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2000 ACTA UNTVERSITATIS CAROLINAE, MATHEMATICA ET PHYSIC A VOL. 41, NO. 1 

Convex Analysis for Sets of Local Martingales Measures 

J. §T£PAN and P. SEVClK 

Praha* 

Received 14. October 1999 

Convexity, measure convexity and the integral representation property for the sets of 
solutions of continuous local martingale problems are investigated in the framework 
introduced in [11]. The research is focused on the local martingale problems which 
solutions fi are uniquely determined by a boundary condition in the form JS?(H | /*) = v 
where H is a random variable on C(IR+) and v a probability distribution on its target 
space. The results provide both a refinement and a generalization of Stroock-Varadhan 
Theorem (see 18.10. in [4]) on the weak uniqueness in the theory of the stochastic 
differential equations. They are presented in Section 3 as Corollaries to a more general 
theory on measure convex sets of probability distributions with a Polish domain that is 
developed in Section 2. 

1 Introduction and notation 

We continue the research on geometry and topology of sets of solutions to local 
martingale problems that was started in [11], the inspiration being delivered by M. 
Yor (1978, 1979) and by D. W. Stroock, S. R. S. Varadhan (1969). The 
mathematical tools, coming from Choquet theory for convex sets in measure 
spaces, are in a general form developed in Section 2. Supported by results of G. 
Winkler (1980), G. Winkler (1978), H. v. Weizsacker, G. Winkler (1979), H. v. 
Weizsacker, G. Winkler (1980) and J. Stepan (1984) we study measure convex sets 
901 of Borel probability measures on a Polish space, especially the sets 901, called 
here Choquet sets, that are generated as the measure convex hull of their respective 
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extremal boundaries. Theorems 2.3, 2.5 and Lemma 2.7 offer sufficient conditions 
for a set 2H to be a Choquet set or even a Choquet simplex that are applied in 
Section 3 to the sets i¥% B of (^, B)-local martingale problems introduced in [11]. 
Recall briefly the concepts and notations treated there: 

Let C = C(IR+) be the set of all continuous functions defined onR+ = [0, oo), 
J*(C) = 3S(C(U+)) the Borel a-algebra of the space endowed with the Polish 
topology of uniform convergence on compact intervals and finally £?(C) = 
^(C(IR+)) the set of all Borel probability measures on C. We write 

x(t, x): = x(t), xeC,t>0 and &? : = <r(x(s), s < t), t > 0 

to define the canonical stochastic process x = (x(t), t > 0) and the canonical 
filtration of a-algebras (Jf) on the measurable space (C, J*(C)). As in [11] we 
denote by ^ the set of all continuous processes G with G(0) = 0 defined on 
(C,^(C)),i.e. 

V := {G: C -> C a Borel map, G(0) = 0}. 

Important subsets of # are 
c€a:= {Ge%> : G is Jf-adapted process}, %:= {Ge%> : G is a continuous map C -> C}, 

%,a :~ % n ^>a • 

For a pi e &(C) we denote by 

Jf'": = G($? u Nj, t > 0, AT, = {Be <0(C), fi(B) = 0} 

the /x-completion of the canonical filtration (Jf). 
Given a set ^ cz ^ and a Borel set B c C(R+) we write 

if£tB:= {fie0>(C):Gis an J f "-local martingale on (C,J(C^/i),GG^,/i(B) = 1} 

where 3S(Cf denotes the lx-completion of 38(C). We say that B and ^ are 
compatible if all G e ^ are J^-adapted processes for any \i e ^(C) with 
/*(B) = 1. We abbreviate H£ := i(£x and K^ := iir9 if # = {G} is a singleton. 
A probability distribution iiei^B is called a solution to the (^, B)-local 
martingale problem while a continuous stochastic process X = (X(t\ t > 0) 
defined on a complete probability space (Q, 3F, P) such that G(X) is an J^*p-local 
martingale1 is referred to as a strong solution to the (^, B)-local martingale 
problem. Lemma 2.3.(c) in [11] says that X is a strong solution if and only if 
&(X)eHr*tB. 

Theorem 3.1 in Section 3 states that iV^B is a Borel2 Choquet set with a Borel 
extremal boundary ex i^ B, i.e. 

i #rx,p . = ^ ^ ( s ) , s < f ) u { i V e ^ P(N) = 0}) denotes the P-completion of the canonical filtration 
(^x) of a process X. 

2 Borel cT-algebra in ^(C) is defined as o(F: F cz ^(:y) a weakly closed set). 
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(1) H^tB = < I jtf p(dfi)9 p a Borel probability on ex if^tB >, 

provided that B e &(C) and ^ c # is at most countable set such that ^ and B are 
compatible. Especially, ii^tB is a measure convex set, i.e. J/x p(d/i) e ^ B for any 
Borel probability p supported by iVy^. Moreover, it is proved that if£tB is a simplex 
(any lx0e#^B is represented by $exi^Bfip(dfi) uniquely) if and only if it is 
a Choquet simplex (IR+ • H^tB is lattice cone in its own order). The above 
information is already available for any ii^ with an arbitrary ^ c c€c a via Corollary 
3.5.(b) in [11] because any convex weakly closed set in 0>(C) is a Choquet set and 
it is a simplex if and only if it is a Choquet simplex by our present Remark 2.4. 

The results in [11] center around the sets 

if (A0): = {se(X9 Y | P), (X9 7, Q, f9 P) e A0}, 
J*?(_°): = {_?(__-, Y | P), (X9 Y, Q, ^ P) e L0}, 

where A°(L°) denote the set of (X9 Y9 __, SF9 P) such that (fi, &9 P) goes through all 
complete probability spaces and then (X9 Y) through all pairs of continuous 
processes defined on (Q,!F) such that Y(0) = 0 [P] and Y is an Jfxp-adapted 
process (Jf^-local martingale) on (Q, SP9 P). We denote by <£(X9 Y \ P) the 
probability distribution of (X, Y) in C(IR+) x C(IR+) w.r.t. the measure P, especially 
&(X9Y\P) is a Borel probability measure on C(U+) x C(lR+). Proposition in 
Section 3 of [11] says that JS?(_°) is a weakly closed set in if (A0) and it follows 
by 2.3 Lemma (a), (b) in [11] that if <£(X9 Y) is in if (A0) or in if(L0) for a pair 
of continuous processes defined on a complete probability space (Q, S^, P), then 
(X9 Y9 Q, &9 P) is in A0 and 1° respectively. Hence for Ge% 

(2) itG = {iie 3?(C): (x, G, C, @(Cf9 p) e H0} = {fie P(C): if(x, G | fi) e if(L0)}, 

holds. Thus, ^_x(0) stays in our notation for the set of all ££(M \ (Q, &T9 P)) e 0>(C) 
where M goes through all continuous JfM-local martingales on (Q, 3F, P) without 
having fixed the probability space. 

Examples 1.2 and 1.3 in [11] propose another important instances of local 
martingale problems: For G9ve%> such that v is a process of finite variation 

(3) arGy.= {fie iTG:(G}=v a.s. [>]} = W{G^_v] 

holds by the uniqueness part of Doob-Mayer theorem. If b and a are ^ -p ro ­
gressive processes on (C, 3$(C)) we define 

(4) £ M = jx E C : J|b| + a2 ds < oo Vt > 0 j 
A ^ 0 J 

and 

Gb: = |"x - x(0) - Jfe(x) dsl J^ a , GM : = [x2 - x2(0) - 2 Jx b(x) + a2(x)dsl /Bfca. 
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The set Bb(T is easily seen to be Borel and compatible with {Gb, Gbj(T, va} c= # where 
va:= [J0o-2 ds] IBba. The elements of stochastic analysis, see Example 1.2 in [11], 
show that 

(5) %,, = Hr{^GbABba = ^ n {fie &{C): / ifo.) = 1} = T ^ . , ^ , 

where 

(6) 

iirb,a: = {&(X)e 0>(C): X is a weak solution of dX(t) = b(X) dt + o(X) dW(t)}. 

Recall that 

(7) dX(t) = b(X) dt + a(X) dW(t) 
is the differential form for the (b, cr)-stochastic differential equation, shortly 
(b, (T)-SDE, and that (Q, &, P, 9{, W, X) =: X is a weak solution of (b, <r)-SDE if 
(Q, 3F, P) is a complete probability space, (Jf)-a complete filtration, W an 
^-Wiener process, X a continuous ^-semimartingale with P[X e Bfc>ff] = 1 and 
with the stochastic differential given by (7). 

In fact Example 1.2. in [11] we refened to provides a more complex information 
than (5) and (6): A continuous process X is a strong solution to {<S, B): = (Gb, GM, 
Bbi^-problem if and only if it is a strong solution to ({Gb, G\ — u^B^-problem, 
any weak solution of (7) is a strong solution of the above local martingale problem 
and finally for any strong solution X of ({Gb, Gba},Bb a)-problem there exists 
a weak solution Xe of (7) such that S£(Xe) = &(X). 

Thus, Theorem 3.1 applies to prove that (5) and (6) define Borel Choquet 
(measure convex) sets with Borel extremal boundaries and that iVGyV in (3) posseses 
the properties also if G, v e ^a. Unfortunately, for a G e <€ generally, iVG need not 
be even a convex set as it is shown by Example 3.2. 

Recall that an SDE (7) is called to be well-posed for an initial probability 
distribution v on IR it there exists exactly one probability measure fiv e a^tB such 
that JSf(x(0) | juv) = v. Stroock-Varadhan Theorem, see 18.10 in [4] says that (7) is 
a well-posed equation for any v if and only if it is well posed for any deterministic 
initial condition yeU. In Corollary 3.9 we add that if it is so, then if^tB is 
a simplex with a Borel extremal boundary {^y, y e U}, while Corollary 3.8 extends 
Stroock-Varadhan Theorem to the sets of solutions of (^, B)-martingale problems 
generally if only ^ cz ^ is a countable set compatible with a B e ^(C). Theorems 
3.6 and 3.7 present similar results for local martingale problems H^yB constrained 
by asking for solutions \i e ifcg B such that JSf (H \ fi) e Q) holds where H is a given 
random variable and 2 is a given set of probability distributions. Theorems 3.6 
and 3.7 scrutinize in detail relations between the sets iV^jB and {&(H\ ja), \i e if^tB} 
and their extremal boundaries. Their proofs depend heavily on a general theory 
developed by Theorems 2.8, 2.9 and by Corollaries 2.11, 2.13 for equations 

&(H\n) = v, /ie2R, ve2, 
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where H : S -• T is a given Borel map, Q} a given set of probability distributions 
on T and /x a solution of the equation in a Choquet set SO? of probability 
distributions on S, S, T being Polish spaces. Remark finally that the origins of the 
SDE-theory observed from the view of Choquet abstract convex analysis comes 
perhaps to M. Ersov ([2] and [3]). 

2 Measure convex sets 

We recall first the elements of convex analysis in measure spaces. We shall fix 
a space S with a metric topology s and denote by 3#(S), <%(S) and &>(S) its Borel 
(j-algebra, the a-algebra of universally measurable sets3 and the space of all Borel 
probability measures on S, respectively. If not stated otherwise the measure space 
&>(S) is endowed by the standard weak topology w -= w(s) that is metric and 
inherits both the separability and completeness from the S. Especially, S is a Polish 
space if and only if 0>(S) posseses the property. Note that for a B cz S the spaces 
0>(B) and {fie0>(S): fi*(B) = 1} are homeomorphic, hence we may and shall 
identity them. Also note that 

(8) B e a(S) => &(B) e 8#(0>(S)), B e W(S) => &(B) e W(0>(S)) 

because \i -• p[B) is obviously a Borel function on 0>(S) provided B e 38(S) and 
universally measurable function on 0>(S) provided B e °ll(S) by Lemma 2.6. Hence, 
denoting by E(S0t) the minimal tr-algebra in SO? cz 0>(S) that makes all the maps 
{ft -> fi(B), B e $(S)} measurable, then 

(9) E(2R) cz ^(SR) and E(9W) = (̂501) if OR c P(S) is separable 

because in the latter case ^(S0t) is generated by a topological base of open sets that 
belong to Z(SOt). 

Handling some other metric topology either on S or on @>(S), say t, we may be 
more specific in our notation writing 3&(S, t), <%(S, t), 0>(S, t) and speaking about 
t-Borel sets, t-universally measurable sets and t-Borel probabilities on S. For 
example, @l(0>(S, s), t) stays for the t-Borel c-algebra of subsets of the space of 
5-Borel probabilities on S. 

As usual for a p e 0>(0>(S)) we denote by r(p) or by jV p(dfi) the measure in 0>(S) 
defined by 

(10) r(p)(B)= $>I(B)P(H Be®(S) 
?(s) 

and call it the barycenter of p, the legitimity of the definition being ensured by the 
first statement in (9). Further denote cojJWl) = r(0>(Wl)), call it the measure convex 
hull of SOI and say that 301 is a measure convex set if cojjffll) cz 2R (=> co^StR) = S0t). 

3 W(S): = f){@(Sy, \x e P(S)}, where &(SY is the p-completion of <#(S). 
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We refer to [13] for a general theory of measure convex (hence convex) sets in 
locally convex spaces, namely to 12.5 Proposition that characterize measure 
convex spaces, namely to 12.5 Proposition that characterize measure convex sets 
2R cz 0>(S) as those for which 

K cz $R weakly compact set => co(K) a weakly compact subset of 5R, 

where co(K) denotes the weakly closed convex hull of K. In what follows we 
summarize and complement the properties of the measure convexity relevant to the 
sets of solutions of local martingale problems. 

Note that for any SR cz &(S), I(SR) = c(\i -• \x(f\ f:S^U Borel bounded), 
putting fi(f) = Jf dfi and (10) can be therefore extended to 

(11) r(p) (f) = J n(f) p(dfi), f:S^R Borel bounded. 
<?(S) 

Recall that (px, x e X) is a stochastic kernel from a measurable space (X, x) to S if 
(px)

 c &*(S) and x -> px(B) is an ^-measurable function for any B e 3$(S). Any prob­
ability measure a defined on x will be referred here as a mixing measure of the kernel. 

2.1. Lemma. If SCR cz 0>(S) is a separable set then 

(12) coM(SCR) = < \px a(dx), (px) cz $R a stochastic kernel, a a mixing measure > 

and 2R is a measure convex set if and only if J px a(dx) e 5R for any stochastic 
kernel (px) cz 5R and any mixing measure a. 

Proof. The "cz" part of (12) follows by (9) even for non separable sets: If 
(px) cz S[R is a stochastic kernel and an a its mixing measure then Jpx a(dx) = r(p) 
where p is the image of a under the map x -> px that is (X, x) -• (StR, (̂S[R)) 
measurable by (8) due to the separability of SCR. Hence, p e (̂SCR) and J px cc(dx) G 
coM(SR). D 

Recall that a subset 301 of a Polish space is said to be analytic if it is 
a continuous image of some other Polish space. We refer to [1] for the details we 
may need later on, reminding only that Borel sets are analytic which sets are 
further universally measurable. 

2.2. Lemma. Assume that S is a Polish space and SCR an analytic subset of0>(S). 
Then there exists a stochastic kernel (p^, \i e coM(5R)) cz ^(2R) from (coM(3CR), 
^(coM(2R))) to 0>(S) such that r(pM) = ji holds for all \i e coM(9R). Moreover, 
coM(2R) is a measure convex analytic subset of SP{S) and therefore the minimal 
measure convex set containing SCR. 

Proof. Observe first that assuming $R to be analytic we get (̂SCR) cz SP(3P(S\) 
also as an analytic set and that 

(13) r : ^(^(S)) -> 0>(S) is a weakly continuous map. 

62 



Thus, coM(901) = r(^(901)) is an analytic set and we may apply 8.5.3 in [1] to prove 
the existence of a map n : coM(9Ji) -> (̂901) that is universally measurable and such 
that r O n is the identity on coM(901). Denoting p^ : = n(ju) we construct a stochastic 
kernel with the desired properties. It remains to prove that coM(901) is a measure 
convex set: Choose a e ^(coM(901)) and check the validity of the formula 

r(oc) = J (r O TT) (JI) a(d/i) = r ( J p, a(d/^. 

C O M W C O M ( W ) 

It follows that r(a) = r(p) for a p e ^(901), hence r(a) e coM(SR). D 

Lemma 2.2 and the results presented in [11], namely Theorem 3.7, suggest an 
interest in convex sets 901 cz 0>(S) generated by 901 = coM(ex 50i). We agree to call 
such an 9P1 a Choquet set. Note that a Choquet set 90? with an analytic extremal 
boundary ex 901 is forced by Lemma 2.2 to be measure convex and analytic 
provided that S is a Polish space. Recall that a Choquet set 901 for which 
r : ̂ (ex SR) -» 9JI is a bijective map, is called a simplex and it is called a Choquet 
simplex if and only if the convex cone [R+ • 901 is a lattice with respect to its natural 
order given by /u < v o v — fieR+ - ffll. Also note that any measure convex 
Choquet set 901 is the minimal measure convex set among those containing its 
extremal boundary ex 901. 

Weizsacker and Winkler (1979), (1980) identified a property of a convex set 
StR cz 0>(S) which is easily recognized as a property of the sets of solutions of local 
martingale problems that forces 901 to be Choquet set and to be a simplex if and 
only if it is a Choquet simplex provided that S is a Polish space. 

Consider a set 2F of bounded universally measurable functions / : S -• IR and 
agree to call 901 cz 0>(S) and J^-closed set if for any net (/ia) cz 901 and any measure 
li e 0>(S) 

(14) j / d / i . - J/d/i, fe3F => VLK єЯИ 

holds. The topology of 0*(S) defined by the family of all ^-closed sets or 
equivalently by the convergence (14) will be referred here as the #-topology of 
0>(S). Denote by F = F(S) the class of all & cz Us such that all / in & are 
bounded and universally measurable, such that all bounded continuous functions 
are in ^ and such that there are at most countable many / e 2F that are not 
continuous. Denote also by ¥b = ¥b(S) the class of all 3F e F(S) the elements of 
which are all Borel measurable. Further agree to say that a set 901 cz 0>(S) is 
F(5)-closed and Ffc(S)-closed if there exists J^e F(5) and &e lh(S) such that 9M is 
an ^-closed set, respectively. 

Recall that a metric space S is called a Radon space if all measures in &(S) are 
tight, i.e. if 

fi(B) = sup {n(K),K cz B compact}, B e 0&(S\ \i e &(S) 
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holds. Remark that both Polish and analytic S are Radon and there is a separable 
metric space S that is not a Radon space. 

2.3. Theorem (Weizsacker, Winkler). Let S be a separable Radon metric 
space and 9Ji cz 0>(S) a convex ¥b(S)-closed set, say ^-closed for an F e fb(S). 
Then 9Ji is a Borel measure convex Choquet set with a Borel extremal boundary 
ex 9W. It is a simplex if and only if it is a Choquet simplex. 

Proof. The assertion is basically a very special case to the results presented in 
[17]: 9Jt and ex(9K) are Borel sets in 0>(S) by Theorem 3a and by Theorem 3b, 
respectively because of the separability of S. The inclusion 9K c coM(ex 9W) is 
exactly the statement of Theorem 1. To prove the measure convexity of 9M con­
sider p = r(p) for a p e ^(9W). It follows by Theorem on the separation of convex 
sets in locally convex spaces that there is a net (pa) cz 0>(yjl) such that 

pa = £ # 6 ^ , /if e 9W, p(g) = lim p«(g), g : 9K -* R Borel bounded. 

Especially, putting fia = r(pa) = ]££.#/#, it follows by (8) and (11) that p(f) = 
lima pa(f) for all / e & and therefore p e 9JI because 3CR is a convex ^-closed set. 
Hence, 9W is a measure convex set and 9K cz coM(ex 9K) cz 9W proves the first 
assertion. Finally, the simplex part of Theorem is implied by Theorem 2 in [17] 
because S is metric Radon space. • 

2.4. Remark. Choosing in Theorem 2.3 !F = Cb(S) the space of bounded 
continuous functions defined on S we prove that for a separable Radon metric 
space S any convex weakly closed set 9JI is measure convex Choquet set, hence 
the minimal measure convex set among those containing its extremal boundary 
ex (9W). It follows that 9M = coM(ex 9Jt) = co(ex 901) holds for all convex weakly 
closed sets 9W c < (̂S). 

By the method similar to that of Lemma in [17] we may extend Theorem 2.3 to 
F(S)-closed convex sets. 

2.5. Theorem. Let S be a separable Radon space and 9Ji <z £P(S) a convex 
¥(S)-closedt say ^-closed, set. Then 9JI is a universally measurable measure 
convex Choquet set with a universally measurable extremal boundary ex 9Ji. It is 
a simplex if and only if it is a Choquet simplex. 

Proof. Let {/, /2,...} be the set of all f e & that are not s-continuous where 
s is the topology of S. Consider the map F : S -> S x (RN defined by 

F(k) = (k,f(k),f2(k),...\ keS 

and the initial topology t of F in S. Obviously, t = {F~l(U), U cz S x UN open} is 
the minimal topology on S finer than 5 for which all fe^ are continuous 
functions. Because S x UN is a separable metric space it follows that there is 
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countable base for the topology t, hence (S, t) is a separable metric space by 
Urysohn metrization theorem (Theorem 17(a) in [5]). Since F is obviously an 
8-universally measurable map S -• S x RN it also follows that 

(15) ®(S, s) c @(S, t) = a(t) c ^(S, 5) and ^(S, t ) :={ / / , / i6 ^(S, 8)}, 

where pe denotes the unique extension of a p e 0>(S, s) from the cr-algebra 3&(S, s) 
to the c-algebra 38(S, t). Again, because S x RN is a separable metric space, it 
follows by Theorem 5, p. 26 in [12] that F is Lusin /i-measurable map for any 
p e &>(S, s). It is exactly as to say 

p(B) = sup {p(K): K a B, Ks-compact, F: K -> S x RN continuous}, 
Be<W(S,s),pe0>(S,s). 

Since any s-compact set K for which F \ K is a continuous map is easily seen to 
be a r-compact set, it follows that any pe e 0>(S, t) is a Might measure. Hence, (S, t) 
is proved to be a separable Radon space and W := {ff,pe 90?} c 0>(S, t) becomes 
to be a convex and t-weakly closed set because the set & is contained in the space 
of all bounded f-continuous functions defined on S. 

Denote by e: 0>(S, s) -• 0>(S, t) the bijection defined by e(p) = pe and let 
i: = e~l. It follows that e is a universally measurable and e~l Borel measurable 
map with respect to the corresponding weak topologies. Indeed, it follows by (8), 
by the separability of (S, s) that i: 0>(S, t) -> 0>(S, s) is a Borel map if and only if 
{ve &>(S, t): v(B) < c] is a Borel set in 0>(S, t) for any B e @(S, s) and c > 0. It is 
of course an immediate consequence of (8) because @t(S,s) a 0$(S,t) by (15). 
Similarly, it follows by (8), by the separability of (S, t) that e : 0>(S, s) -> &>(S, t) is 
a universally measurable map if and only if {pe 0>(S, s), p(B) < c} is a universally 
measurable set in 0>(S, s) for any B e 3&(S, t) and c > 0. But it follows directly by 
Lemma 2.6 bellows because @(S, t) c <%(S, s) by (15). 

Thus, e : 0>(S, s) -> 0>(S, t) is a universally measurable affine bijection such that 
i = e~l is a Borel map. One can easily check that 

aw = e - 1 ^ , e x art = e-1 ex art*, ^ < #> in u+ • an <-> ^ < pe
2 in R + • w 

and that 

M = r(p) o pe = r(e Op), ^GaR, pe^(9W) 
v = r(g) o i(v) = r(i O q), veW, qs 0>(W) 

and finally that the map ^(ex aR) -> ^(ex W) defined by p -• e o p is a bijection. 
Observing all the above properties of the extension map e we prove all the 
statements of Theorem by an application of corresponding statements of Theorem 
2.3 to the convex weakly closed set W c 0>(S, t). • 

2.6. Lemma. Let S be a metric space and U a S a universally measurable set. 
Then p -» p(U) is a universally measurable map 0>(S) -• U. 
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Proof. Let p0 e 0>(0>(S)) be an arbitrary probability measure, put p0 = r(p0) and 
let p0(U) = inf {/̂ (G), Ge<#} = sup {p0(F), F e &} where & and ^ are countable 
sets of closed sets F cz U and open sets G 3 [/. Obviously, // -> m(//): = 
inf (JU(G), Ge&} and /1 -> M(/i): = sup {p(F), F e J^} are Borel functions 
0>(S) -> U such that M(/z) < / / ( [ / )< m(p) holds for any // e 0>(S) and such that 

\m(p)p0(dp) < inf I//(G)p0(dp) = ^(U) = sup \p(F)p0(dp) < I M(/i) p0(d//). 
*/ GG^ V Fe#r «/ t/ 

Hence, M = m almost surely \_p0~\ and p -> /i((7) is a p0-measurable function. D 

Observe that F-closed sets are stable w.r.t. finite unions, countable intersections 
and Borel inverse images operations: 

2.7. Lemma. Let S be a metric space and 9Wb SR2>... l(S)-closed (¥b(S)-closed) 
sets in 0>(S). Then the sets 9^ u 9Jt2 and f]n=i^n are F(S) closed (¥b(S)-closed) 
also. Moreover, if T is a separable metric space, $R cz 0>(T) an f(T)-closed (an 
¥b(T)-closed) set and H : S —> T a universally measurable (Borel measurable) map 
then H~l o 2R : = {pe 0>(S) :H O peWl}is an ¥(S)-closed (¥b(S)-closed) set. 

Proof. The first part of Lemma is obvious, note only that F(S)-closed (F6(S)-closed) 
sets are stable w.r.t. countable unions and intersections, that the convergence (14) 
with an 3F e F(S) \3F e Fb(S)) promotes Hausdorff, in fact metric, topology in 0>(S). 

Because T is a separable space there is a countable set of bounded continuous 
functions defined on T is a separable space there is a countable set of bounded 
continuous functions defined on Tthat determines the weak convergence in 0>(T). 
Hence, there is a countable set ^ of bounded universally (Borel)-measurable 
functions T -> IR such that the set 9R is ^-closed. Denote by !F the set of functions 
S -• IR that consists of all bounded continuous functions and of all g(H) where g is 
running through 0. Obviously & e F(S) (& e ¥b(S)) and H~l o SR is an J^-closed 
set in 0>(S) because for any net (pa) cz H'1 o 2R and any // e 0>(S) 

J fd/i a -> Jfd^í Vfe F => Jo d(tf o /ia) - J f l d(H o ^ Va G ář. 

D 
We shall close the present section by listing some properties of the direct image 
H o 9W of a measure convex (measure convex Choquet) set 5R cz 0>(S). We shall 
fix a pair of Polish spaces S, T and / 7 : S - > T a Borel map. 

Obviously, only the separability of T yields via (8) that 

H : P(S) -+ 0>(T\ H(p): = H o p, pe 0>(S), 

is a Borel map having denoted by H O p the image of p under H. A straighforward 
computation verifies the barycentrical formula 

(16) r(H O p) = H o r(p), p e 0>(0>(S)). 
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Because R O 0>(9l) cz 0>(H o 91) for any 91 cz ^(S) it follows by (16) that 

(17) 9JI cz coM(9l) =» H o 9R cz coM(iJ o 9t), 9R, 91 cz ^(S), 

where H o9Jl:= {Ho /i9 JX e 9JI}. We may get (17) with the reversed inclusions 
only under an additional assumptions on the set 91 in the form 

(18) coM9l cz 9JI => coM(H o 91) cz H o 5R, 9K, 91 cz < (̂S), 9? analytic. 

To verify (18) observe first that 

(19) 91 cz 0>(S) analytic => R o 0>(9l) = 0>(H o 91). 

Indeed, because ^(S) and 0>(T) are Polish spaces and 91 cz ^(5) is an analytic 
set, it follows by 8.5.3 in [1] again that there exists 

/ ^ a universally measurable surjection R : R(9l) -> 91 such that 
* ' (RoR)(v) = v holds for all v e R(9l). 

Now (19) follows easily because if qe0>(Ho9l) then p:= ROqe0>(9l) is 
a measure for which R O p = q holds by (20). Applying (16) and (19) we prove 
(18). 

Finally, (17) and (18) may be combined to 

(21) H o coM(9t) = coM(H o 91), 91 cz 0>(S) analytic 

while (18) by itself proves 

(22) 
901 cz 0>(S) measure convex analytic => H O 901 cz 0>(T) measure convex analytic. 

We suspect that the direct image of a Choquet set need not be a Choquet set, hence 
we shall find useful the following simple device how to recognize the property. 

2.8. Theorem. Assume that S, T are Polish spaces, H : S -> T a Borel map and 
9JI cz 0>(S) is a Choquet set with an analytic extremal boundary ex 901. Then 
H o9Jl = coM(H O ex 901) is an analytic measure convex set such that ex (H O 90i) cz 
H O ex 9R holds. If there is a Choquet set 3) cz 0>(T) such that ex 3> cz H O 9JI 
then 9 cz H O 9JI. 

Remark that the requirements on 901 are satisfied when 90? is an Ffc(5)-closed 
convex set by Theorem 2.3. 

Proof. Because 901 is a Choquet set with an analytical boundary ex 901 it follows 
by Lemma 2.2 that 9JI is measure convex and analytic. Thus, H o 9R is measure 
convex and analytic set by (22) and the equality H o 901 = coM(if o ex 901) follows 
by (21). 

Further, if v e ex (H o 901) then v e coM(H o ex 901) and therefore v = r(q) for 
a q e 0>(H o ex 90?). Because H O 93? is already proved to be a measure convex set 
it follows by 15.5 Corollary in [13] that q equals to the point measure ev and 
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therefore v e H O ex (501). Finally, to verify the last statement check that the 
measure convexity of H o 501 implies that 

2) = coM(ex Q)) cz coM(H o 501) cz H o 501. 

Even more can be stated assuming that H o 501 a simplex. 

2.9. Theorem. Let 5, T and H are as in Theorem 2.8. Assume that 50* cz &>(S) 
and Q) := H o 501 cz ^(F) are Choquet sets with Borel extremal boundaries ex 501 
and ex 3), respectively. Moreover, assume that for any v e e x ® there is a unique 
pv e ex 501 swcft f/iar H O pv = v ho/ds. TTien 

/~^ v -> pv defines a stochastic kernel from (ex ®, ^(ex ®)) to S, 

/zence a Sore/ injection ex ^ -» ex 501 

such that 

(24) 50l(®): = | J pv a(dv), q e 0>(ex 9) 1 = coM{^, veex®} 

w a Choquet set with Borel extremal boundary ex 50i(S) = {/i,, v G ex ®}. 
Moreover, 

/7_x ® w a simplex if and only if^Jl(Q) is a simplex and 

p -+ H O pis a Borel bisection of50l(®) onto Q). 

Remark that we get 501 and H o 501 as Choquet sets with Borel extremal 
boundaries assuming that 501 and H O 501 are convex ¥b(S) and F^(T)-closed, 
respectively by Theorem 2.3 

Remark also, that the uniqueness requirement asked by the Theorem is implied by 

(26) for any v e e x ® there is a unique pv e 501 such that H O pv = v holds, 

because ex Q) cz H o ex 50i by Theorem 2.8. 

Proof. It follows by the assumptions of Theorem that 

{#,, veex®} = (I?"1 ex 9) n ex 50? is a Borel set in 0>(S) 

and R : {pv, v G ex Q)} -> ex Of a Borel bijection with the inverse given by v -* pv. 
Hence, (23) is a true statement. It also follows immediately that p -• R O p defines 
a Borel bijection between ^({/^, veex S>}) and ^(ex Q), hence the equality (24) 
holds, because r(p) = J pv(R o p) (dv) holds for any p e 8P({p„ veex 2}). Further, 
because {pv, veex®} was already proved to be a Borel set, it follows by (24) and 
Lemma 2.2 that 50l(®) is a measure convex (also analytic) set and will become 
a Choquet set with Borel extremal boundary if we shall be able to verify that 
ex 50l(®) = {pv,v e ex &} is true. Because 

{/A,, v e ex Q)} cz ex 501 n 50t(®) cz ex 50t(®) 
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holds trivially we need only to choose a JUQ G ex 501(0) and apply the already proved 
measure convexity of 501(0) to conclude that JIQ = fivo for a v0 G ex (0): Indeed, we 
have fiQ = J ̂ v #(dv) for a g G ^(ex 0) , hence ^0 = r(p) where p G ^({/A,, v G ex 0}) 
is the image of q under the map v —> fiv. It follows by Corollary 15.5. in [13] that 
p = e^, hence q = eVo for a v 0 e e x ® because v -> //v is a Borel bijection of e x 0 
onto { ^ v e e x ® } . 

To prove (25) assume first that 0 is a simplex and consider \i = r(pi) = r(p2) 
for a pair p1? p2 G ^(ex 501(0)) = 0>({\i^ v e ex 0}) and a /* G 5Ot(0). Then it follows 
by (16) that r(R o pt) = r(# o p2) where R o pl9R o p2e 0>tx 0 ) and therefore 
R o px = R o p2 because 0 is a simplex. Hence Pi = p2 because p -> i? o p is 
a bijection between ^(ex 0 ) and ^(ex 501(0)). It follows that 501(0) is a simplex. 
Further, if ^ 4= /i2 are measures in 501(0) then fi{ = r(p{) and //2 = r(p2) where 
Pi =|= p2 are in ^(ex 501(0)) as 501(0) was already proved to be a Choquet set. 
Hence, H o ^ = r(# o pt) =j= r(J? o p2) = H o /x2 by (16) because p -» # O p is 
a bijection between ^(ex 0) and ^(ex 501(0)) and because 0 is a simplex. It 
follows that \x -> if o /i defines a bijection 501(0) -> 0 that is a Borel map. 

Finally, assume that 501(0) is a simplex and that \x —> H o /i defines a bijection 
of 501(0) onto 0 . Let v = r(qx) = r(#2) for a pair of measures qh q2 e &>(ex 0) . 
Denote by pi and p2 the images of qx and q2, respectively under the map 
R~l: ex 0 -* ex 501(0) and observe that H o r(px) = HO r(p2) = v. It follows 
that r(pi) = r(p2) because R: 5Oi(0) -> 0 is assumed to be a bijection and then 
Pi = P2 because 501(0) is assumed to be a simplex. Hence, q{ = R o p{ = 
R o p2 = q2 and 0 is proved to be a simplex. • 

2.10. Remark. Theorems 2.8 and 2.9 may in general provide handy tools 
when trying to establish the existence (the unique existence) of a solution 
\x e 501 a 0>(S) of a stochastic equation H O // = v where H : S -+ T and ve@>(T) 
are given. 

Theorem 2.8 simply say, that ifffllcz &>(S) and 0 c 0>(T) are Choquet sets such 
that the equation has a solution fiv e 501 for an arbitrary right-hand coefficient v in 
the extremal boundary ex 0 then the equation has a solution juv G 50ifor any v G 0 , 
i.e. 0 c H O 501. A more complex Theorem 2.9 further informs that if 
0 = H O 501 is a simplex such that for any v e ex 0 there is a unique solution 
JUV G 501 (it is sufficient to ask \iv e ex 501) then there exists a unique solution 
\iv G coM\\i^ v G ex 0 } for any v G 0 . 

We may be more specific about the measurability of a map v -• \iv that selects 
a solution \iv e 50? of the equation with a right-hand measure coefficient v G H O 501. 

2.11. Corollary. Assume that S, T and H are as in Theorem 2.8. If 501 c &>(S) 
and 0 : = H O 501 tfre Choquet sets with Borel extremal boundaries then there 
exists a stochastic kernel {p,, veS)}cz 0>(ex 3Jl)from (0, <^(0)) to 0>(S) such that 

(27) if O r(pv) = v /w/ds for alive®. 
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Assume further that 9ft and <3> are as in Theorem 2.9 such that 9ft = SSR(3i) holds. 
Then p -* H O p is a Borel bisection of 9ft onto Q). Denoting by v -» pv its inverse 
then {p,, v e 3)} is a stochastic kernel from (@), 0$(<2))) to S such that 

(28) v0 = J v dq => pVQ = JVV dq , q e 0>(®) 

holds. Especially\ v -* pv is an affine Borel map. Moreover\ (27) defines a stochas­
tic kernel {pv, v e &>} c ^(ex 901) uniquely and pv = r(pv) holds for all v e S>. 

Proof. Because ex S> a H o ex 9ft by Theorem 2.8 it follows by (20) that there 
exists a universally measurable map R : ex &> -* ex 9ft such that (H o R) (v) = v 
holds for any veex®. Further, it follows by Lemma 2.2 that there is a stochastic 
kernel {qv, v e ® } c ^(ex 3)) from (Q), 91(2))) to 3P(S) such that r(qv) = v for all 
ve®. Denoting pv = R o qv, we obviously define a kernel for which (27) and 
{p, v e 9} cz <̂ (ex 9ft) hold. 

As for the latter part of Corollary 2.11 it follows by Remark 2.10 that 
p -> H O p is a Borel bijection of 9ft onto .0 and that both 9ft and S> are simplices 
with Borel extremal boundaries. It follows by (8) and Theorem 8.3.7 in [1] that 
9ft = r(0*(ex 9ft)) and S) = r(&*(ex &>)) are Borel sets. Hence, the inverse map to 
H : 9ft -» ®, denoted by v -» /iv, is also Borel measurable, obviously such that (28) 
holds. It follows that pv = r(pv) holds for all v e Q) and for each stochastic kernel 
{p, v e &>} cz ^(ex 9ft) that satisfies (27). Such a stochastic kernel is uniquely 
determined by (27) because 9ft is a simplex. • 

Assumptions of Theorem 2.8 and 2.9 are fulfilled very easily in some cases. If 
S, T and H are as above, consider a p e £P(S) with v: = Hop and recall that 
a stochastic kernel {/^},y e T from (T, &(T)) to S is called a regular conditional 
distribution (RCD) of p given H if 

* 
| ̂ f(A) v(dj>) = p(A n H-^B), B e @(T), A e« 

B 

Recall also that regular conditional distributions always exists in our setting and 
p" = Py almost surely [v] for each pair {$, ye T},{py[,ye T} of RCD's of 
p given H. Only elementary properties of the conditional expectations yields 

(29) Ho p» = sy a.s. [v] where ey(B) = IB(y), yeT,Be@(T). 

Having also a set 9ft cz SP(S) we shall say that a measure p is H-decomposable 
in 9ft if p1^ e 9ft almost surely [v = H o p\. If 9ft is a measure convex set and 
p a measure H-decomposable in 9ft then p necessarily belongs to 9ft by Lemma 
2.1 because p = J p" v(dy) holds. 

2.12. Corollary. Let S, T, H and 9ft satisfy the requirements of Theorem 2.8 
and let pe^Jl with v = H O p be a measure H-decomposable in 9ft. Then there 
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is a Be@(T) such that v(B) = 1 and H O 3R z> ^>(B) /10/ds. Especially, 
V e H O yjlfor any measure V e 0>(T) that is absolutely continuous w.r.t. v. 

Proof. The set 93i c 0>(S) is analytic by Lemma 2.2, hence {ye T: $ e 93?}: = 
B0 is a universally measurable set in T. It follows that there is a Borel set B{ cz B0 

with v(Bx) = 1. It follows by (29) that there is a Borel set B cz B{ with v(B) = 1 
such that {sy,yeB}czHoyjl and we may apply Theorem 2.8 with Q): = 0>(B) 
observing that Q) is a Choquet set with ex Of = {̂ , y e B}. • 

We suspect that a measure \i e 0>(S) is //-decomposable in an F(S)-closed convex 
set 9K c ^(S) if and only if ji(- | H~XB) e SR for any B e @(T) with ^(//"'B) > 0. 

2.13. Corollary. Let S, T, H are as in Theorem 2.8 and 93? cz 0>(S) a Choquet 
set with a Borel extremal boundary. Then 

(30) H o 9W z> {sy, y e T} => H o ex 9K c fo, y e T}, / / o 501 = ^(T) . 

//* moreover any fieWl is H-decomposable in 93? and 

(31) for any y e T there is a unique fiy e 901 vv/t/i H O [iy = sy 

then {iiy, y e T} is a stochastic kernel from (T, &(T)) to S and 

(32) for any v e 0>(T) there is a unique juv = I fiy v(dy) e 901 with H O jxv = v. 
T 

Finally, 90? is a simplex with ex 90? = (pLy, y e T}. 

Proof. (30) is proved by Theorem 2.8 with Q) = 0>(T). Hence, (31) implies that 
H O 2R = &>(T) is a simplex with ex 0>(T) = {̂ , y e T} and we may apply 
Theorem 2.9 with 2 := 0>(T). In this case we get 9Jt(^) = {jVy v(dy), v e 0>(T)} 
because T and {sy, y e T} are homeomorphic each to other. Further, it follows by 
(29) and (31) that 

fiy = \iy almost surely [v], v : = H o /i, \i e 90? 

because each \i e 90? is assumed to be iZ-decomposable in 90?. Hence, 93?(®) = 90? 
and (32) follows by (25) in Theorem 2.9 because H o J \iy v(dy) = v holds for all 
ve0>(T). U 

A way how to construct a Choquet set (a Choquet simplex) is suggested by 

2.14. Example: Assume that S is an Abelian additive topological group such 
that the topology of S is Polish. Let T c S be a closed subgroup and \i a measure 
in 0>(S). Then 

m(fi, T): = {fi * a, a e 0>(T)} cz 0>(S) 

is a weakly closed convex (hence Choquet) set by Theorem 2.3, with a weakly 
closed boundary ex 5D?(/i, T) = {/̂  = /* * £y, y e T}. We have denoted by /x * a the 
convolution of \i and a given by (\i * a) (B) = J //(B — y) a(dy). 
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If, moreover, {0} c= T is the unique compact subgroup of T then 3Jl(p, T) is 
a simplex if and only if equation /i * a = v has at most one solution <xe£P(T) for 
any v e 0>(S). 

Indeed, if \in: = \i * a„ is a sequence in 9W(//, F) weakly convergent to 
a /io G ^(S) it follows by III.2.1. in [6] that the sequence (a„) has a weak limit point 
a0 G ^(T). Hence, po = /* * a0 and 9W(//, T) is a weakly closed set in &>(S). 
A similar argument shows that {py, y e T} is a closed set also. It follows by 3.3 
Theorem in [8] that pyeex2R(/x,S) for any yeS and therefore { /A, ,yeTjc 
ex 2R(//, T). Let v = /x * a G ex 2R(jU, T) and denote by p e ^(^Jl(p, T)) the image 
of a under the continuous map y -• jur Then v = r(p) and therefore p is a point 
measure on 90t(/i, S) again by Corollary 1.5.5. in [13] because 9K(/i, S) is a measure 
convex set. Hence, v = py for any y s T. 

Assuming that there are no non-trivial compact subgroups in Fit follows by 2.1. 
Lemma in [8] that y -> py define a homeomorphism between Tand {py, ^ 6 T } = 
ex $Jl(p, T). Hence, Wl(p, T) is a simplex if and only if each equation v = p * a, 
v G ^(S) has at most one solution a e ^(T). 

If T is a nontrivial compact subgroup of S and \L Haar probability measure on 
T then 3R(/J, T) = {//} and therefore it is a simplex. On the other hand // = //* a 
for any a G ^(T) which shows that the above equivalence does not hold generally. 

We close the present section with a simple result that extends Theorem 3.7 (c) 
in [11] (see also 3.2. in [15]) and provides a good reason to introduce and study 
the concept of a Choquet set. Denote by B(S) the set of all Borel bounded functions 
g : S -• U. 

2.15. Theorem. Let 90? cz 0>(S) be a Choquet set S, being an arbitrary metric 
space. Then 

sup {F(p), p, G 9Jt} = sup {F(p), p G ex 5R} =: s 

for any convex map F : 0*(S) -• U that is lower bounded and lower semicontinuous 
in B(S)-topology of &(S). 

Note that F: 0>(U) -• U given by F(p): = p(f) where / : U -• R is a lower 
bounded Borel function defines an affine map that is lower bounded and lower 
semicontinuous in B(R)-topology of 0>(M) (see Example 3.8 in [11]). 

Proof. If v G SR then v = r(p) for a p e 0>(ex 9W) and therefore 

v(g) < sup {p(g), n e ex 9M}, g e B(S) 

by (11). It follows by Theorem on separation of convex sets in locally convex 
spaces (as in [9]) that there is a net (pa) of measures in the convex hull of ex 901 
such that pa -» v in B(S)-topology. It follows by the convexity and lower 
semicontinuity of F that F(v) < lim infa F(pa) < s. • 
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3 Convex analysis 
of local martingale problems 

3.1. Theorem. Let <& cz # be countable set and B c: C(R+) a Borel set such 
that B and <& are compatible. Then iV^B is an ¥b(C)-closed convex set, hence 
a measure convex Choquet set with a Borel extremal boundary ex H^yB. It is 
a simplex if and only if it is a Choquet simplex. Especially\ iVyB posseses all the 
above properties for any countable set ^S a(€a and any B e 39(C). 

Proof. The set H^B is convex by Corollary 3.6 (a) in [11] and any <§ a (€a is 
compatible with any B e $(C). Hence, all statements will follow by Theorem 2.3 
after having proved that iV^B is an Ffc(C)-closed set: Fix first a G e <S and define 
a Borel map H : C -• C x C by H(x): = (x, G(x)) and observe that it follows by 
(2) that itrG = {\ie 0>(C): H O \i e JSf(L0)}. Thus, it follows by Proposition in [11] 
that 

1TG n 0>(B) = H-l&(l°) n &(B) = i f " 1 ^ 0 ) n &>(B), 

where jgPfFJ denotes the weak closure of JS?(L°) in 0>(C(U+) x C(U+), because 
lie@(B) implies that G is an Jf^-adapted process. Hence, if_1if(Lu) is an 
F*(C)-closed set in 0>(C) by 2.7 Lemma. Because &(B) = {fie0>(C(U+)):^(B) = 1} 
is easily seen to be ^closed choosing $F:= C5(C) u {lB}e ¥b(C), it follows again 
by 2.7 Lemma that iV^B = {\J(HT9 n &>(B)) is an Fb(C)-closed set as a countable 
intersection of Ffc(C)-closed sets. • 

It is important to stress that the T^-sets need not be convex generally without 
assuming ^ cz <£a, i.e. not assuming that all G's in ^ are Jf-adapted processes. 

3.2. Example: Let nx = &(W) and \i2 = 3?(Wl) where W is a Wiener process 
and W\t) = W(t A 1) for t > 0. Then ^ and \i2 are in iK-^S) and obviously 
singular such that pLx(F) = 1 and fi2(F) = 1 where F is the set of all x e C(R+) that 
are constant on [1, oo). It follows that F e Pp"1 n ffifr*2 and therefore G: = 
(x - x(0)) IF e <g is both an (/il5 Jf**"1) and (/x2, J f^- loca l martingale on (C, 38(C)). 
In other words, nu \i2 e HTG. Put \i = ^ + \i2) and check that \i $ H£ or equiv-
alently that G is not a (/i, J f^ ) local martingale. Indeed, assuming the contrary 
then G is an &p^-measurable r.v. for any t > 0. It follows that F e &?* for any 
t > 0 because for such a t, fi(x(t) = 0) = 0 implies IF = ^ almost surely w.r.t. 
/i. Hence, assuming JX e H£, the property F would be predictable up to any fixed 
time 0 < t < 1 which intuitively produces a contradiction. A formal reasoning may 
be as follows: W and £ are independent processes on a complete probability space 
(Q, 3F, P) such that if(KV) = \ix and <̂  is a right continuous 0, 1 valued non-
decreasing process with <̂0 = 0 and with a unique possible discontinuity at t = 1 
such that P[^ = 1] = \ = P [ ^ = 0]. Putting X(t) = W(t A [1 + £(t - 1)+]) 
for t > 0, we define a continuous stochastic process on (Q, J^ P) such that X = W 
if and only if & = 1 and X = JV1 if and only if £x = 0 where Wl(t):= W(tAl) 
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as before. Obviously, it follows that J2? (X | P) = ji. Finally, f i x a t e (0, 1) and 
assume that F e J f ^ It follows by Lemma 2.2 in [11] that IF = gt(x(s), s < t) a.s. 
[/i] where gt: C[0, t] -> IR is a Borel measurable map. Hence, 

Jfr-o] = hxeF] = gt(X(s),s <t) = gt(W(s),s < t) a.s. [P] 

and therefore P[^ = 0] is either 0 or 1 because £ and W are independent 
processes, hence a contradiction. 

We insist that the only trouble maker when seeking for the convexity of 
a iVG with a G e <€ is the requirement on the adaptive measurability of G. Indeed, 
a measure \i e 0>(C) is in iVG if and only if G is an J f "-adapted process and G is 
an Jf-premartingale on (C, &(C), fi), the latter property being defined by 

Ef*xG(t A TC) = Ef*xG(s A TC) a.s. [>], s < f, c 6 M , 

where xc denotes the first entry of |x| to [c, + oo]. Because, for a fixed G G ^, the 
set {/xe^(C):G is an ^-premartingale on (C, 38(C), fi)} is easily seen to be 
a convex set, iVG may fail to be convex only because of the lack of convexity of 
the set {fie 0>(C): G is an &*>"-adapted process}. 

Remark that we could avoid the above "convexity catastrophe" considering 
a subset iVG cz iV§ defined by 

WG:={\ie 0>(C): G is an ^ - l o c a l martingale on (C, 3#(Cf, /*)}, 

where J ^ " is the standard completion of J f with respect to the restriction of 
[i from &(C) to Jf. The set iVG is easily seen to be convex but unfortunately only 
of a limited merit in stochastic analysis. 

Examples 1.1, 1.2 and 1.3 in [11] propose positive applications of Theorem 3.1: 

3.3. Corollary. Consider G,ve%>a such that v is a process of finite variation on 
U+ and ^-progressive processes b and a defined on (C, &(C)). Then the sets 
iVGiV and iVh^a defined by (3) and (6), respectively are convex ¥b(C)-closed sets, i.e. 
Borel measure convex Choquet sets with Borel extremal boundaries. Either set is 
a simplex if and only if it is a Choquet simplex. 

The assertion follows by Theorem 3.1 applying (3) and (5), respectively. 
Choquet sets and even Choquet simplices are of a frequent occurrence in 

stochastic analysis, indeed: 

3.4. Example: Choosing S : = C([R+) and T: = {x e C(U+), x(t) = x(0), t > 0} 
in Example 2.14 we prove that for any \i e iK-x{oy denoting by [L° the set of all 
continuous local martingales M with <£(M) = \i, 

%:= {&(£ + M), £ and M independent, f an [R-valued r.v., M e 1°} cz ^_x ( 0 ) 

is a weakly closed simplex with a weakly closed extremal boundary 

m%={S£(x + M), xeU, MelL°}-
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It is enough to note that % = 9K(/z, T) (see 2.14) and that T c S is a closed 
subgroup, the only compact subgroup of which is {0}. Also, any equation 
v = \i * a, v e 0>(C) has at most one solution (xe^(T) because v = \i * a implies 
J£?(x(0)|v) = a. 

Denoting by w the probability distribution of the standard Wiener process W, by 
v(t): = t its quadratic variation and by s(x): = sign (x) for X G R we get that 
iV^ equals to the set of probability distributions of all continuous local martingales 
with the quadratic variation v and also to the set of probability distributions of all 
weak solutions of the (0, s)-SDE. In the notation we introduced in (3) and (6) the 
statement reads as 

^ = ^ - x ( 0 ) , , = ^ 0 , S . 

Indeed, the first equality follows by Levy's characterization theorem while the 
second one follows by (5) because B0,s = C([R+) and J0s

2(x)d8 = v(t). We have 
proved that the (0, sign)-SDE dX(t) = sign (X(t)) dW(t) has a weak solution X for 
any given initial distribution JS?(X(0)) = ae0>(R) which probability distribution is 
uniquely determined by J£?(a * w), where a e ^ ( T ) is the image of a under the 
natural homomorphismus of IR onto T 

3.5. Example: Denoting 

TB(X) : = inf {t > 0 : (t, x(t)) e B}9 xe C(IR+) 

the first debut of x e C(U+) in a Borel set B cz [R+ x R we note that TB : C([R+) -> 
[R + u{ + oo) isa universally measurable map because for any T > 0 the set 
\TB < T] is the projection of 

{(t9x) e IR+ x C(U+): (t, x(t)) e B) n [0, T] x C(R+) e (̂BR+ x C(R+)) 

to C(1R+). Hence, HB(x) := X(TB(X)) I[XB<0O](X) for x e C([R+) defines also a univer­
sally measurable map HB: C([R+) -> R. Considering a pair B2 cz B{ of Borel sets 
in R+ x R we may be interested in a "transport of a particle" from the boundary 
of Bx to the boundary of B2 by means of a continuous local martingale represented 
by its probability distribution \i e i^-x(o) possibly such that fi[rBl < TB2 < oo] = 1. 
A natural criterium for such a transport is given by a property 3) cz 0>(R+ xR2) 
of the probability distribution j£?(# | /*), where H : = (TBI, TB2, HBl, HBJ : C(IR+) -• 
R+2 x IR2 defines a map that is universally measurable. Hence, we are interested in 
a local martingale problem that is subjected to further boundary constraints given by 

aRBlfJ,,.*.*: = ^_ x ( 0 ) n {ixe&(C): \i\rBx < TBI < oo] = l}n {/xe^(C): JS?(fl | /i)e®} 

As suggested by Theorem 2.15 it is always profitable to deal with SO? : = SD?Bl B2>//^ 
that is a Choquet set whenever trying to perform an optimization on the set. 
Assuming that Sd cz ^(IR+2x IR2) is convex F(IR+2x [R2)-closed set we get the 
901 as a convex F(C)-closed, hence a Choquet set by Theorem 2.5 with all "good" 
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properties listed by the Theorem. Indeed, 501 is an F(C)-closed set by Lemma 2.7 
as 1K-x(o) is an F(C)-closed set by 3.1, [/i: jn[rBl < xB2 < oo] = 1] is an 
F(C)-closed set because tBl, TB2 are universally measurable and finally it follows 
by 2.7 again that H _1 o 2 is an F(C)-closed set due to the universal measurability 
of if. 

For example, if we are required to organize a local martingale transport between 
the corresponding boundaries of B{ and B2 with the minimal mean velocity v = 1 
we should choose 

2 = jv e &(M+2 xU2):v [(tu t2, hu h2): ^ - ^ - > 1J = 1J 

that is obviously an Ffc(lR
+2x R2)-closed convex set. This choice of 2 specifies 

yftBltB2tHfg as the set of all probability distribution &(X) e @>(C) where X goes 
through all continuous local martingales such that 0 < tBl(X) < xB2(X) < oo and 

v(x):= ^ - f f* 1 * ^ l h o l d s a l m o s t surely-
The above Example suggests to treat a local martingale problem iV^yB with 

a boundary condition given by an equation 

(33) <?(H\fi) = v, j ie*J i B 

where the right-hand probability distribution v belongs to a fixed set of boundary 
conditions 2 c 0>(T\ T being a Polish set and 7/ : C -• T a Borel map. 
Obviously there is a pair of important sets to be studied in connection with the 
equation (33). Namely, 

Ho^B: = {&(H\fi):fie HT^B] c 9\J), 

the set of all boundary conditions v e 0>(T) for which (33) has a solution \i e iV^yB 

and for a 2 c ^(T) 

H~l2ni^tB = {fie^B:^(H\fi)e2}, 

the set of all solutions (i of (^, B)-local martingale problem that satisfy (33) with 
a boundary contidion ve2. 

General results of Section 2 read in our context as follows. 

3.6. Theorem. If & a <g and B e $(C) are compatible sets such that <& is 
a countable set, if T is a Polish space, H : C -• T a Borel map and if 2 a &(T) 
a Choquet set then H O IVy B = coM(H O ex 901) is an analytic measure convex set 
in &>(T). Moreover, if (33) has a solution for any v e ex 2 then it has a solution 
for any v e 2. The equation (33) with v e ex 2 has a solution /i e ex i^yB. Finally 
if H O iV^B =: 2 is a Choquet set with a Borel extremal boundary then there is 
a universally measurable map v -> fiv that maps 2 into iV^B such that \iv is 
a solution of (33) for any v e ex 2. 

The above assertions follow directly by 3.1, 2.8 and 2.11. 
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Remark that even though we suspect that H o H^B need not be a Choquet set 
generally, it is generated as the measure convex hull of the direct image 
H o ex itr^. 

3.7. Theorem. Assume ^S,B,T and H as in Theorem 3.6 such that $): = 
H O itr<g B is a simplex with a Borel extremal boundary ex Q). Denote 

W«tA®): = coM{// e ifitB: ££{H \n)ecxS). 
Then 
(i) For any v e e x ® there exists a unique solution fiv of (33) in H^tB. 

(ii) For any v e <2) there exists a unique solution fiv of (33) in H^tB{2) 
are equivalent statements and each of them implies that W^J^) is a simplex with 
a Borel extremal boundary, namely ex H^J0) = {&, v eex 3>). Finally, if 
"% B = ify B{@) then the map v -• pv defined by (ii) is a Borel affine bijection 

All statements follows by 2.9 and 2.11 because \iveiV^B defined by (i) for 
a v e e x ® belongs to ex iV^tB according to (26). 

Having rewritten the equation (33) in the form 

(34) i?(x(0)|,*) = v, iie*i,B9 

i.e. asking to eastablish a solution fi of a (#, 5)-local martingale problem \i with 
an initial condition v e 0>{R), we in fact observe Theorems 3.6 and 3.7 with T = R, 
and H:C->R to be defined as the projection if(x):=x(0) for xeC(R+) . 
Corollary 2.13 yields in this case a more neat results compared with 3.6 and 3.7. 
Having (34) with a point measure v = sy agree to say that /* is a solution of 
a (^, B)-problem with an initial (deterministic) condition yeR. 

3.8. Corollary. Consider & c <% and B e &&{C) that are compatible such that 
& is a countable set. Then the {&, B)-local martingale problem has a solution 
Hv with an initial condition v for arbitrary v e @*{R) if and only if it has a solution 
Hy with an deterministic initial condition yeR for arbitrary yeR. Moreover, if 
for any yeR there is a unique solution \xy of the (0, B)-problem with the initial 
condition y then y -> \iy is a Borel map R -* ^(C) such that for any V G ^ ( R ) / / V : = 

JR iiy v(dy) is a unique solution of the {&, B)-problem with the initial condition v. 
The set of solution iV^tB is in this case a simplex, i.e. Choquet simplex, with 
ex 1b%B ={\Jiy,ye R}. 

Proof. H^B is a Choquet set with an Borel extremal boundary by Theorem 3.1 
and our assertion would become a special case to Corollary 2.13 if we prove that 
any // e H£%B is an //-decomposable measure in the set H^B if H{x) = x(0) is 
defined as the projection of an x e C(R+) to its initial value x(0) e R: First observe 
that it follows by the definition of a local martingale that HT^B = Hfa%B where 
<&' a <# is a countable set of processes with uniformly bounded trajectories such 
that &' and B are compatible (see (2) in [11], for example). Hence, we may assume 
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without loss of generality that ^ = {G}is a singleton such that \G\ < c < oo holds 
on U+ x C((R+) in which case 

*J tB = {lie 0>(C): 11(B) = 1 and G is an J f "-martingale on (C, ̂ (C)", //)}. 

Fix \ieiVyB, denote v := if(x(0)|/x) and let {/^,yeU} denote a regular con­
ditional distribution of fi given the projection H. It follows that iPy(B) = 1 for 
y$NB where NB cz U is a Borel set with v(IVB) = 0 because \i = J"R fi°y v(dy). Also 
it follows by the definition of RCD of fi given H that for any fixed 0 < s < t < oo, 
F e £? and Z e. 

J Jc(r) - G(8) d ^ v(dy) = J /Wo)6z]W IE(x) [G(r, x) - G(s, x)] fi(dx) = 0 
Z E C(U+) 

because {xeC: x(0) eZ} n F e &? and G is an Jf^-martingale. Thus, for any 
fixed 0 < 8 < t < oo there is a Borel set JVM cz [R with v(IVf s) = 0 such that 

f G(t) - G(s) dtf = 0 holds for all F e % and y $ NUs 

F 

because J** is a countably generated a-algebra. Putting IV : = (J{1VM, t, s e Q + }, it 
means that 

(35) E„o[G(.;)|if] = E„o[G(s)|$?] s < t, s,teQ+, y$N 

holds. If s < t are arbitrary in U+ let s „ \ s, t „ \ t where s„ < tn are in <Q+. It 
follows by (35) that 

E„o[G(.-„)|if] = E„o[G(s„)|Jf] if y^JV 

and finally that 
E/-?[GW1 ^ ] = E,?[G(8) | ^ * ] , 0 < s < t < a o , y^iV, 

i.e. that G is an ^-premartingale on (C, 08(C), $) for any y $ IV, because G is 
a continuous bounded process (see [11] for the definition and properties of the 
premartingale concept). If moreover, y$NBvN then G is also an Jf^-adapted 
process as ^ and B are assumed to be compatible. Hence, fi°y e iVqB almost surely 
w.r.t. v because an adapted premartingale is easily seen to be a martingale. We 
have proved that any \i e i^yB is an H-decomposable measure in H^^B. • 

Stroock-Varadhan Theorem on the existence (unique existence) of a weak 
solution of a (ft, cr)-SDE (see 18.10 in [4]) may be made more precise as an 
application of Corollary 3.8. 

3.9. Corollary. Consider (b, o)-SDE (7) with ^-progressive coefficients b, a 
and the set H^B cz @>(C) of all S£{X) where X goes through all weak solutions of 
(7). Then (7) has a weak solution with an arbitrary initial condition v e 0*(U) if 
and only if it has a weak solution with an arbitrary deterministic initial condition 
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yeU. The equation (7) is well posed for any v e ^(IR) if and only if it is well posed 
for any deterministic initial condition y e U. 

If (7) is an SDE that is well posed for any deterministic initial condition y eU 
and fiy e H^^B is defined by JSf(x(o) | fiy) = ey then y —> \iy is a Borel map U -> ^(C) 
such that fiv = $Rny v(dy) is the unique juv e H^yB such that J£?(x(0) | /xv) = v holds 
for any veC(lR+). The set iV%B is a simplex, i.e. Choquet simplex, with 
e x ^ , B = {/V y ' ^} iw this case. 

The assertion follows directly by Corollary 3.8 as H^tB = H^Gb „},Bbta where 
<g = [Gb, Gb,a} a <g and Bbt<r e 38(C) defined by (4) are compatible sets. 

Remark that the stochastic kernels v-^M° which existence is stated by 
Corollaries 3.8 and 3.9 define a Borel affine bijection 0>(U) —> H^tB and 

* i^a, respectively. 

3.10. Example: As an illustration consider (0, <r)-SDE dX(t) = e(X(t)) dW(t) 
where a: U -> IR is a Borel map such that \a\ > e > 0. According to Engel-
bert-Schmidt theorem, see 20.1. in [4], it implies that the equation is well-posed 
for any initial condition v e ^(R). Checking carefully the proof we verify that there 
is a w := if(KV)-measurable map Ha : C(IR+) -* C(U) such that 

^ = ^ : = { / L * a ) a G ^ ( T ) } ) fia = HaOw 

in the notation introduced in Example 3.4. Hence, the stochastic kernel y -> \iy 

which existence is stated by Corollary 3.9 is simply defined by \iy = \xa * ey in this 
case and iV^a = iV^ is a Choquet simplex with the extremal boundary [\Xy = 
(HaOw)*ey,eeU}° 

Note that the map Ha becomes the identity on C(IR+) if a = sign and it is 
generally defined by 

H(t, x): = x(x(t, x)\ T(U X) = inf Is > 0 : I c~2(x(u)) du > t >, t > 0 

for x G B where B c C(lR+) is a Borel set with P[WeB] = l. 
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