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Deformation behaviour of two pure aluminium-magnesium alloys with actual weight concentrations 
of 2.6% Mg and 4.8% Mg, respectively, and a commercial aluminium alloy of type 7020 with 
5 wt.% Zn and 1.2 wt.% Mg was investigated in the temperature range 193 — 523 K. Tensile tests with 
constant cross-head speed were performed for initial strain rates from the interval 6.6 x 10~7 s _ 1 < 
£0 < 2.4 x 10-2s_1 . 

Experimental work hardening curves are compared with the predictions of theoretical models proposed 
in the literature. Among them the models proposed by Malygin and lately by Lukac' and Balik were found 
to be applicable in the whole temperature range for all strain rates: The shape of the work hardening 
behaviour is described satisfactory in both models. The description by the Lukac and Balik model is better 
in the case of Al-Zn-Mg alloy where also the stage IV of deformation is reached. The parameters of the 
models, which were obtained from the fits of experimental data and which have connection to various 
microstructural processes, are compared with the theoretical predictions. The role of various hardening 
and softening processes at different temperatures is considered. Parameter values were found to be in good 
agreement with theoretical values, observed microstructure (TEM) and measured dislocation density (XPA). 

In the samples deformed at suitable strain rates and/or temperatures the Portevin-Le Chatelier (PLC) 
effect (serrated flow) was observed. The critical strains for the onset and termination of PLC effect 
have been measured as a function of strain rate and temperature. Experimental data are compared with 
the analytical model developed by Kubin and Estrin using an adoption of the model proposed by Balik 
and Lukac. The model predictions of the strain rate dependence of the critical strain for the onset of 
the PLC effect are found to be in a good qualitative agreement with the experimental data in a limited 
range of strain rates corresponding to critical strains about 2% or higher in the case of the Al-4.8%Mg 
alloy and about 0.8% and higher in the case of Al-2.6%Mg alloy. For lower critical strains the model 
exhibits systematic deviations from experimental data. On the basis of a known work hardening 
behaviour of the investigated alloy a possible modification of the evolution equations of the mobile and 
immobile dislocations which are used in the model of Kubin and Estrin is suggested. 

1. Introduction 

The flow stress of crystalline materials a depends on the dislocation structure 
which may be represented by the average dislocation density Q for which holds 
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o oc yJQ. The dislocation structure can change during deformation (tensile test). 
A part of mobile dislocations is stored, forms consequently new obstacles for 
dislocation motion and contributes in this way to hardening. On the other hand, 
dislocations may annihilate or rearrange to form sub-boundaries of relatively low 
energy, which contributes to softening (recovery). A strong decrease in the work 
hardening rate 0 

-(st « 
(where £ is the true plastic strain and T is temperature) with increasing stress o is 
caused by dynamic recovery due to cross-slip and/or climb of dislocations: 
Cross-slip of screw dislocations allows dislocations to overcome obstacles to their 
motion. Climb of edge dislocations depends on the presence of vacancies which 
can enable climb even at very low deformation temperatures [1]. Formulating an 
evolution equation for the dislocation density leads to a model equation which 
describes the stress dependence of the work hardening rate. 

The processes of work hardening in crystalline matter have attracted the 
attention of numerous investigators over many decades, starting with the work of 
Taylor [2] who applied his new dislocation theory of plasticity to explain the work 
hardening behaviour in aluminium. In the last two decades a wide variety of 
models have been suggested to describe the work hardening in crystalline materials 
— see e.g. the works [3] to [16] — which are based on different microstructural 
mechanisms. Some of these models are designed merely for low temperature 
deformation and/or high temperature creep tests [12 — 15] and are thus irrelevant 
for the present work. The model of Argon and Haasen [16] suggests only a possible 
hardening mechanism concerning the late stages of work hardening and does not 
give a full description which could be apllied in the analysis of work hardening 
curves. The model of Zehetbauer [10, 11] was lately developed for the description 
of work hardening behaviour in cell-forming materials at stages IV and V, which 
are, however, only marginal in the present work. 

In general, the model equation, which contains adjustable parameters, can be 
fitted to the experimental data (i.e. work hardening curves) and the values of model 
parameters (obtained from this fit) and their temperature and strain rate dependence, 
as well as the 'quality' of the fit, can help us, in the view of observed micro-
structure (by the means of TEM and light microscopy) of the samples and 
measured average dislocation density (X-ray Peak Profile Analysis, XPA), to judge 
on the validity of respective models. In our previous works we have analyzed work 
hardening curves in zirconium based alloys [17, 18, 19] and Al-5%Zn-l.%Mg 
alloy [20]. We have shown that the course of the whole Q(o) curve cannot be, in 
any of investigated alloys, described satisfactorily by the models of Kocks [3], 
Estrin and Mecking [4] or Roberts [5]. Therefore, in the following we will not be 
concerned with any of these models. 
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In the present work, the experimental data obtained for three aluminium based 
alloys deformed at various temperatures and strain rates are compared with the 
work hardening models proposed in the literature by Gottstein and Argon [6], Prinz 
and Argon [7], Malygin [8], and Lukac and Balik [9]. The first aim is to make 
a decision on the relevance of these models [6] to [9] for the description of the 
work hardening behaviour in the present case. 

In a certain range of temperatures and strain rates, many soUd solutions exhibit the 
Portevin-Le ChateUer (PLC) effect, Le. the appearance of instabiUties (serrations 
and/or drops) on the stress-strain curve in the course of tensile testing. This instable 
behaviour often commences after a finite amount of plastic strain ec and in some cases 
can terminate at a larger value of strain £* again. The PLC effect has been investigated 
intensively in the past decades and a great deal of experimental data have been 
gathered, however the nature of the PLC effect has not yet been fully explained. It is 
commonly accepted that the PLC effect occurs in the region where the strain rate 
sensitivity (SRS) of the flow stress becomes negative (for details see e.g. [21] and 
references therein). A wide variety of models have been proposed [22—28]. 

It is generally assumed that the PLC effect arises from repeated locking and 
unlocking of mobile dislocations by diffusing solute atoms. In the theories based 
on the Cottrell model [22] it is supposed that the solute atmospheres are being 
formed on the mobile dislocations by bulk diffusion which is enhanced by the 
deformation induced vacancies. Both the vacancy concentration and mobile 
dislocation density are supposed to increase as a power of strain and contribute to 
the value of critical strain sc [23, 24]. Nevertheless, Kocks et al. [29] have shown 
that the vacancy concentration does not significantly affect the onset of jerky flow. 
In some other models [25, 26] the occurrence of PLC effect is explained without 
any effect of deformation induced vacancies being taken into account. 

The model of Kubin and Estrin [27, 28] explains the critical strains for the 
occurrence of the PLC effect in terms of the strain dependence of the mobile and 
forest dislocation densities. It yields semi-quantitative results which can be 
compared with experimental data. Such comparison has been done by Balik and 
Lukac [30] for the Al-2.84%Mg-0.40%Mn alloy (in the following will be referred 
to as Al-3%Mg) deformed at room temperature at various strain rates. A good 
qualitative agreement with the model predictions has been found, however only the 
fits which were performed for limited ranges of experimental data (and where the 
fit parameters were bounded by further conditions) yielded physically acceptable 
values of fit parameters. The second aim of this paper is to investigate the strain 
rate dependence of the critical strain for a pure Al-4.8%Mg alloy deformed at 
room temperature. The obtained experimental data will be compared with predic­
tions of the model of Kubin and Estrin [27, 28]. Since the mechanisms of 
dislocation interaction, storage and recovery must be same in both cases, the 
comparison of fit parameters connected to work hardening behaviour and PLC 
effect, respectively, can help us to judge on the validity of the respective models. 
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2. Basic Equations 

2.1 Models for Work Hardening and Softening 
In this section we will first give a short overview of the work hardening models 

of Kocks [3] and Estrin and Mecking [4] which we have tested in our previous 
works [17, 18] and then we will continue with a description of some more 
developed models proposed by Gottstein and Argon [6], Prinz and Argon [7], 
Malygin [8], and Lukac and Balik [9]. 

Model of Kocks. Assuming that i) the mean free path of dislocations is 
proportional to the average dislocation spacing and ii) the change in the dislocation 
density is due to some recovery, Kocks [3] supposed the evolution equation in the 
form 

_1-K0v2_h__ (2) 
dy ~ fQ b [2} 

where L c s is the average length of the dislocation segment recovered in one 
recovery event (due to cross-slip), /cf is a geometrical factor based on the 
assumption that the mean free path of dislocation glide is proportional to the 
average spacing between forest dislocations, y is the plastic shear strain and b is 
the magnitude of the Burgers vector of dislocations. L c s is a function of 
temperature and strain rate. He has obtained the stress dependence of the work 
hardening rate in the following form 

e-0°N) p) 

where 0 O = aGbKf/2 and <JS = aGb2Kf/Lcs, G is the shear modulus and a is 
a numerical constant. Equation (3) cannot obviously describe the whole work 
hardening curve which consists of two parts with significantly different slopes and 
which is common for many materials [17]. 

Model of Estrin and Mecking. In contrary to this, Estrin and Mecking [4] have 
assumed that the mean free path of dislocations is constant and it is determined by 
the spacing between impenetrable obstacles. Finally they obtained 

_Q_ _ LCSQ 

öy bs b (4) 

and 
a2G2bY. /a VI ( ) •*-—Nś 25 [_ \(TS/ 

where <r* = aGb/(Lcss)1/2 and s is the particle spacing or grain size. 
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2.1.1 The Malygin Model 
Malygin [8] took into account processes of multiplication of dislocations at both 

impenetrable obstacles and forest dislocations and process of dislocation an­
nihilation due to cross-slip in a homogeneous material. The evolution equation in 
this case has the following form: 

where 5 is particle spacing or grain size, Kf is the coefficient of the dislocation 
multiplication intensity due to interaction with forest dislocations and ?ca is the 
coefficient of the dislocation annihilation intensity due to cross slip. Finally he 
obtained the following equation which is suitable for an analysis of the experimen­
tal work hardening curve of poly crystals: 

® = y = J*l{° -ffy) + a - <£(- - ay) (7) 

where e = M~ly and the following substitutions were made: 

^ = \M\aGbfls; 
m = \M2aGbKf; ) (8) 

« = \MKdi. 

Here M is Taylor factor (M = 3.06 for fee metals) and a « 0.5 is an interaction 
constant, which contains details of the deformation conditions (e and T) and 
material properties (stacking fault energy ysf). The yield stress ay corresponds to 
the beginning of plastic deformation and comprises all contributions from the 
various hardening mechanisms. 

2.1.2 The Lukac and Balik Model 
In many materials, Malygin's model [8] describes satisfactorily the whole work 

hardening curve at lower temperatures [9, 20] where only stage II and III hardening 
occurs. At intermediate temperatures (about 0.37m, Tm being the melting tempera­
ture) there are deviations from the predictions of this model which indicate 
presence of some other recovery process in addition to cross-slip. Lukac and Balik 
[9] assumed dislocation climb to be this additional process and derived the kinetic 
equation in the following form: 

_? - 1 + ,^12 _ £__! _ _____T,32 /9) 

By bs + KtQ b xkBTy Q [) 

where Lcs is the dislocation segment length recovered by one cross-slip event, c is 
the area concentration of the recovery sites in a slip plane, \j/c is a fraction of the 
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dislocations which can be annihilated by climb of dislocations with jogs, x *s 

a parameter which gives the relation between dislocation climb distance w (i.e. 
distance between storage^of a dislocation and its annihilation site) and the average 
dislocation spacing l/yjg in the form w = x/y/d* T -s the shear stress, kB is the 
Boltzmann constant and Dc is an abbreviation which includes the diffusion 
coefficient and the stacking fault energy. The stress dependence of the work 
hardening rate for polycrystals can be then written in the following form: 

= 
O — (Jx 

+ 3 - <€{o - ay) - 9{a - ayf (10) 

-1/n 

(П) 

where the meaning of the parameters used is as follows: 

«-Mwh(jJ"-' ) 
1 /e\1/n 

3$ = - M2aGnK{ [-) • 
2 f W ' 

^Mwe-' 

2xocGkBTs \£i 

Here sx is a parameter and n is the stress exponent. 

2.1.3 The Gottstein and Argon Model 
The model [6] is designed for a cell-forming material. Gottstein and Argon took 

into account three basic recovery mechanisms: cross-slip, climb and mutual 
subboundary annihilation as a result of migration. Production of dislocations is 
accounted only for primary dislocations, i.e. in response to an external stress. In 
the absence of fundamental criteria for the density of other subsets of dislocation 
(like secondary dislocations, obstacle densities, dislocations in subboundaries etc.) 
a principle of similitude [31] is applied — the dislocation densities are assumed to 
be proportional to each other. 

This access leads to the evolution equation of the average dislocation density in 
the following form [6] 

ÕQ ^Q LR (DC (£, + mřbt[l+^)l 
\x L KJV y 

(12) 

where y is the shear strain, y is the shear strain rate, Q is the dislocation density, 
b is the Burgers vector, K, X, (1 and x [6] are constants of the order of 1, m is the 
subboundary mobility, rm is the shear stress on the subboundary, LR is the swept-up 
line length per recovery site [3] and Dc is the effective volume diffusion constant 
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for dislocation climb. The stress dependence of the work hardening coefficient can 
be then written in the form 

OLG L R (D r , < A T \ ( T - T C ) 3 1 
9==2^-2b^-^-{j + ^bT-[i + K\) 2^b~y <13> 

where TC is the critical resolved shear stress. In the absence of climb and 
subboundary motion 9 should decrease linearly with stress similarly as proposed 
by Kocks [3]. 

3.1.4 The Prinz and Argon Model 
In this model [7] a simple one-dimensional cellular structure is considered with 

the width of cell interiors 2c, width of cell walls h and periodicity 2a = 2c + h. 
The shear strain is idealized to result from the glide motion of a single set of 
dislocations along parallel planes. Climb may be important only in the cell walls 
and then only associated with very short diffusion paths. Similitude [31] is invoked 
again, without furnishing any detail on how this similitude is established and 
maintained. 

The total plastic resistance, T, of a periodic assembly of cell interiors of 
dimensions 2c and cell walls of thickness 2(a — c) with individual total plastic 
resistances T{ and T2 is identical to the shear resistance of a set of periodic traction 
bearing cracks separated by ligaments of higher shear resistance. The problem has 
been solved by Bilby et al. [32], and for (a — c) <^ a is simply 

T = Ti + T 2 ( ^ r ) - (14) 

The strain hardening rate of the assembly then will be the weighted sum of the 
strain hardening rates of the individual regions 

In the intermediate temperature range the temperature dependent component of the 
glide plane resistance is absent and it is possible to write [7] for the cells 

*-5|"c--^) «'*» 

C,=p(ft+A^) (17) 

C - ^ . (18) 

and similarly the strain hardening rate of the cell walls is given as follows: 
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*-èt-«®-«(§Г м 
Ч?vV-

C* = жå^y (21) 

where /^ and j82 are constants in the order of 1, x = QJQI is the ratio of the mobile 
dislocation density Qm to the total dislocation density, r0 « 0.5 is the relative radius 
of this impenetrable regions as compared with the mean spacing, Zt = 1/QU of the 
forest dislocation network, K describes the portion of the obstacle network which 
is impenetrable to dislocations, La is line length cancellable per each loop during 
interaction of dislocation loops, i is 2 for lattice diffusion and 3 for core diffusion 
and Ki express, in respective cases, the time rates of dislocation density decays due 
to diffusion. 

2.2 Conditions for Discontinuous Flow 
A very detailed general overview of the problematics of unstable plastic 

deformation has been recently given by M. Zaiser and P. Hahner [33] together with 
a basic decription of various theoretical concepts which have appeared in the 
literature in the past decades. Therefore we will present at this place only some 
basic equations of the model of Kubin and Estrin [27] which has a direct 
connection to the present work. 

2.2.1 The Model of Kubin and Estrin 
The model developed by Kubin and Estrin [27] is based on the variation of the 

densities of mobile and forest dislocations with strain. Using the Orowan equation 
the plastic shear strain rate y is given by 

7 = bQmQf1/2/tw = Q/tw (22) 

where Qf and Qm is the density of forest and mobile dislocations, respectively, b is 
the Burgers vector and tw is the dislocation waiting time at forest obstacles. The 
elementary incremental strain Q expressing the deformation produced when all 
mobile dislocations undergo a successful activation jump, is a strain dependent 
quantity. The strain dependence of the elementary strain can be obtained from the 
two coupled differential equations (for details see [27]) 

dQjdy = C/62 - C2Qm - (C3/b) Q1/2 , (23) 

dQt/dy = C2Qm + (C3/b) Q\'2 - C4Q(. (24) 

Here Cj is related to the multiplication of mobile dislocations, C2 expresses the 
mutual annihilation of mobile dislocations, C3 is related to the immobilization of 
mobile dislocations at forest dislocations and C4 is connected to dynamic recovery. 
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The dislocation densities tend to saturation. It is assumed [27] that the shear stress 
T can be expressed as a sum of two components: 

T = T0 + Ta = T0 + f0{l- exp [-(fw/t0)
2/3]} = T0 + f0{l- exp [-(QAo7)2/3]}. (25) 

The first component T0 corresponds to an "ordinary" thermally activated process 
in the absence of dynamic strain ageing and the second one Ta results from the 
dynamic strain ageing mechanism, f0 is the maximum stress increase produced 
by the ageing mechanism and t0 is the relaxation time which, in this case, depends 
on the binding energy between a solute atom and a dislocation, on the solute 
concentration and on the diffusion coefficient of the solute atoms. In this case 
the strain rate sensitivity of the shear stress S = (3T/3 In y)y is given by the 
equation 

S = so - f̂o(--Ao1>)2/3 exp [-(fi/to?)2/3] (26) 

where S0 = (3T0/3 In y)r The condition for the occurrence of the PLC-effect is 
expressed by the condition that S < 0 in equation (26). The appearance of 
PLC-effect is then given by the condition 

X\%y < Q(y) < Xl%y, X = ( -=)* . (27) 

2.2.1.1 Balik and Lukac's adoption of the model. Balik and Lukac [30] adopted 
the model of Kubin and Estrin [27] to their experimental data. The condition (27) 
for the range of strain rates within which serrations can occur can be expressed in 
the form 

^y)/toXl/2<y<Q(y)/toXl'2. (28) 

The limit cases of inequality (28) define the critical conditions for the onset or 
disappearance of the PLC effect. The critical states given by the two solutions 
Xx and X2 of equation (27) may also be called nonsaturated and saturated ones. If 
the Q(y) profile has a maximum with respect to strain, both Xr and X2- critical 
conditions can be met at two strains, one of these strains behaving thermally and 
the second "anti-thermally". The main part of the temperature effect enters through 
the relaxation time t0, which is inversely proportional to the diffusion coefficient. 
Neglecting, at this time, the possible strain rate and temperature dependences of 
Xi, X2 and Q, the strain rate and temperature affect all critical conditions through 
the quantity t0(T) • y [30]. This means that all features of the model of Kubin and 
Estrin [27] for a given strain rate and various temperatures should appear at a given 
temperature and various strain rates as well. 

If we restrict ourselves to the low strain limit, whose condition is governed by 
the equation 

% = n(y)AoXf = -X?)/A (29) 
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and, according to considerations made by Balfk and Lukac [30], assume that C5 is 
strain independent parameter for a given temperature, then the yc(y) and Cl(y) curves 
should have the same shape. In order to verify this prediction quantitatively we 
convert the set of differential equations (23) and (24) into one equation of second 
order for the elementary strain fi. Using equation (29) we obtain the following 
differential equation for the critical strain rate 

dv 

,2. fn \-. / \ /-\ Kis + dc-.3-+ K& ~ K*)-r 

%<%-«)%+(«+$*+&—«7sr.—~ 
--- 7c + -r 7c - Ki 

where the following notation is introduced 
(30) 

S = Џ + Ъ-(Џ-Cг)%, (31) 
3y \ 2 

KX = CJCh K3 = C3/C5 (32) 

Equation (30) may be simply compared with the experimental data of the low 
strain limit assuming the parameters in equation (30) are strain rate independent. 

3. Experimental Procedure 

3.1 Manufacturing of Samples 
For the experiments three different aluminium based alloys were used. Mechan­

ical and thermal processing and dimensions of the samples are described in the 
following list: 
• Commercial aluminium alloy of type 7020 with 5 wt.% Zn and 1.2 wt.% Mg. 

In the following text will be referred to as Al-5%Zn-1.2%Mg. Samples of 
21.5 mm gauge length and 8 mm width were cut out of 1.5 mm thick hot rolled 
sheets, solution treated at 485°C for one hour in air and quenched into water. 
One set of samples was stored in liquid nitrogen before testing (AZM-I) and the 
second one was aged at room temperature for 25 days prior to testing (AZM-II). 

• Pure aluminium alloy with 4.8 wt.% Mg supplied by Alusuisse Lonza. In the 
following text will be referred to as Al-4.8%Mg. Three sets of samples were 
manufactured from three different (independently rolled) sheets. The gauge length 
was 49 mm by all samples from the first set (AM-I), whereas several types of 
samples with the gauge lengths varying from 28 to 51 mm were machined in the 
case of second set (AM-II). By the third set of samples (AM-III) the gauge length 
was constant again — 35 mm by all samples. The active part of the samples was 
6 mm wide in all cases. Samples were solution treated for 1.5 hour at 500°C: the 
first set of samples (AM-I) in air, the second (AM-II) in high vacuum 
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(p < 5 x 10"6 mbar) and the third (AM-III) in an argon atmosphere, and 
quenched consequently into distilled water. All three sets of samples were stored 
in liquid nitrogen before testing. The time of storage was up to 200 days. 

• Pure aluminium alloy with 2.57 wt.% Mg. In the following text will be referred 
to as Al-2.6%Mg. Alloy was prepared from a commercial aluminium high 
purity base 1070. Samples of 49 mm gauge length and 6 mm width were cut 
out of 1.0 mm thick hot rolled sheets. The thermal treatment was same as by 
the first set of Al-4.8%Mg alloy (AM-I). The samples were stored in liquid 
nitrogen before testing. 
Chemical composition of the samples is given in table 1. The annealing 

temperature 7 ,̂ annealing time tA, working medium of the furnace, mean grain size 
dg and conditions of storage are given in table 2. The mean grain size dg was 
determined from the optical micrographs by the linear intercept method. 

AUoy Fe Si Mg Zn Ti Na Cr Mn Cu AUoy 

[wt. %] 

Al-4.8%Mg 
Al-2.6%Mg 
Al-5%Zn-1.2%Mg 

0.03 
0.15 
0.3 

0.02 
0.05 
0.15 

4.8 
2.57 
1.2 

0.005 
0.05 
5.0 

0.01 
0.01 
0.1 

5 x 10"4 

0.2 0.25 0.2 

Table 1 
Composition of the alloys. 

Alloy тA ÍA Medium dg Storage 
[K] [rnin] [um] 

Al-4.8%Mg I 773 90 air 85 + 9 liquid N2 

Al-4.8%Mg П 773 90 vacuum 91 ± 9 liquid N2 

Al-4.8%Mg III 773 90 argon 87 + 8 liquid N2 

Al-2.6%Mg 773 90 air 66 + 4 liquid N2 

Al-5%Zn-1.2%Mg I 758 60 air 22 + 7 liquid N2 

Al-5%Zn-1.2%MgII 758 60 air 22 + 7 25 days at RT 

Table 2 
Conditions of thermal treatment, resulting grain size and conditions of storage of the samples. 

3.2 Observation of Microstructure 
Microstructure of both underformed and deformed samples of Al-4.8%Mg and 

Al-2.6%Mg alloys was investigated by transmission electron microscopy (TEM). 
For manufacturing of foils a TENUPOL 2 device and electrolyte with composition 
10% perchloric acid, 20% glycerol and 80% ethanol was used. The working current 
was about 200 mA at 255 K. TEM observations were realized in a JEOL 2000 FX 
microscope. 
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3.3 Tensile Tests 
The tensile tests were carried out in an INSTRON 1185 machine. For the 

temperatures below room temperature an ethanol bath was used. The bath was 
cooled by blowing of liquid nitrogen through a cooper helix plunged into the bath. 
Temperature was measured simultaneously by an ethanol thermometer and by 
a NiCr-Ni thermocouple. Accuracy of this measurement was better than +1 K. 
Stability of temperature was better than + 2 K at the lowest temperature used for 
experiments and typically about +1 K. 

For the higher temperatures an electric furnace was used. Temperature was 
measured by a NiCr-Ni thermocouple with accuracy better than + 3 K. Stability 
of temperature was in this case better than +1.5 K. In order to stabilize the whole 
experimental set-up properly at higher temperatures without an undefined annealing 
of the sample during this stabilization, the furnace was heated for several hours at 
the test temperature, then the sample was mounted and the furnace was stabilized 
for 30 minutes (after reaching the test temperature) with the sample and the 
experiment was started afterwards. 

For the data acquisition a HP-85B personal computer and later an IBM AT 
compatible computer was used. The rate of data sampling was set to 0.3% of the 
full scale load in the case of experiments controlled by the HP-85B personal 
computer, whereas it varied from 2 ms to 20 s in the case of IBM AT compatible 
PC. This means that two diffrenet modes of data sampling were used — constant 
force increment and constant time interval — in respective cases. 

3.4 X-Ray Diffraction 

3.4.1 Experimental set-up 
X-ray diffraction experiments were performed with both undeformed and deformed 

samples of Al-4.8%Mg and Al-2.6%Mg alloys with the aim to determine the average 
dislocation density Q from the deformation-induced peak broadening. A special 
double-crystal diffractometer with wavelength compensation was used. For detailed 
description see [35, 36]. The primary X-ray beam was monochromatised by a sym­
metrically cut plane Ge monochromator using the (444) reflection. The monochroma-
tor was tuned to the CuKai line. Wavelength dispersion of the beam was about 
AA./A = 3 x 10-4. The appropriately collimated and monochromatic X-ray beam 
impinged on the flat sample under a divergence angle of about 10 seconds of arc. By 
a slit mechanism selected single grains were illuminated in a polycrystalline sample. 
The scattered radiation was registered by a linear position-sensitive X-ray detector of 
OED-50 type (Braun, Miinchen, Germany). The instrumental X-ray peak broadening 
was negligible if compared with the measured peak width. 

3.4.2 Evaluation Procedure 
Ungar, Groma and Wilkens [37, 38] have shown that within the formalisms of 

the kinematical scattering of X-rays and the linear elasticity theory of dislocations 
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the Fourier coefficients, A(n), of a X-ray peak-profile can be written in the 
following form: 

In Aln) = - QCn2 In -^ + ^ n4 In - ^ In -^ - *P0n
3 In -^ (33) 

where g is the average dislocation density, C is a geometric factor correlating the 
type of dislocation with the diffraction vector, n is a Fourier parameter which is of 
the length dimension, AQ2 is the mean quadratic fluctuation of the dislocation 
density, P0 is proportional to the dipole-polarization moment of the dislocation 
structure and Re is the effective outer cut-off radius of dislocations. Rl9 R2 and 
R3 are parameters of length dimension which are of no relevance in the present 
case when only the average dislocation density is to be determined. Equation (33) 
is based on a microscopis model where the dislocations are the only defect which 
causes the peak broadening. 

For the purpose of evaluation of the measured X-ray profiles, we can transcribe 
equation (33) into a simplified form as follows: 

ln|-4(n)| « -Q*n2 In — . (34) 

The true dislocation density Q is related to the formal dislocation density Q* 
according to the following equation [37, 38, 39]: 

«-\-m-^- <35> 
where g and b are the magnitudes of the diffraction and Burgers vectors, respect­
ively, and k = 2/ng2b2C is transformation coefficient. If there are more than one slip 
system active (and this is always the case in a polycrystalline material) it is necessary 
to use a weighted average C instead of C [39]. For the values of C the isotropic 
values were taken into account as given by Wilkens [40] and Borbely [41] for the 
02oo and g22o diffraction vectors, respectively. The resulting values of the transform­
ation coefficient were then k = 1.34 and k = 1.06 for g2oo and 022o> respectively. 

4. Experimental Results 

4.1 Tensile Tests 
The digitalized data stored by computer in the form F(t), where F is force and 

t is time, were further evaluated using the SigmaPlot SP5 scientific graphing 
program. From the force-total elongation curves F(A/tot), where 

A/tot = vdt (36) 

and vd is the crosshead speed, the (true)stress-(plastic)strain curves a(s) were 
computed according to following definitions 
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ff = 5 ' 

e = ln 1 + 

F 
5 

Áltot — ^ lelast 

li 

(37) 

(38) 

where S is the true cross-section of the sample, A/tot is total elongation of the 
sample, A/elast is elastic part of elongation and l{ is initial length of the sample. The 
true plastic strain s can be transformed into the shear strain y according to equation 
y = Ms where M = 3.06 is the Taylor factor for f.c.c. metals. The true plastic 
strain has been chosen with respect of the conclusions made by Balik et. al. [42] 
(we suppose it to be the most appropriate description in the case of penetrating slip 
systems in grains which are active in the present case). 

4.1.1 Serrated Flow 
The PLC effect was observed for all three alloys at the strain rates at room 

temperature with the exception of the aged samples of Al-5%Zn-1.2%Mg alloys, 
where the formation of Guinier-Preston zones inhibits the serrations. The 
(true)stress-(plastic)strain, (7(e), curves which were computed from the digitalized 
experimental force-time curves are shown in figure 1 for the Al-5%Zn-1.2%Mg 
alloy at two different strain rates and in figure 2 for the Al-4.8%Mg alloy at five 
different strain rates. All the curves were measured at room temperature. 

300 

200 

Pч 

100 

Al-5%Zn-1.2%Mg, T =295 K 

0 

\^^s 

15 20 5 10 

8 [%] 
Fig. 1 

Experimental stress-strain curves of the Al-5%Zn-L2%Mg alloy for different initial strain rates £Q at 
room temperature. 
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Fi£. 2 
Experimental stress-strain curves of the A1-4.8%Mg alloy for five different initial strain rates £0 at room 
temperature. The curves denoted as "4" and "5" are vertically shifted at 30 and 60 MPa, respectively, 

to the lower values relatively to the curves " 1 " to "3". 

In figure 2 the following facts should be mentioned: i) the stress-strain curves 
exhibit very high work hardening which is in accordance with experimental results 
of Chmelfk et al. [43, 44] on Al-3%Mg and Al-2.92%Mg-0.38%Mn alloys; ii) no 
transition from the jerky to the smooth regime is observed; iii) negative SRS is 
observed at higher strains (e > 5%) in the whole range of strain rates. This fact is 
further confirmed by the strain rate dependence of the saturated stress as as 
presented in figure 3. The saturated stress is obtained as an intersection of the 
extrapolated work hardening rate — flow stress, 0(cr), curve for large stresses with 
the 0 = 0 axis. The work hardening coefficient 0 is defined by equation (1). For 
the curves where the PLC effect of the type C (the definitiobn see below) occured, 
the saturated stress was determined from the envelope curve, whereas in the case 
of the A and B types it was determined from the "average" curve (parabolic 
regression). For details on this procedure see the next section. It can be seen that, 
with exception of the highest strain rate, the saturated stress decreases with 
increasing strain rate which means that a negative strain rate sensitivity of the flow 
stress can be expected in this range. 

The observed strain rate dependence of the saturated stress in the Al-4.8%Mg 
alloy is in accordance with the results of Mukai et al. [45], who tested five 
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Fig. 3 
Strain rate dependence of the saturated stress for Al-4.8%Mg alloy at room temperature. 
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Evaluation of the onset critical strain from coincidence of load (F) and elongation (e) data. The values 
of stress and strain are indicated for the border points of load and elongation signals. 
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aluminium-magnesium alloys with Mg concentration ranging from 1.8% to 8.4% 
and have reported a decreasing strain rate dependence of the maximum flow stress 
for the initial strain rates ranging from 10"4 s"1 to 102 s"1. Under the assumption 
that no prenature crack of the sample occurs, the course of the strain rate 
dependences of the maximum stress and saturated stress should be qualitatively the 
same. 

The critical strain for the onset of PLC effect has been determined from the 
coincidence of irregularities in the load cell and extensometer signals. Occasional 
irregularities in the load signal are ignored if the extensometer shows no elongation 
bursts or waves. An example of the coincidence of signals at the moment of 
reaching critical strain is shows in figure 4 for the Al-4.8%Mg alloy deformed and 
e0 = 5 . 9 x l 0 ~ 5 s _ 1 a t room temperature. Figures 5 and 6 show the strain rate 
dependence of the critical strains for the plastic instability limit sjlog sc) for the 
Al-4.8%Mg and Al-2.6%Mg alloys, respectively. The results are very similar to 
those obtained by Balik and Lukac for the Al-3%Mg alloy [30] with the exception 
that no PLC effect was observed in the present case for the strains below «0.2% 
and no transition from jerky to smooth flow has been observed. The classification 
of the PLC types (A, B and C) is made consistently with literature [28, 46, 47]. 

0.20 Һ 

0.15 Һ 

00 

0.10 Һ 

0.05 Һ 

0.00 
- 6 - 5 - 4 - 3 - 2 - 1 

log(fi[s ]) 
Fig. 5 

Strain rate dependence of the critical strains for the Al-4.8%Mg alloy at room temperature. The 
symbols O. • and O correspond to sample sets AM-I, AM-II and AM-III, respectively. 
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Fig. 6 
Strain rate dependence of critical strains for the Al-2.6%Mg alloy at room temperature. 

The behaviour D, E and F as described in [47] was not observed. Both A and 
B serrations can be characterized by a rise above the undisturbed stress-strain curve 
whereas C serrations only fall below the undisturbed curve. In figure 2 the curve 
denoted as "3" exhibits the A serrations, curve "2" the B serrations, curve "4" the 
A + B serrations and finally curves " 1 " and "5" the C serrations. Nevertheless, the 
various types of serrations have no direct connection to the present work and will 
not be, therefore, discussed in more details. 

In the case of the Al-5%Zn-1.2%Mg alloy the observed values of the critical 
strains sc are in good correspondance with Pink [46, 48] who used the same 
material. Small differences can be explained by the strong effect of annealing of 
the samples at room temperature [46] because this annealing pratically occurs 
during the mounting of the sample into the grips, too, and the time of mounting is 
not invariant. In acordance with this fact, significantly better correspondence with 
the results of Pink [46] was obtained by the samples which were deformed 
immediately or within several hours after the thermal treatment. This makes the 
Al-5%Zn-1.2%Mg alloy unsuitable for quantitative checks [49]. 

Kumar [50] has recently investigated the temperature dependence of the onset 
strain in Al-5%Mg alloy. We can compare his experimental results [50] with our 
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data for the Al-4.8%Mg alloy. Figure 7 shows the temperature dependence of sc in 
the entire range of serrated flow as was reported by Kumar [50] for Al-5%Mg 
alloy deformed at the initial strain rate s0 = 10"4 s"1. In the same graph our results 
for Al-4.8%Mg alloy deformed at the initial strain rate s0 = 3.4 • 10"4s_ 1 are 
plotted. It can be seen that the character of the temperature dependences is very 
similar. The values of the critical strain sc observed in the present case for the 
Al-4.8%Mg alloy fall systematically below the values observed by Kumar in the 
case of the Al-5%Mg alloy. The difference is higher at higher temperatures (that 
means in the 'inverse' branch of the plot) whereas at room temperature the 
difference is relatively small — sc a 0.7% for the initial strain rate 
e0 = 6.7 x 10"4 s"1 in the case of Kumar compared with sc « 0.25% for the initial 
strain rate s0 = 3.4 x 10"4 s"1 in the present case. We assume that this difference 
can be attributed to the different composition, processing and thermal treatment (In 
the present case the samples were solution treated at 500°C for 1.5 h whereas in 
the case of Kumar [50] the solution treatment was done at 350°C for 1 h.) of the 
samples in respective cases. 

10 

&? 

w 5 k 

0 

o Al-5%Mg, c0=6.7*10 4s ' 

O Al-4.8%Mg, £0=3.4*10 s 

220 240 260 280 300 320 340 360 

T [K] 
Fig. 7 

Temperature dependence of the critical strain ec for Al-4.8%Mg and Al-5%Mg [50]. 

We assume that the observed "inverse" behaviour of the onset of jerky flow (i.e. 
the increase of the critical strain with temperature) above room temperature can be 
attributed to the dislocation mechanism as described in the model of Kubin and 
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Estrin [27, 28] and that, in the present case, the possible effect of precipitates can 
be neglected. This assumption is based on two facts: i) no effect of precipitation 
on the critical strain was observed by Kumar [50] for the Al-5%Mg alloy; ii) TEM 
observation of both undeformed and deformed samples showed merely a very 
small amount of Al2Mg3 precipitates in the case of Al-4.8%Mg alloy whereas no 
precipitates were observed in Al-2.6%Mg alloy. Nevertheless, the 'inverse' 
behaviour of critical strain was very similar for both Al-Mg alloys investigated in 
the present case, as well as the Al-5%Mg alloy investigated by Kumar [50]. 
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Fig. 8 
Experimental (smoothed) stress-strain curves: (1.) Al-5%Zn-1.2%Mg alloy, test temperature Td = 193 K, 
initial strain rate 4 = 7.8 x lO^s" 1 ; (2.) Al-5%Zn-1.2%Mg, Td = 295 K, 

-1; (4.) Al-4.8%Mg, Td = 523 K, s0 = 4.3 x 10" 
-1; (6.) Al-2.6%Mg, Td = 473 K, ^ = 3.4 x 10" 

(3.) Al-4.8%Mg, Td = 295 K, є0 = 4.3 x 10"4 

(5.) Al-2.6%Mg, Td = 295 K, є0 = 3.4 x 10"4 

4.1.2 Work Hardening 
Both smooth and serrated stress-strain curves were used for the evaluation of work 

hardening parameter 0 : By the serrated curves an envelope curve or 'average' curve 
(quadratic regression) were used in order to smoothe the experimental data in the 
case of "C" or "B" serrations, respectively. The examples of the results of this two 
respective procedures are shown in figures 9 and 10 for B and C serrations, 
respectively. The smoothed stress-strain curves for the three alloys at five different 
strain rates and deformation temperatures are shown in figure 8. 
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Fig. 9 Result of the smoothing procedure in the case of B serrations. 
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Fig. 10 Result of the smoothing procedure in the case of C serrations. 
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The stress dependences of the work hardening coefficient 0(a) were computed 
by numerical derivation of the experimental stress-strain curves. The number of 
points in parabolic regression was increased until the ®(o) curve became smooth. 
The influence of the number of points used for derivation was checked — no 
systematic effect was observed. The theoretical models described in the second 
section were then fitted to, in such way obtained, &(a) curves. In the case of the 
Malygin's, Lukac and Balik's and Gottstein and Argon's model the Marquardt 
least square method involved in the SigmaPlot 5.0 program was used. For the Prinz 
and Argon's model a special program in PASCAL was developed. The main part 
of the program is the simplex minimization procedure (Nelder-Mead method) 
which is described in detail in the Nash's book [51]. The PASCAL source file of 
the simplex procedure, which represents the main part of the program, was taken 
from the Cely's text-book [52]. The function which is minimized is the sum of 
relative square mistakes of the theoretical hardening curve described by the 
equations (15) —(19) as compared with the experimental work hardening curve. 
This function ("norm") is computed in following way: For a given set of 
parameters Cx — C4, ay (yield stress), (a — c)/a (geometrical characterization of the 
celular structure) and (T!/T2)0 (ratio of the stresses in the cells and in the walls on 
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o Experimental data 
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Fig. 11 
Result of fitting the Gottstein and Argon model [6] and Prinz and Argon model [7] for the 

Al-5%Zn-1.2%Mg alloy deformed at Td = 295 K at the initial strain rate EQ = 7.8 x 10 - 4 s"1. 
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Fig. 12 
Result of fitting the Gottstein and Argon model [6] and Prinz and Argon model [7] for the Al-2.6%Mg 

alloy deformed at Td = 295 K at the initial strain rate £Q = 3.4 x 10"4 s"1. 

the beginning of plastic deformation) the equations (16) and (19) were numerically 
integrated (in iterations) until the total stress exceeded the maximum stress of the 
experimental curve and the step of integration was decreased in loop until the 
desired difference between following final stresses (in the two following runs of 
the loop) was satisfied. In such way obtained stress-strain curve was then derived 
numerically and compared with the numerical derivation of the experimental 
stress-strain curve and the "norm" was determined. Minimization was stopped 
under the condition, that the values of all parameters in the following iterations of 
simplex procedure were equal at all places. 

Results of the fits of the Gottstein and Argon model [6] and Prinz and Argon 
model [7] for the Al-5%Zn-1.2%Mg alloy deformed at Td = 295 K at the initial 
strain rate s0 = 7.8 x 10"4 s_1 and for the Al-2.6%Mg alloy deformed at 
Td = 295 K at the initial strain rate e0 = 3.4 x 10~4 s_1 are presented in the figure 
11 and figure 12, respectively. From these figures it is obvious that both the model 
of Gottstein and Argon [6] and Prinz and Argon [7] describe the shape of the work 
hardening curves much worse than the models of Malygin [8] and of Lukac and 
Balik [9] (see figures 13 to 16). Nevertheless, the model parameters obtained from 
the fit for the Al-5%Zn-1.2%Mg alloy in the case of the Prinz and Argon model: 
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d = (1.9 ± 0.5) x 10-2 C2 -= 35 ± 15, C3 = 0.15 ± 0.08 and C4 = (3 ± 2) x 107 

are, with exception of the C3 parameter, in a satisfactory agreement with the values 
predicted by Prinz and Argon [7] for aluminium at room temperature: Cx = 0.0214, 
C2 = 20, C3 = 0.0375 and C4 = 2.53 x 107. The results of the fits at other test 
temperatures and/or different strain rates are very similar (for the 
Al-5%Zn-1.2%Mg alloy as well as the both Al-Mg alloys) which let us conclude 
that the models [6, 7] are not relevant in the present case. In the following we will 
confine to the models of Malygin [8] and Lukac and Balik [9] only. 
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Fig. 13 
Result of fitting the Malygin model for Al-4.8%Mg alloy deformed at the initial strain rate 

£0 = 3.4 x 10~4 s"1 at various temperatures. 

Results of fitting of the Malygin model for both Al-Mg alloys at various 
deformation temperatures are shown in figure 13 and figure 14, respectively. 
Results of fitting of the Lukac and Balik model for the Al-5%Zn-1.2%Mg alloy 
at two different deformation temperatures are presented in figure 15. In figure 16 
results of fitting of the Lukac and Balik model are given for Al-4.8%Mg alloy and 
two different strain rates at room temperature. The detailed tables with the values 
of model parameters for both models have been presented in our previous papers 
[53, 54]. 
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Fig. 14 
Result of fitting the Malygin model for Al-2.6%Mg alloy deformed at the initial strain rate 

£0 = 3.4x10~4s_1 at various temperatures. 

4.1.3 Stress Relaxations 
The activation volume V was determined from stress relaxations performed 

during the tensile tests where for the rate of the stress decrease, ct, at the beginning 
of stress relaxation holds [55] 

-c t = Cexp{ccr}, (39) 

where Q = V/kT, k is Boltzmann constant and C is a constant. The plot of In (ct) 
against o for Al-2.6%Mg alloy tested at 423 K is shown in figure 17 for three 
various stresses at the beginning of stress relaxation. 

In figure 18 a bilogaritmic plot of the stress dependence of the activation volume 
V&ct for the three alloys is shown. We can mention that the activation volume 
decreases inversely with the stress in both Al-Mg alloys in the whole range of 
stresses, whereas in the Al-5%Zn-1.2%Mg alloy an obvious tendency towards 
reaching a stable value at higher stresses is observed. 

4.1.4 X-ray Peak Profile Analysis 
In figure 19 semilogaritmic plots of typical X-ray peak profiles obtained for 

Al-4.8%Mg alloy (second set) are shown. The two broader plots correspond to an 
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underformed (as annealed) sample and sample after deformation to fracture at 523 K, 
respectively. For a comparison, a profile corresponding to a perfect silicon crystal 
(400 reflection) is also given in the figure. All three profiles are plotted in a reduced 
scale {i.e. the peak height is normalized to unity) so that their maxima coincide. 

A1-5%Zn-1.2%Mg, ^ - = 3 . 9 - 1 0 

Fit according to the Lukac and Balik model 

Test t e m p e r a t u r e 

o 2 9 5 K 
o 193 K 

250 300 350 

(7 [MPa] 
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Fig. 15 
Result of fitting the Lukac and Balik model for Al-5%Zn-1.2%Mg alloy deformed at the initial strain 

rate £0 = 3.9 x 10~~4 s_1 at two different temperatures. 

For the evaluation of peak profiles a program developed by Borbely and Ungar 
was used [56]. The values of dislocation densities are given in table 3 for i) the 
initial states (after annealing) of both Al-Mg alloys, ii) samples of both Al-Mg 
alloys deformed to fracture at various temperatures and iii) samples of Al-2.6%Mg 
alloy deformed to four various plastic strains at room temperature. 

We can see a good correspondence of the values obtained for the initial states 
of both alloys in the two sets of measurements where different diffraction vectors 
were used {g = [200] and g = [220], respectively). For an illustration — the 
dislocation density obtained for an (underformed) aluminium monocrystal was 
Q = (5.3 ± 1.2) x 1013 m"2. The value is very close to the values obtained for the 
initial states of both Al-4.8%Mg and Al-2.6%Mg alloys, from which we may 
assume that the effect of foreign atoms on the values of dislocation densities 
obtained by the method (XPA) can be neglected. In a perfect silicon crystal, the 
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dislocation density was found to be Q = (1.9 ± 0.7) x 1013 m~2. This value is too 
high to represent the real dislocation density and can be taken as a treshold level 
(i.e. 'zero' offset) of the method. 

Alloy тd 
[K] 

êo 
[s-1] 

s 
[%] 

9 Q 
[m-2] 

Remark 

Al-2.6%Mg 

295 
295 
295 
295 

3.4 x 10"4 

3.4 x 10"4 

3.4 x 10"4 

3.4 x 10"4 

0.70 
2.75 

11.0 
22.0 

[200] 
[200] 
[200] 
[200] 
[200] 

(5.7 ± 1.2) x 1013 

(1.12 ± 0.09) x 1014 

(3.0 + 0.4) x 1014 

(9.0 + 0.7) x Ю14 

(1.14 ± 0.08) x Ю15 

Initial state 
Experiment stopped 
Experiment stopped 
Experiment stopped 
Tillfracture 

Al-2.6%Mg 

295 
473 

3.4 x 10"4 

3.4 x 10"4 

21.1 
21.4 

[220] 
[220] 

(1.18 + 0.09) x Ю15 

(5.1 ± 0.4) x Ю14 

Tillfracture 
Tillfracture 

Al-4.8%Mg 
295 
423 
523 

4.3 x Ю-4 

4.3 x 10"4 

4.3 x 10"4 

26.3 
39.5 
29.8 

[220] 
[220] 
[220] 
[220] 

(4 + 1) x Ю13 

(1.8 + 0.1) x Ю14 

(5.8 ± 0.9) x Ю14 

(2.7 ± 0.5) x Ю14 

Initial state 
Tillfracture 
Tillfracture 
Tillfracture 

Table 3 
Average dislocation density, as determined by means of XPA, of the samples of Al-4.8%Mg and 

Al-2.6%Mg alloys, deformed at various conditions. 
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Fig. 16 
Result of fitting the Luk£5 and Balik model for Al-4.8%Mg alloy deformed two different strain rates 

at room temperature. 
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Fig. 17 
Logaritmic plot of the stress dependence of the rate of stress decrease on the beginning of stress 

relaxations in Al-2.6%Mg alloy tested at 423 K. 

5. Discussion 

5.1 Work Hardening 
In this section we will separately discuss the values of the parameters of work 

hardening models of Malygin [8] and Lukac and Balik [9], as obtained from the 
fit procedure, and put them into connection with the values predicted by theory, 
observed microstructure (from TEM) and measured dislocation density (by means 
of XPA). 

5.1.1 Yield Stress 
The values of the yield stress ay determined in both fits are almost equal and, 

for both Al-Mg alloys, at the same time also appreciably lower than the 
experimental values of <TO2 (the flow stress at 0.2% offset strain). In most cases 
<jy « o"oi holds. This is in accordance with the results of Lukac and Balik [9] who 
found the ratio aoi/oy to be between 1.1 and 1.2 for Cu-9 wt.%Ni alloy deformed 
at various temperatures ranging from room temperature up to 573 K. For the 
Al-5%Zn-1.2%Mg alloy are, in contrary, the values of the fitted yield stress 
ay roughly equal to the experimental o'02 values. 
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• Al-2.6%Mg, Td=423K 

• Ai-4.8%Mg, Td=423K 
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Fig. 18 
Bilogaritmic representation of the stress dependence of the activation volume for the three alloys. 

5.1.2 The Parameter si 
In both models [8, 9], the si parameter, which is connected with the 

non-dislocation obstacles, should increase with the increasing strain rate but should 
not depend on temperature. The increase of the si parameter with strain rate was 
observed in both models at room temperature. The invariance with temperature 
seems to be fulfilled for both Al-Mg alloys in the temperature range up to about 
400 K = 0.43 Tm only. This is exactly the temperature where a change in the 
character of deformation (an upward curvature in the temperature dependence of 
annihilation parameter <£) was observed by Malygin [8] in pure (4N5) aluminium. 
In both models for the mean particle spacing holds 

Lp = jM3(<xGfbs/-1 (40) 

where a « 0.5 is a multiplication factor [8] and b = 2.86 x 10 10 m is the Burgers 
vector [57]. If we take the room temperature values si = (9 + 1) x 1015 Pa2 for 
Al-4.8%Mg, si = (11 ± 1) x 1015 Pa2 for Al-2.6%Mg and si = (20 ± 5) x 1015 Pa2 

for Al-5%Zn-1.2%Mg we obtain (for G = 26.5 GPa [57]) the mean particle spacing 
L = (77 + 8) îm, Lp = (63 + 8) ^m and Lp = (35 + 9) pm, respectively. These 
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values are in good accordance with the mean grain size values, which were 
determined to be (85 ± 9) |im, (66 ± 4) |im and (22 + 7) |im, respectively. This 
together with the observation of the microstructure (only very few precipitates were 
observed on TEM micrographs of Al-4.8%Mg alloy, whereas no precipitates were 
observed in Al-2.6%Mg alloy) lets us assume that the increase of si for temperatures 
above 400 K can be attributed to the formation of subgrain boundaries [58, 59, 60]. 

W 

Д 
<L> 

0) 

> 

0) 

0.1 

0.01 

— i 1 1 1 

Si monocrystal 
Al-4.8%Mg undeformed / ^ V 
Al-4.8%Mg, T = 523 K / •/* \ 

џ*<Г 

%•/•• 

.-ч. 
*V. 

J 
s 

s 

\ 

•*w . 

w . 

- 0 . 3 - 0 . 2 -0.1 0.0 0.1 
Д(2Є) [deg] 

0.2 0.3 

Fig. 19 
Logaritmic plots of typical peak profiles obtained for Al-4.8%Mg alloy in i) initial state and ii) after 

deformation to fracture at 523 K (etot = 29.8%). 

5.1.3 The Parameter Si 
The $& parameter relates to the work hardening due to the interaction with forest 

dislocations. It should not depend on temperature and also the strain rate 
dependence should be very moderate. The first condition is fulfilled for the test 
temperatures lower than 400 K, similarly as by the si parameter. No effect of 
strain rate was observed (i.e. no significant changes of the values of fit parameters). 
In the Malygin model holds bK{ = 2J,/M2aG. From the value 3d « 1.5 GPa which 
was found by the second set of the Al-4.8%Mg alloy, we get bK{ = 2.4 x 10~2. 
By other sample sets the results are similar. Malygin [8] obtained for pure 
aluminium b/cf equal to (1 to 2) x 10"2. The agreement is satisfactory. 
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In the Lukac and Balik model [9] the slip length of dislocations is given as [3, 6] 

1 M 2 « G (M\ 
L = J e ^ - ( 4 1 > 

If we take again the room temperature values for the second set of the Al-4.8%Mg 
alloy, $& = (1.3 ± 0.2) GPa and the dislocation density Q = (1.8 ± 0.1) x 1015 m - 2 

(see §4.1.4) we get L = (1.3 ± 0.2) |im. Similarly, from the room temnperature 
value for the Al-2.6%Mg alloy, ^ = (1.4 ± 0.2) GPa and the dislocation density 
Q = (1.18 ± 0.09) x 1015 m - 2 we get L = (1.3 ± 0.3) Lim. The computed values 
of dislocation slip length correspond to microstructural observations: Dislocation 
bands with the distance of « 1.5 |im and cell structure with cell size about 
2 x 8 jam2 were observed in Al-4.8%Mg and Al-2.6%Mg alloys at room tempera­
ture, respectively. (Lamellar structures formed by elongated cells were observed 
by many authors [61, 62, 63, 64] and termed 'lamellar boundaries' by Hughes and 
Hansen [64].) The slip length can be thus correlated with the cell size or periodicity 
of the lamellar structure. 

At this place we will further check the consistency of our approach (i.e. the 
conception of the models [8, 9]) by comparing the values of the activation volume 
(see figure 18) with the measured dislocation density as given in §4.1.4: If we 
assume the activation volume in the form 

V^ = lbd, (42) 

where / is distance of the obstacles to dislocation motion, d is their width and b is 
Burgers vector, and take d « 2b for forest dislocations (see e.g. [13, 65]) 
and J = 1/V/2, we obtain in the case of the Al—4.8%Mg alloy for the dislocation 
density Q = (1.8 ± 0.1) x 1015m~2 the value of the activation volume P̂ ct = 
(3.8 ± 0.5) x 10"27 m3. This value is slightly higher than the value of the 
activation volume obtained from stress relaxations (see §4.1.3) which varies from 
1 to 3 x 10-27 m3. The accordance is satisfactory if we realize the approximation 
of the obstacle width (d « 2b) and the fact that the distribution of dislocations is 
in fact inhomogeneous [54]. We can conclude that the activation volume is most 
probably connected with the intersection of forest dislocations and forest dislo­
cations present thus the main obstacles for mobile dislocations. 

5.1.4 The Parameter % 
The ^ parameter relates to recovery due to cross-slip and increases (with the 

exception of the highest test temperature by the Al-2.6%Mg alloy) in both models 
with increasing temperature, as can be expected due to the thermally activated 
character of cross-slip. The lower values for the highest deformation temperatures 
can be attributed to an onset of another recovery process which changes severely 
the character of the work hardening curve: The massive effect of recrystallization 
may become crucial and suppress the other, more subtle, processes as cross-slip 
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and/or climb of dislocations. This is probably the case of the highest test 
temperature for the Al-2.6%Mg alloy. The ^ parameter should decrease with 
increasing strain rate due to the thermally activated character of cross-slip. 
However, for both Al-Mg alloys, such a dependence was observed only for the 
values obtained from the Lukac and Balik model. In the Malygin model the 
dependence is inverse. However, the relative changes are very small. For the 
annihilation parameter Ka in the Malygin model holds equation [8] 

* - ^ . (43) 
24TT aic

 v 

where cos « 0.5 [8] is the share of screw segments on the expanding dislocation 
loops. For the yield stress 43 MPa relation (43) gives Ka = 3 ± 1, whereas for the 
fit value # = 8 ± 1 we, according to equation (8), get fca = 5 ± 1. This diffe­
rence is comparably high, nevertheless we must realize all the approximations 
made (e.g. the idealized values cos = 0.5 and a = 0.4 were taken) in the model of 
Malygin [8]. 

5.1.5 The Parameter 3) 
For the Al-Mg alloys, the mean values of the 3) parameter in the Lukac and 

Balfk model were found to be negative for the temperatures above room tempera­
ture which is in contradiction to the theory.On the other hand, at higher tempera­
tures, the standard deviation of the Of parameter value is in all cases comparable 
to the mean value of 3). We can therefore conclude that the 3) parameter is, in the 
case of higher temperatures, not significant for the quality of the fit. This 
conclusion is not very surprising — the effect of dynamic recrystallization at the 
temperatures higher than about 400 K is obvious from the wavy form of 
stress-strain curves in both alloys. (The models [8, 9] are not designed for the 
regions where dynamic recrystalization occurs and are there thus not applicable.) 
The limit of ^400 K is in accordance with the conclusions of sections §5.1.2 and 
§5.1.3. 

The fact that the quality of the fit (i.e. Q parameter) is not significantly better 
for the Lukac and Balik model (at temperatures below »400 K), is in contradiction 
to the resuts obtained by Lukac and Balik for Cu-9wt.%Ni alloy [9] where the 
3) parameter was found to be significat and positive in all cases and the quality of 
the fit was much better for the Lukac and Balik model [9] than for the Malygin 
model [8]. We assume this difference to be caused by the fact that cross-slip in the 
Al-4.8%Mg alloys is much easier as compared to the above mentioned alloys as 
a result of a different structure of these alloys. 

We should realize three following facts: i) Precipitates and GP zones were 
observed in the Cu-9wt.%Ni alloy in [9] and in the Al-5%Zn-1.2%Mg alloy in 
the present case, whereas no particles were observed in the Al-4.8%Mg and 
Al-2.6%Mg alloys; ii) Similarly, both the Al-4.8%Mg and the Al-2.6%Mg alloy 
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exhibit the PLC effect whereas the Cu-9wt.%Ni and the Al-5%Zn-1.2%Mg alloy 
in aged state (i.e. in the state used for the evaluation of work hardening) not, which 
is also an evidence of different mechanisms of plastic deformation in respective 
cases; iii) The less favorable conditions for cross-slip in the Cu-9wt.%Ni alloy as 
compared with the Al-4.8%Mg and Al-2.6%Mg alloys follow directly from the 
lower stacking fault energy (and consequently also higher distance between partial 
dislocations) in Cu. The effect of climb, in Al-4.8%Mg and Al-2.6%Mg alloys, 
can be then (due to easy cross-slip) diminished or climb possibly does not manifest 
(macroscopically) at all. At higher temperatures recrystallization comes into 
operation, too. In such a case, climb of dislocations is not crucial for the dynamic 
recovery, and does not affect the shape of the work hardening curve. 

The 3) parameter should, according to (11) increase with decreasing strain rate. 
However, it can be seen [53, 54] that the observed strain rate dependence (see 
Of parameter values for Al—4.8%Mg alloy at room temperature) is just inverse. The 
consequence of this fact is obvious from figure 16: The 0(a) curve for the initial 
strain rate e0 = 4.3 x 10"3 s_1 lies below the curve corresponding to 
g = 1.6 x 10~6 s"1 and, in addition to this, also the downward curvature is higher 
at higher stresses for £0 = 4.3 x 10~3 s_1. Similar effect of strain rate on dynamic 
recovery was observed by Balik and Lukac [30] for Al-3.3%Mg alloy at room 
temperature and was attributed to the fact that dynamic strain ageing impedes 
dynamic recovery all the more as the strain rate is decreased. 

The quality of the fit Q for Al-5%Zn-1.2%Mg alloy is in all cases significantly 
better in favour of the Lukac and Balik model. In addition to this, the 2 parameter 
is here in all cases positive and the relative mistake is small by the second set of 
samples (i.e. the parameter is in this case significant for the fit). Since in the 
Al-5%Zn-1.2%Mg alloy also some evidence of stage IV (re-hardening) of work 
hardening was observed (for the details and definitions on late stages of defor­
mation see e.g. [58, 66]), which is not the case by the both Al-Mg alloys (Compare 
also the stress dependences of the activation volume for respective cases in 
figure 18: We assume that the deviating behaviour of the activation volume for 
higher stresses in the case of the Al-5%Zn-1.2%Mg alloy indicates the onset of 
stage IV hardening.) we may conclude, that the Lukac and Balik model is also 
successful in description of later stages (IV, eventually V) of work hardening. 

5.1.6 Evolution of dislocation density 
The strain dependence of the average dislocation density, as measured by means 

of XPA (given in table 3 in §4.1.4) presents another possibility to perform a check 
of the model concepts independently of the work hardening behaviour (i.e. tensile 
tests) by comparing the experimental data with the evolution equation for the 
dislocation density which is, in the Malygin model [8], given by equation (6). 

dQ 1/9 

Y = Km + KfQ1/Z - K&Q . 

8 1 



The values dQ/dy can be in the first approximation determined from the ratio of 
increments in Q and s between two following rows in table 3. (Due to very small 
amount of measurements, this seems to us to be the only applicable method.) 
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The plot of dg/dy against Q for the Al-2.6%Mg alloy deformed to various plastic strains at room 

temperature. 

The resulting plot of dQ/dy against the average dislocation density Q is given in 
figure 20 together with a fit according to equation (6). The values of the parameters 
obtained from the fit were determined to be Km = (1 ± 1) x 1014 m~2, K{ = 
(3 ± 1) x 108 m" 1 and /ca = 7 ± 3. (The errors of the values are standard devi­
ations obtained from the least square fit and present thus only the lowest estimate.) 
We can compare these values with the results of fits of the work hardening curves 
(i.e. hardening models [8, 9]): From the value si = (1.0 ± 0.2) x 1016Pa2 ob­
tained from the fit of the Malygin model [8], we obtain Km = (5 ± 1) x 1013 m~2. 
The agreement is satisfactory. The value of K{ corresponds to bK{ « 8 x 10~2 

which is rather high (see §5.1.3). Similarly the value of fca yields, according to 
equation (8), # = 11 ± 5 which is twice as much as the value of ^ « 6 obtained 
from the work hardening curves. 

These differences, together with the high errors of the fit parameters (fcm, K{ and 
7ca) can be attributed to the fact that the number of points in the dQ/dy vs. 
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Q dependence is very low (and the fit is thus overparametrized). A solution seems 
to be obvious — to decrease the deformation step between the samples in order to 
obtain more points in the dependence and a better quality of the fit. However, it 
seems that the present material (i.e. Al-2.6%Mg alloy) is rather unsuitable for XPA 
measurements due to its relatively small grain size. The small grain size results in 
difficulties with precluding (simultaneous) reflexes from two grains and also with 
achieving reasonably high intensities (and reasonable short measuring times). The 
accuracy of the measurement is thus not high enough and decreasing the deformation 
step is of no use. Experiments with some coarse-grained materials are desirable. 

5.2 PLC effect 

5.2.1 Numerical checks 
In the following we will restrict ourselves to the analysis of the strain rate 

dependence of the critical strain of the Al-4.8%Mg and Al-2.6%Mg alloys at room 
temperature. As has already been said above the Al-5%Zn-1.2%Mg alloy is not 
suitable for quantitative checks due to a massive effect of ageing at room tem­
perature. We will confine to the low strain rate limit only, because it is not possible 
to detect the onset of jerky flow with sufficient accuracy on the high strain rate limit. 
This fact has been already reported by Balfk and Lukac [30]. The experimental low 
strain limit at room temperature was interpolated according to equation 

axb 

exp {cлř} + d' (44) 

where x is substituted for ec, y for ec and a to e are parameters. It should be stated 
clearly that the interpolation function (44) was chosen from a great number of 
possible functions only on the basis how good it follows the course of the 
experimental ec(log ec) dependence and has thus no connection to the theory. 

The true plastic strain was transformed into the shear strain according to relation 
y = Ms, where M = 3.06 is the Taylor factor for f.c.c. metals. The data dyjdy, 
S2yjdy2 were fitted with equation (30) and the values of parameters KU K3, C2 and 
C4 were found. For the fit a leastsquare iterative technique was used. Afterwards, 
sc was again computed numerically according to (30) for each point. The result of 
this procedure is presented in figure 21 for the A1^.8%Mg alloy. The parameter 
values were found to be KX = (6 ± 4) x 10~10 s"2, K3 = (3 ± 2) x 10"5 s"1, 
C2 = 14 ± 3 and C4 = 32 ± 5 for the Al-4.8%Mg alloy. If we use equations 
derived by Balik and Lukac [30] 

%s = [foC,)1!2 - K 3 ]/C 2 (45) 
QjQs = [C,/C2) [(KlC4y

2 - K3]/(K1C4)
1l2 (46) 

we can, in the saturation limit, obtain the critical strain rate ycs = (5 ± 2) x 10" s" 
and the ratio of the mobile and forest dislocation densities QmjQf* = 1-3 ± 0.6. The 
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Low strain limit of A1-4.8%Mg at room temperature: experimental data, interpolation and fit. 

former value correponds to scs = (1.6 + 0.6) x 10~6 s"1 which seems to be in 
a good agreement with our experimental results. The latter value is close to the value 
«1.2 which follows from the numerical calculations of Kubin and Estrin [28]. 

For the Al-2.6%Mg alloy the fit gives following parameter values: KX = 
(1.0 + 0.5) x 10"8 s"2, K3 = (6 + 3) x 10"4 s - \ C2 = 90 + 30 and C4 = 55 + 20, 
from which, according to equations (45) and (46) follows scs = (8 + 3) x 10"7 s_1 

and Qms/Qfs = 0.08 + 0.04. The latter value seems to be rather low, nevertheless, it 
is in good correspondence with the value Qms/Qfs = 0.036 reported by Balik and 
Lukac [30] for the Al-2.84%Mg alloy. This leads us to the conclusion that both in 
Al-2.6%Mg in the present case and in the Al-2.84%Mg alloy in [30] is either the 
density of forest dislocations high or the mobile dislocation density is low (or the 
both cases) as compared with the Al-4.8%Mg alloy. 

It was possible to obtain all fit parameters with a good physical meaning from 
a "free" fit only for sc higher than about 2% in the case of Al-4.8%Mg alloy and 
about 0.8% in the case of Al-2.6%Mg alloy. The fits for sc < 2% for the Al-4.8%Mg 
alloy and sc < 0.8% for the Al-2.6%Mg alloy did not yield acceptable values of 
fit parameters. There are two possible explanations: (a) As has been already 
mentioned by Balik and Lukac [30], the elementary incremental strain Q as given 
by the equation (22) supposes the forest dislocations to be the only obstacle for 
the mobile dislocation. Nevertheless, it is just the first approximation: More 
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generally, it is necessary to take into account other possible locking points of 
non-dislocational origin. In addition to this, in a detailed analysis it would be 
necessary to discuss also the processes connected directly with dynamic strain 
ageing, as for instance locking of dislocations by the foreign atoms, which can also 
affect the waiting time [30] and lead to a more complex form of the equation (22). 
However, this is not the aim of this work, (b) The equations (23) and (24) are not 
suitable for the description of the evolution of dislocation densities in the present 
case. In such a case a modification of these equations should be found which is in 
accordance with the known work hardening behaviour of the investigated alloy. In 
the following we will discuss this two possibilities in more detail. 

5.2.2 Elementary incremental strain 
The influence of the average spacing between the foreign atoms on the 

elementary strain has been discussed recently by Kalk et al. [67]. In such a case 
the effective average free slip distance L0 is lower than the average distance of 
forest dislocations Lf = £f~

1/2, which corresponds to the situation when the forest 
dislocations form the only pinning points, and equation (22) has the form 

y = bQmL0(Qf, cFA)/tw = Q / t w , (47) 

where cFA is concentration of foreign atoms. In a good approximation [67] L0 is 
given by 1/L0 = 1/Lf + 1/LFA where LFA is the average spacing of glide obstacles 
formed by foreign atoms. The decrease in LFA (e.g. by increasing the solute 
concentration cFA) should lead to a decrease of Q and, if we suppose tw to be 
constant, also to a decrease of yc. 

However, if we compare the ec(log ec) dependences obtained for the Al-4.8%Mg 
and Al-2.6%Mg alloys in the present case with the results for the Al-3%Mg alloy 
[30] we can see an opposite effect. Since the mechanical and thermal processing 
of the Al-4.8%Mg and Al-2.6%Mg alloys was exactly the same and the grain size 
difference between these two alloys is thus relatively small (91 |im and 66 |im, 
respectively), we suppose that it is possible to exclude the effects of grain size and 
thermal processing (solution treatment) as not crucial in this case. (This assumption 
is further supported by the fact that the values of the critical strains for Al-3%Mg 
alloy [30] and Al-2.6%Mg alloy differ from each other appreciably less than the 
values for both these alloys differ from the values for the A1^.8%Mg, although 
the difference in the grain size between the Al-3%Mg alloy and Al-2.6%Mg alloy 
is relatively big — 18 |im and 66 |im, respectively). Hence we can finally conclude 
that the observed differences in the ec(log ec) dependences for respective alloys are 
not consistent with the mechanism proposed by Kalk et al. [67] and the adoption 
of equation (1) in the sence of equation (47) is thus not necessary. 

Another possible mechanism which should be taken into account is pinning by 
"stable" particles (precipitates). The effect of particles on the critical strain in Al 
alloys has been recently investigated by Chan et al. [68] who showed that the 
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critical strain decreases with the decreasing particle spacing Lp. It is not easy to 
make a quantitative comparison of the pinning effects of the forest dislocations and 
particles but it can be assumed that some effect of particles is to be expected if the 
mean particle spacing in the matrix Lp is comparable or lower than the mean 
spacing of forest dislocation Lf = Qf~

1/2. In such a case, the equation (22) will have 
the following form 

7 = bQm3?(Qfi Lp)/fw = Q/tw, (48) 

where, like in equation (47), 3F is some function of Qf and Lp. The attempt to obtain 
the mean dislocation spacing directly from the observations of microstructure by 
TEM showed itself to be problematic because of a very small amount of particles 
present in the matrix which were observed only accidentaly on some foils. Therefore, 
we will make an estimate based on the known hardening behaviour. 

In the previous section §5.1 we have shown that the stress dependence of the 
work hardening coefficient 0 defined by equation (1) can be satisfactory described 
by the models of Malygin [8] and of Lukac and Balik [9]. From the analysis of the 
value of the model parameters made in §5.1 it follows that the distance of 
impenetrable obstacles (i.e. particles or precipitates) for dislocation motion can be 
put into connection with the mean grain size of the samples. The mean grain size 
in the present case is about 90 \im in the case of Al-4.8%Mg alloy and about 
70 |im in the case of Al-2.6%Mg alloy. These values are much higher than the 
average dislocation spacing Lf, which is to be expected: If we take the initial value 
of the density of forest dislocations (on the beginning of plastic deformation) to be 
Qf « 1011 m"2 (as follows from the results of X-ray Peak Profile Analysis 
measurements in §4.1.4 this value is low enough to represent the initial state — see 
also [28]), we obtain Lf « 3 |im. We can, therefore, in the present case, exclude 
the interaction of dislocation with non-dislocation obstacles as a mechanism which 
could lead to a modification of equation (1). 

However, it should be pointed out that no plastic instabilities were observed in the 
very beginning of plastic deformation in the present case, whereas the effect of 
particles would manifestate mainly at very low strains, where the dislocation density 
is still relatively low as compared with the particle density (which remains constant). 
The presence of particles would result in the decrease of the critical strain [68]. 

5.2.3 Evolution of dislocation densities 
In the search for a modified form of the evolution equations for the densities of 

mobile Qm and immobile dislocations Qf we will compare the equations (23) and 
(24) used by Kubin and Estrin [27] with the evolution equations used in the models 
of work hardening proposed by Malygin [8] and Lukac and Balik: [9]: Malygin [8] 
used the following set of equations: 

- ^ = KJb2 - K-Jb2 - KaQ + (KJb) Q1'2 (49) 
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d-^ = Kilb\Q = Qm + Qi (50) 

where Kx (x = m, i, a, f) are parameters (for definitions see §2.1.1). Here the 
density of immobile dislocations was denoted Q{ to distinguish from Q{ in the model 
of Kubin and Estrin [27] since the definitions are different. Lukac and Balik take 
into account another recovery mechanisms in addition to cross-slip: At the medium 
temperature range climb of edge dislocations will play role [9]. In such case an 
additional term — Kcb

2Q3/2 appears in the equation (49), where Kc is a model 
parameter which relates to climb. 

Adding equations (23) and (24) gives 

dQ/dy = C1/b
2-C4Q{. (51) 

whereas from equations (49) and (50) follows 

^ = KJb2 - K>g + (KJb) Q1'2 (52) 

Equation (51) is a modification of the evolution equation used by Estrin and 
Mecking [4] in their model of work hardening. However, we have shows in our 
previous works [18, 20] (concerned with work hardening in zirconium- and 
aluminium-based alloys) that the model of Estrin and Mecking is not able to 
describe the course of the whole 0(cr) curve in any of the tested alloys. On the 
other side, the Malygin model [8] and the Lukac and Balik model [9] have prooved 
themselve to be more realistic (see §4.1.2). Therefore we suppose that a modifi­
cation of the equations (23) and (24) in the sense of equations (49) and (50) (or 
the adoption of (49) and (50) as has been made by Lukac and Balik [9]) is 
necessary. This modification should lead at the same time to applicable models of 
both work hardening and plastic instabilities. 

The following facts speak also for the conclusions made above: (a) Similarly as 
in the model of work hardening of Estrin and Mecking [4] it is not possible to fit 
the whole sjs) dependence in the model of Kubin and Estrin [27, 28]. (b) The strain 
dependence of the elementary incremental strain Q that was observed in the present 
work (note that the dependences Q(e) and sc(s) are same [27, 30]) does not 
correspond to the dependences obtained by Kubin and Estrin from computer 
simulations based on equations (23) and (24). 

6. Conclusions 

Deformation behaviour of two pure aluminium-magnesium alloys with weight 
concentrations of 2.6% Mg and 4.8% Mg, respectively, and a commercial 
aluminium alloy of type 7020 with 5 wt.%Zn and 1.2 wt.%Mg has been 
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investigated in the temperature range 193—523 K. Tensile tests were performed at 
constant but various cross-head speeds giving initial strain rates from the interval 
4.76 x 10"6 s_ 1 < s0 < 2.38 x 10~2 s"1. Work hardening curves are analyzed and 
compared with the predictions of the models proposed by Gottstein and Argon [6], 
Prinz and Argon [7], Malygin [8], and Lukac and Balik [9]: 

• Only singular and stage II hardening as well as glide recovery by cross-slip 
(stage III) are involved in the case of Al^t.8%Mg and Al-2.6%Mg alloys, 
wherekas in the case of Al-5%Zn-1.2%Mg alloy also some evidence of stage IV 
(re-hardening) of work hardening curve was observed. 

• Both the Malygin model [8] and the Lukac and Balik model [9] are applicable 
at all strain rates in the whole temperature range, with exception of the highest 
test temperatures where a massive dynamic recrystallization takes place. The 
course of the work hardening curve is described satisfactory. The other two 
tested models suggested by Gottstein and Argon [6] and Prinz and Argon [7] 
yield a much worse description of the experimental work hardening curves. 

• From the results of fitting of the Lukac and Balflc model follows that the 
recovery mechanism connected with climb of dislocations plays a minor role in 
Al-4.8%Mg and Al-2.6%Mg alloys deformed at higher temperatures, probably 
due to easy cross-slip. At lower temperatures the Lukac and Balik model yields 
a more precise description of the deformation processes than the Malygin model. 
The Lukac and Balik model is significantly better than the Malygin model for 
description of the deformation behaviour of Al-5% Zn-1.2%Mg alloy. 

• The fit parameters correspond to the observed microstructure: The si parameter 
is related to the grain size. The slip length of dislocations, which can be derived 
from the $ parameter, is related to the size of dislocation cells or the periodicity 
of dislocation band structure. 

The critical strains for the onset and termination of PLC effect have been measured 
as a function of strain rate and temperature and compared with the model of Kubin 
and Estrin [27, 28]: 

• The prediction of the model of Kubin and Estrin [27, 28] are found to be in 
a good qualitative agreement with the experimental data only for the strains 
higher than about 2% for Al-4.8%Mg alloy and about 0.8% for the Al-2.6%Mg 
alloy. Possible expanations of this fact are suggested. 

• It seems that the influence of non-dislocation pinning of both solute and particle 
origin on the elementary incremental strain is not crucial in the present case. 
A modification of the equation for the elementary incremental strain thus seems 
not to be necessary. 

• A modification of the evolution equations of the mobile and immobile dis­
locations used in the model of Kubin and Estrin is suggested, based on a known 
work hardening behaviour of the alloys. 
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