $x \cdot y z=x \cdot y a=x a=x$ and $x y \cdot z=$ $=x y \cdot a=a a=a$. Thus $x \cdot y z \neq x y \cdot z$ in this case.
(iid) Let $x \in I, y=a, z \in J$. Then $x \cdot y z=x \cdot y a=x$ and $x y \cdot z=x a \cdot z=$ $=x z \cdot a$. Thus $x \cdot y z \neq x y \cdot z$ in this case.
(iie) Let $x \in K, \quad y \neq a \neq z$. Then $x \cdot y z=x a=f(x), \quad x y \cdot z=a z$. Hence $x \cdot y z=x y \cdot z$ iff either $z=f(x)$ or $z \in K$ and $f(z)=f(x)$.
(iif) Let $x \in K, y=a=z$. Then $x \cdot y z=x a=f(x)=f(x) a=x y \cdot z$. Thus $x \cdot y z=x y \cdot z$ in this case.
(iig) Let $x \in K, y \in J, z=a$. Then $x \cdot y z=f(x)$ and $x y \cdot z=a a=a$, so that $x \cdot y z \neq x y \cdot z$ in this case.
(iih) Let $x \in K, y=a, z \in J$. Then $x \cdot y z=f(x)$ and $x y \cdot z=f(x) z=a$, so that $x \cdot y z \neq x y \cdot z$ in this case.
11.3 For each $n \geqq 2$, define the following two groupoids on the set $\{0,1, \cdot . ., n-1\}$:

R_{n}	0	1	2	\ldots	$n-2$	$n-1$
0	0	0	0	\ldots	0	0
1	0	0	0	\ldots	0	0
2	0	0	0	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	$\vdots \vdots$	\vdots	\vdots
$n-2$	0	0	0	\ldots	0	0
$n-1$	0	0	0	\ldots	0	0

S_{n}	0	1	2	\ldots	$n-2$	$n-1$
0	0	1	1	\ldots	1	1
1	1	0	0	\ldots	0	0
2	1	0	0	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	$\vdots \vdots$	\vdots	\vdots
$n-2$	1	0	0	\ldots	0	0
$n-1$	1	0	0	\ldots	0	0

11.4 Lemma. (i) Both R_{n} and S_{n} are semigroups.
(ii) R_{n} is a semigroup with zero multiplication.
(iii) S_{2} is a two-element group.
(iv) For $n \geqq 3, S_{n}$ is a subdirect product of S_{2} and R_{n-1}.

Proof. Obvious.
11.5 Lemma. If G is a finite semigroup with $n \geqq 2$ elements, then G is isomorphic either to R_{n} or to S_{n}.

Proof. This follows from 11.2 and 11.3.
11.6 Lemma. Let $n \geqq 2$ and $1 \leqq m \leqq n-1$. Then the groupoids $R_{n}[0,0, m]$ and $R_{n}(*)($ see 4.9$)$ are isomorphic (and hence $\mathrm{ns}\left(R_{n}[0,0, m]\right)=2 n(n-1)$).

Proof. Easy.
11.7 The groupoid $R_{n}(*)=R_{n}[0,0,1]$ has the following table:

$R_{n}(*)$	0	1	2	\ldots	$n-2$	$n-1$
0	1	0	0	\ldots	0	0
1	0	0	0	\ldots	0	0
2	0	0	0	\ldots	0	0
\vdots						
$n-2$	0	0	0	\ldots	0	0
$n-1$	0	0	0	\ldots	0	0

11.8 Lemma. Let $n \geqq 2$. Then $\operatorname{ns}\left(S_{n, 1}(*)\right)=2 n(n-1)$, where $S_{n, 1}(*)=$ $=S_{n}[0,0,1]$.

Proof. It follows from 2.7 and 11.3 that $\alpha=\beta=(n-1)^{2}, \gamma_{1}=\delta_{1}=n-1$ and $\gamma_{2}=\delta_{2}=\varepsilon_{1}=\varepsilon_{2}=\varphi_{1}=\varphi_{2}=\varphi_{3}=0$. By $2.9 \mathrm{~ns}\left(S_{n, 1}(*)\right)=2(n-1)^{2}+$ $+2(n-1)=2 n(n-1)$.
11.9 The groupoid $S_{n, 1}(*)=S_{n}[0,0,1]$ has the following table:

$S_{n, 1}(*)$	0	1	2	\ldots	$n-2$	$n-1$
0	1	1	1	\ldots	1	1
1	1	0	0	\ldots	0	0
2	1	0	0	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	$\vdots \vdots$	\vdots	\vdots
$n-2$	1	0	0	\ldots	0	0
$n-1$	1	0	0	\ldots	0	0

11.10 Lemma. Let $n \geqq 3$. Then $\mathrm{ns}\left(S_{n, 2}(*)=2 n(n-1)\right.$, where $S_{n, 2}(*)=$ $=S_{n}[0,0,2]$. Moreover, if $2 \leqq m \leqq n-1$, then the groupoids $S_{n, 2}(*)$ and $S_{n}[0,0, m]$ are isomorphic.

Proof. $\mathrm{ns}\left(S_{n, 2}(*)\right)=2 n(n-1)$ by $2.7,11.3$ and 2.8 and the rest is clear.
11.11 The groupoid $S_{n, 2}(*)=S_{n}[0,0,2]$ has the following table:

$S_{n, 2}(*)$	0	1	2	\ldots	$n-2$	$n-1$
0	2	1	1	\ldots	1	1
1	1	0	0	\ldots	0	0
2	1	0	0	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	$\vdots \vdots$	\vdots	\vdots
$n-2$	1	0	0	\ldots	0	0
$n-1$	1	0	0	\ldots	0	0

II. 12 Main results

12.1 Theorem. Let G be a semigroup. Then $G[a, b, c]$ is associative for all $a, b, c \in G$ iff $\operatorname{card}(G) \leqq 2$ and G is a semilattice (i.e. G is commutative and idempotent).

Proof. (i) Fist, let $G[a, b, c]$ be associative for all $a, b, c \in G$. If $a c \neq c a$ for some $a, c \in G$, then $(a, a, a) \in \operatorname{Ns}(G[a, a, c])$, a contradiction. Hence G is commutative. Similarly, if $u v \neq u, v$ for some $u, v \in G$, then $(u, v, u v) \in$ $\in \operatorname{Ns}(G[u v, u v, u v])$, again a contradiction. Thus $u v \in\{u, v\}$ for all $u, v \in G$ (i.e. G is quasitrivial). Finally, if $\operatorname{card}(G) \geqq 3$, then there are three different elements $a, b, c \in G$ with $c a=a, b c=b$ and $a b=b$. Then $(a, b, b) \in \operatorname{Ns}(G[a, b, c])$, a contradiction.
(ii) Let G be a two-element semilattice with the following multiplication table:

G	1	2
1	1	1
2	1	2

Then $G[1,1,2]$ is a group, $G[1,2,2]$ is a semigroup of left zeros, $G[2,1,2]$ is a semigroup of right zeros and $G[2,2,1]$ is a semigroup with zero multiplication.
12.2 Theorem. Let G be a finite groupoid with n elements and such that $\operatorname{sdist}(G)=1$. Then $1 \leqq \operatorname{ns}(G) \leqq 2 n(n-1)$ and $n^{3}-2 n^{2}+2 \leqq \operatorname{as}(G) \leqq$ $\leqq n^{3}-1$. Moreover, if $\mathrm{ns}(G)=2 n(n-1)$, then G is isomorphic to one of the groupoids $R_{n}(*), S_{n, 1}(*), S_{n, 2}(*)$ (to $R_{2}(*)$ if $n=2$).

Proof. Combine 7.9, 8.5, 9.6, 9.8, 10.8, 11.5, 11.6, 11.8 and 11.9.
12.3 Remark. (i) Let $n \geqq 3$. The groupoids $R_{n}(*), S_{n, 1}(*)$ and $S_{n, 2}(*)$ are pair-wise non-isomorphic and $\mathrm{ns}\left(R_{n}(*)\right)=\mathrm{ns}\left(S_{n, 1}\left({ }^{*}\right)\right)=\mathrm{ns}\left(S_{n, 2}(*)\right)=2 n(n-1)$. (ii) $R_{2}\left({ }^{*}\right)$ and $S_{2,1}\left({ }^{*}\right)$ are isomorphic and $\mathrm{ns}\left(R_{2}(*)\right)=4=2 n(n-1)$.
(iii) Let $n \geqq 3$. It follows from 3.12, 4.7 and 5.7 that for each $m \in\left\{1, n-2, n-1,4 n-6,4 n-5,4 n-4, n^{2}-2, n^{2}-1,2 n^{2}-2 n\right\}$ there exists a groupoid G of order n such that $\operatorname{sdist}(G)=1$ and $\mathrm{ns}(G)=m$.

II. 13 Comments and open problems

13.1 The results of this part seem to be new. Not much is known about the semigroup distance of (finite) groupoids and this topic would deserve a more detailed study.
13.2 Let $n \geqq 1$. We can define a number $\operatorname{maxsdist}(n)$ as the maximum of all the numbers $\operatorname{sdist}(G)$, where G runs through all n-element groupoids. Clearly, $\operatorname{maxsdist}(1)=0$, maxsdist $(2)=2$ and maxsdist $(n) \leqq n^{2}-n$ for every $n \geqq 1$. By 1.6, maxsdist $(n) \geqq n^{2} / 4$ for every $n \geqq 2$.
(i) Find maxsdist (n) for "small" numbers n.
(ii) Improve the above estimates of maxsdist(n).

Reference

[1] Kepka T. and Trch M: Groupoids and the associative law I. (Associative triples), Acta Univ. Carol. Math. Phys. 33/1 (1992), 69-86.

[^0]: *) Department of Mathematics, Charles University, 18600 Praha 8, Sokolovská 83, Czechoslovakia
 ${ }^{* *}$) Department of Pedagogy, Charles University, 11639 Praha 1, M. D. Rettigové 4, Czechoslovakia

