Acta Universitatis Carolinae. Mathematica et Physica

Tomáš Kepka; Pavel Příhoda; Jan Štovíček
Unions of subquasigroups

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 45 (2004), No. 1, 43--54

Persistent URL: http://dml.cz/dmlcz/142734

Terms of use:

© Univerzita Karlova v Praze, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Unions of Subquasigroups

TOMÁŠ KEPKA, PAVEL PŘÍHODA and JAN ŠŤOVÍČEK

Praha
Received 20. September 2003

> Quasigroups (loops, groups) that are unions of finitely many proper subquasigroups (subloops, subgroups) are studied.
> Studují se kvazigrupy (lupy, grupy), které jsou sjednocením konečně mnoha vlastních podkvazigrup (podlup, podgrup).

The present short note is of expository character and collects various results on quasigroups (loops, groups) available as the set theoretic union of finitely many proper subquasigroups (subloops, subgroups). A reader is referred to [1]-[15] for further information.

1. Quasigroups

A quasigroup Q is a non-empty set supplied with a binary operation (usually denoted multiplicatively) such that for all $a, b \in Q$ there exist uniquely determined $c, d \in Q$ with $a c=b=d a$. A quasigroup with a neutral (or unit) element is called a loop. A group is an associative quasigroup (loop).

Proposition 1.1 Let P and R be subquasigroups of a quasigroup Q such that $Q=P \cup R$. Then either $P=Q$ or $R=Q$.

Proof. If $a \in P \backslash R$ and $b \in R$, then $a b \notin R, a b \in P$ and $b \in P$. Thus $R \subseteq P$ and $P=Q$.

Corollary 1.2 Let $P_{1}, \ldots, P_{n}, n \geq 1$, be proper subquasigroups of a quasigroup Q such that $Q=P_{1} \cup \ldots \cup P_{n}$. Then $n \geq 3$.

[^0]This research was supported by the grant GUAK 269/2001 and by institutional grant MSM1 13200007.

Remark 1.3 (i) Let Q be a finite quasigroup such that Q is not one-generated. Then $\langle a\rangle \neq Q$ for every $a \in Q$ and, of course, $Q=\bigcup_{a \in Q}\langle a\rangle$. Thus Q is the union of finitely many proper subquasigroups. Moreover if $P=\bigcap_{a \in Q}\langle a\rangle$ is non-empty, then P is the smallest subquasigroup of Q.
(ii) Let Q be a quasigroup and r a congruence of Q such that $P=Q / r$ is a finite quasigroup, not one-generated. If π denotes the natural projection of Q onto P, then $P_{u}=\pi^{-1}(\langle u\rangle) \neq Q$ for every $u \in P$ and we have $Q=\bigcup_{u \in P} P_{u}$. Thus Q is the union of finitely many proper subquasigroups.

Example 1.4 Let Q be a quasigroup possesing a congruence r such that Q / r is a non-trivial finite idempotent quasigroup. By $1.3, Q$ is the union of finitely many proper subquasigroups.

Lemma 1.5 Let $P_{1}, \ldots, P_{n}, n \geq 1$, be subquasigroups of a quasigroup $Q=P_{1} \cup$ $\ldots \cup P_{n}$. If $1 \leq j \leq n$ is such that $Q \neq \bigcup_{i=1, i \neq j}^{n} P_{i}$, then $P_{1} \cap \ldots \cap P_{n}=\bigcap_{i=1, i \neq j}^{n} P_{i}$.

Proof. If $a \in \bigcap_{i \neq j} P_{i}$ and $b \in Q \backslash \bigcup_{i \neq j} P_{i}$, then $a b \notin \bigcup_{i \neq j} P_{i}$, and so $a b \in P_{j}$. But $b \in P_{j}$ and consequently, $a \in P_{j}$.

Example 1.6 If $S=\{a, b\}$ is a two-element semilattice, then both $\{a\}$ and $\{b\}$ are subsemigroups of $S, S=\{a\} \cup\{b\}$ and $\{a\} \cap\{b\}=\emptyset$.

Example 1.7 If \mathbb{N} denotes the additive semigroup of non-negative integers, then \mathbb{N} is a cancellative semigroup, both $\{0\}$ and $M=\{n \in \mathbb{N} ; n \geq 1\}$ are subsemigroups of $\mathbb{N}, \mathbb{N}=\{0\} \cup M$ and $\{0\} \cap M=\emptyset$.

Example 1.8 If \mathbb{Z} denotes the additive group of integers, then both $K=\{n \in \mathbb{Z}$; $n<0\}$ and $N=\{n \in \mathbb{Z} ; n \geq 0\}$ are subsemigroups of $\mathbb{Z}, \mathbb{Z}=K \cup N$ and $K \cap N=\emptyset$.

Remark 1.9 Let G be a group such that $G=S \cup H$, where S is a subsemigroup of G and H a subgroup of G. Then either $S=G$ or $H=G$.

Indeed, if $H \neq G$, then $S \nsubseteq H, T=S \backslash H$ is non-empty and $a^{-1} \in T$ for every $a \in T$. Consequently, $1 \in S$ and $T \subseteq K=\left\{a \in S ; a^{-1} \in S\right\}$. Now, K is a subgroup of $G=K \cup H$ and 1.1 applies.

Remark 1.10 Let Q be a quasigroup such that $Q=A \cup P$, where A is a subgroupoid of Q and P a subquasigroup of Q. Then either $A=Q$ or $P=Q$.

Indeed, if $a \in A \backslash P$ and $x \in P \backslash A$ then $a q=x$ for some $q \in Q$ and, if $q \in A$, then $x \in A$, a contradiction. Thus $q \in P$ and $a \in P$ (since both Q and P are quasigroups), again a contradiction.

Remark 1.11 Quasigroups that are unions of three proper subquasigroups are described in [10]. Among others, the following are proved: Let Q be a quasigroup such that $Q=P_{1} \cup P_{2} \cup P_{3}$, where P_{1}, P_{2}, P_{3} are proper subquasigroups, and let $R=P_{1} \cap P_{2} \cap P_{3}$. If $R=\emptyset$, then P_{1}, P_{2}, P_{3} are normal maximal subquasigroups
of $Q, r=\left(P_{1} \times P_{1}\right) \cup\left(P_{2} \times P_{2}\right) \cup\left(P_{3} \times P_{3}\right)$ is a congruence of Q and $Q / r\left(=Q / P_{1}=\right.$ $Q / P_{2}=Q / P_{3}$) is a three-element idempotent quasigroup. If $R \neq \emptyset$ and at least two of P_{1}, P_{2}, P_{3}, R are normal in Q, then P_{1}, P_{2}, P_{3} are normal maximal subquasigroups of Q, R is normal in Q and Q / R is a four-element 2-elementary (abelian) group.

2. Loops

Proposition 2.1 Let $P_{1}, \ldots, P_{n}, n \geq 1$, be subloops of an infinite loop Q such that the following two conditions are satisfied:
(1) $P_{1} \cup \ldots \cup P_{n}=Q$;
(2) If $n \geq 2$ and $1 \leq j \leq n$, then there exists $a \in Q$ such that $a \notin P_{i}$ for every $1 \leq i \leq n, i \neq j$, and $x y \cdot a=x \cdot y a(a \cdot x y=a x \cdot y$, resp.) for all $x, y \in Q$ (i.e., $\left(P_{j} \cap\left(N_{l}(Q) \cup N_{r}(Q) \nsubseteq \bigcup_{i \neq j} P_{i}\right)\right.$.

Then the intersection $P=P_{1} \cap \ldots \cap P_{n}$ is an infinite subloop of Q.
Proof. Proceeding by induction on m, we will prove the following assertion:
For every $1 \leq m \leq n$ there exist indices $1 \leq k_{1}<\ldots<k_{m} \leq n$ such that the intersection $P_{k_{1}} \cap \ldots \cap P_{k_{m}}$ is infinite.
Since Q is infinite, it follows from (1) that our assertion is true for $m=1$. Now, let $1 \leq m<n$ be such that $R=P_{1} \cap \ldots \cap P_{m}$ is infinite. By (2), we find $a \in Q$ such that $a \notin P_{1} \cup \ldots \cup P_{m}$ and $x y \cdot a=x \cdot y a$ for all $x, y \in Q$. Then $R a \cap\left(P_{1} \cup \ldots \cup P_{m}\right)=\emptyset$ and hence $R a \subset P_{m+1} \cup \ldots \cup P_{n}$. Since R is infinite, we may assume without loss of generality that $S a \subseteq P_{m+1}$ for an infinite subset S of R. If $w \in S$ is fixed, then for every $u \in S$ there is $v_{u} \in Q$ such that $v_{u} \cdot u a=w a$. Clearly, $v_{u_{1}} \neq v_{u_{2}}$ for $u_{1} \neq u_{2}$ and $v_{u} \in P_{m+1}$. On the other hand, $v_{u} u \cdot a=v_{u} \cdot u a=w a, v_{u} u=w$ and $v_{u} \in R$. Thus $V=\left\{u_{u} ; u \in S\right\}$ is an infinite subset of $R \cap P_{m+1}=P_{1} \cap \ldots \cap P_{m+1}$.

Corollary 2.2 (cf. [7, 6.3]) Let $P_{1}, \ldots, P_{n}, n \geq 1$, be subloops of a loop Q such that the following three conditions are satisfied:
(1) $P_{1} \cup \ldots \cup P_{n}=Q$;
(2) $P_{1} \cap \ldots \cap P_{n}$ is finite (in particular, $P_{1} \cap \ldots \cap P_{n}=1$);
(3) If $n \geq 2$ and $1 \leq j \leq n$, then there exists $a \in Q$ such that $a \notin P_{i}$ for every $1 \leq i \leq n, i \neq j$, and $x y \cdot a=x \cdot y a(a \cdot x y=a x \cdot y$, resp.) for all $x, y \in Q$. Then Q is a finite loop.

Example 2.3 ([10]) Put $T=\mathbb{Z} \backslash\{0\}, \mathbb{Z}$ being the ring of integers, define a bijection $\alpha: T \rightarrow \mathbb{Z}$ by $\alpha(m)=m$ for every $m \in \mathbb{Z}, m<0, \alpha(n)=n-1$ for every $n \in \mathbb{Z}, 0<n$, and an opertation $*$ on T by $u * v=\alpha^{-1}(\alpha(u)+\alpha(v))$ for all $u, v \in T$ (clearly, $T(*) \simeq \mathbb{Z}(+))$. Further, put $Q=(T \times\{1,2,3\}) \cup\{0\}$ and define a multiplication on Q in the following way:
(a) $0 \cdot 0=0$;
(b) $0 \cdot(u, i)=(u, i)=(u, i) \cdot 0$ for all $u \in T$ and $1 \leq i \leq 3$;
(c) $(u, i)(v, i)=(u+v, i)$ for all $u, v \in T, u \neq-v$, and $1 \leq i \leq 3$;
(d) $(u, i)(-u, i)=0$ for all $u \in T$ and $1 \leq i \leq 3$;
$(u, i)(v, j)=(u * v, k)$ for all $u, v \in T, 1 \leq i, j, k \leq 3, i \neq j \neq k \neq i$.
Now, Q becomes an infinite commutative loop, 0 is its neutral element and $A=(T \times\{1\}) \cup\{0\}, B=(T \times\{2\}) \cup\{0\}, C=(T \times\{3\}) \cup\{0\}$ are its subgroups, $A \simeq B \simeq C \simeq \mathbb{Z}(+)$ Moreover, $Q=A \cup B \cup C$ and $0=A \cap B \cap C$.

3. Groups (a)

Proposition 3.1 ([11]) Let $H_{1}, \ldots, H_{n}, n \geq 1$, be subgroups of a group G such that $G=H_{1} \cup \ldots \cup H_{n}$ but $G \neq \bigcup_{i=1, i \neq j}^{n} H_{i}$ for every $1 \leq j \leq n$. Then
(i) All the subgroups H_{1}, \ldots, H_{n} have finite index in G.
(ii) $K=H_{1} \cap \ldots \cap H_{n}$ is a subgroup of finite index in G and $[G: K] \leq n$!.
(iii) $\operatorname{Core}_{G}(K)$ is a normal subgroup of finite index in G.

Proof. It is divided into two parts.
(a) Firstly, we are going to show that the index $[G: K]$ is finite. Since $G=\bigcup H_{i}$, it suffices to show that all indices $\left[H_{i}: K\right]$ are finite. Proceeding by contradiction, let us assume that this is not true and, using induction on m, let us prove the following assertion:

For every $1 \leq m \leq n$ there are indices $1 \leq k_{1}<\ldots<k_{m} \leq n$ such that the index $\left[H_{k_{1}} \cap \ldots \cap H_{k_{m}}: K\right]$ is infinite.

According to our assumption, the assertion is true for $m=1$ and, now, let $1 \leq m<n$ be such that the index $\left[H_{1} \cap \ldots \cap H_{m}: K\right]$ is infinite. Then there is an infinite subset M of $H_{1} \cap \ldots \cap H_{m}$ such that $x y^{-1} \notin K$ for all $x, y \in M$, $x \neq y$. Take $a \in G \backslash\left(H_{1} \cup \ldots \cup H_{m}\right)$. Then $M a \cap\left(H_{1} \cup \ldots \cup H_{m}\right)=\emptyset$, and hence $M a \subseteq H_{m+1} \cup \ldots \cup H_{n}$. Further, since $M a$ is infinite, we can assume without loss of generality that $N a \subset H_{m+1}$ for an infinite subset $N \subseteq M$. If $u, v \in N$, then $u v^{-1}=u a a^{-1} v^{-1} \in H_{m+1}$ and, if $u \neq v$, then $u v^{-1} \notin K$. Clearly, $u v^{-1} \in H_{1} \cap \ldots \cap H_{m+1}$, and therefore, fixing an element $w \in N$, we get an infinite subset $R=\left\{u w^{-1} ; u \in N\right\}$ of $H_{1} \cap \ldots \cap H_{m+1}$ such that $\left(u w^{-1}\right)\left(v w^{-1}\right)^{-1}=$ $=u v^{-1} \notin K$ for all $u, v \in N, u \neq v$. Consequently, the index $\left[H_{1} \cap \ldots \cap\right.$ $\left.\cap H_{m+1}: K\right]$ is infinite.

Now, by induction, the index $\left[H_{1} \cap \ldots \cap H_{n}: K\right]=[K: K]=1$, is infinite, a contradiction.
(b) It follows from (a) that the index $[G: L], L=\operatorname{Core}_{G}(K)$, is finite. Now, considering the factor G / L we may assume without loss of generality that G is a finite group.

For $k=1,2, \ldots, n$, put $m_{k}=\max \left\{\left|\bigcap_{j \in J} H_{j}\right| ; J \subseteq\{1, \ldots, n\},|J|=k\right\}$; clearly, $m_{1}=\max \left\{\left|H_{i}\right| ; 1 \leq i \leq n\right\}$ and $m_{n}=|K|$. We are going to show that $m_{k} \leq(n-k) m_{k+1}$ for every $1 \leq k \leq n$.

Assume, on the contrary, the $|F|>(n-k) m_{k+1}, F=H_{1} \cap \ldots \cap H_{k}$, for some $k, 1 \leq k \leq n$, and take $a \in G \backslash\left(H_{1} \cup \ldots \cup H_{k}\right)$. Then $a F \subseteq H_{k+1} \cup \ldots \cup H_{n}$, and hence there is l such that $k+1 \leq l \leq n$ and $|M|>m_{k+1}$, where $M=H_{l} \cap a F$. If $w \in M$, then $w^{-1} M \subseteq H_{1} \cap \ldots \cap H_{k} \cap H_{l}$, and therefore $\left|H_{1} \cap \ldots \cap H_{k} \cap H_{l}\right|>$ m_{k+1}, a contradiction.

We have shown that $m_{k} \leq(n-k) m_{k+1}$ for every $k=1, \ldots, n-1$, and so $m_{1} \leq(n-1)!m_{n}=(n-1)!|K|$. Finally, $|G| \leq n m_{1}$ and we get $|G| \leq n!|K|$ and $[G: K] \leq n!$

Corollary 3.2 ([11]) Let $H_{1}, \ldots, H_{n}, n \geq 1$, be subgroups of a group G such that $G=H_{1} \cup \ldots \cup H_{n}, 1=H_{1} \cap \ldots \cap H_{n}$ and $G \neq \bigcup_{i=1, i \neq j}^{n} H_{i}$ for every $1 \leq j \leq n$. Then G is a finite group and $|G| \leq n$!

Remark 3.3 Let $H_{1}, \ldots, H_{n}, n \geq 1$, be proper subgroups of a group G such that $G=H_{1} \cup \ldots \cup H_{n}$. Then $n \geq 3$ and there exist indices $1 \leq i_{1}<i_{2}<\ldots<i_{m} \leq n$ such that $m \geq 3, G=H_{i_{1}} \cup \ldots \cup H_{i_{m}}$ and $G \neq \bigcup_{j=1, j \neq k}^{m} H_{i_{j}}$ for every $1 \leq k \leq m$.
(i) By 3.1, $K=H_{i_{1}} \cap \ldots \cap H_{i_{m}}$ is a subgroup of finite index in G and $[G: K] \leq m!$.
(ii) If G is infinite, then all the subgroups $H_{i_{1}}, \ldots, H_{i_{m}}$ are infinite and K is infinite, too.
(iii) If K is finite, then G is finite and $|G| \leq m!|K|$.

Remark 3.4 ([11]) Let $H_{1}, \ldots, H_{n}, n \geq 1$, be subgroups of a group G such that $G=H_{1} \cup \ldots \cup H_{n}$ and $G \neq \bigcup_{i=1, i \neq j}^{n} H_{i}$ for every $j, 1 \leq j \leq n$. Put $L=$ $\operatorname{Core}_{G}\left(H_{1} \cap \ldots \cap H_{n}\right)$. By 3.1, $[G: L]$ is finite, and hence $\bar{G}=G / L$ is finite group. Moreover $\bar{G}=\bar{H}_{1} \cup \ldots \cup \overline{H_{n}}, \overline{H_{i}}=H_{i} / L$, and $\bar{G} \neq \bigcup_{i=1, i \neq j}^{n} \bar{H}_{i}, \quad 1 \leq j \leq n$. Clearly, $\operatorname{Core}_{\bar{G}}\left(\overline{H_{1}} \cap \ldots \cap \overline{H_{n}}\right)=1$. If $n \geq 2$, then $n \geq 3$ and \bar{G} is not cyclic.

Theorem 3.5 ([11]) A group G is the union of finitely many proper subgroups if and only if at least one among the factorgroups of G is a non-cyclic finite group.

Proof. The direct implication is clear from 3.3 and 3.4. Conversely, if G / N is a non-cyclic finite group for a normal subgroup N of G, then there are finitely many elements a_{1}, \ldots, a_{n} in G such that $G=H_{1} \cup \ldots \cup H_{n}, H_{i}=\left\langle N, a_{i}\right\rangle \neq G$.

Remark 3.6 The following result is easy (see [14]):
Let H, K, L be proper subgroups of a group G such that $G=H \cup K \cup L$. Then each of H, K, L is a normal maximal subgroup of $G, G / H \simeq G / K \simeq G / L \simeq \mathbb{Z}_{2}(+)$ and $G /(H \cap K \cap L) \simeq\left(\mathbb{Z}_{2}(+)\right)^{2}$ (we have $\left.H \cap K=H \cap L=K \cap L=H \cap K \cap L\right)$.

Example 3.7 Let G be a non-commutative finite simple group. Then $G=\bigcup\langle a\rangle$, $a \in G \backslash\{1\}$, and none of the cyclic subgroups $\langle a\rangle$ is normal in G.

Example 3.8 Let a group G be the semidirect product of a nine-element group H and a two-element group $K=\{1, w\}$ such that $a^{3}=1$ and waw $=a^{2}$ for every $a \in H$. Then G is metabelian, $Z(G)=1,|G|=18$, every subgroup of H is normal
in G (and hence H is the only Sylow 3-subgroup of G), G has nine Sylow 2-subgroups and elements of G have orders 1,2 or 3 . Moreover, if $a, x \in G$ are such that $a^{3}=1=x^{2}, x \neq 1$, then $x a x=a^{2}$. Now, there are four (cyclic) three-element subgroups T_{1}, T_{2}, T_{3} and T_{4} of H such that $\bigcup_{i=1}^{4} T_{i}=H \neq \bigcup_{i=1, i \neq j}^{4} T_{i}$ for every $1 \leq j \leq 4$ and $T_{k} \cap T_{l}=1$ for all $1 \leq k<l \leq 4$. For $1 \leq i \leq 4$, put $S_{i}=T_{i} K$. Then S_{1}, S_{2}, S_{3} and S_{4} are non-normal non-commutative six-element subgroups of $G, \bigcup_{i=1}^{4} S_{i}=G \neq \bigcup_{i=1, i \neq j}^{4} S_{i}$ for every $1 \leq j \leq 4$ and $\bigcap_{i=1}^{4} S_{i}=K=S_{k} \cap S_{l}$ for all $1 \leq k<l \leq 4$. In particular, $\bigcap S_{i}$ is not normal in G (cf. 3.1 and 3.6). Finally, notice that $S_{1}, S_{2}, S_{3}, S_{4}$ and H are (the only ones) maximal subgroups of G and that $G \neq H \cup\left(\bigcup_{i=1, i \neq j}^{4} S_{i}\right)$ for every $1 \leq j \leq 4$.

Remark 3.9 Let a group G be the semidirect product of subgroups H and K, where $H \triangleleft G$. Assume further that $H=H_{1} \cup \ldots \cup H_{n}$, where $n \geq 3, H_{1}, \ldots, H_{n}$ are proper subgroups of H, all of them are normal in $G, H_{1} \cap \ldots \cap H_{n}=1$ and $\bigcup_{i \neq j} H_{i} \neq H$ for every $1 \leq j \leq n$. Now, put $K_{i}=H_{i} K$ for every $1 \leq i \leq n$. Clearly, K_{i} are proper subgroups of $G, \bigcup K_{i}=G \neq \bigcup_{i \neq j} K_{i}$ for every $1 \leq j \leq n$ and $\bigcap K_{i}=K$.

Example 3.10 Let a group G be the semidirect product of subgroups H and $K=\{1, w\}$ such that $H=\left(\mathbb{Z}_{2}(+)\right)^{3}$ and $w(a, b, c) w=(b, c, a)$ for all $a, b, c=\mathbb{Z}_{2}$. Put $H_{1}=\{(0,0,0),(1,0,0),(0,1,0),(1,1,0)\}, H_{2}=\{(0,0,0),(1,0,1),(0,1,1),(1,1,0)\}$, $H_{3}=\{(0,0,0),(0,0,1)\}$, and $H_{4}=\{(0,0,0),(1,1,1)\}$. Then all $H_{1}, H_{2}, H_{3}, H_{4}$ are nomal subgroups of G and $\bigcup H_{i}=H \neq \bigcup_{i \neq j} H_{i}, 1 \leq j \leq 4$, and $\bigcap H_{i}=1$. Now, if $G_{i}=H_{i} K$, then $\bigcup G_{i}=G \neq \bigcup_{i \neq j} G_{i}, 1 \leq j \leq 4$, and $K=\bigcap G_{i}$ is not normal in G. Notice, finally, that $|G|=16$, and hence G is nilpotent.

Remark 3.11 Let G be a finite group nilpotent of class $m \geq 2$. Then there exist proper subgroups G_{1}, \ldots, G_{n} of $G, n \geq 3$, such that $\bigcup G_{i}=G \neq \bigcup_{i \neq j} G_{i}, 1 \leq j \leq n$, and $Z_{m-1}(G) \subseteq K=\bigcap G_{i} \unlhd G$ (then $K \neq 1$.) (To show this, it is enough to observe that $\bar{G}=G / Z_{m-1}(G)$ is non-cyclic abelian and to use 3.5.)

Remark 3.12 A finite group G is the union of its Sylow subgroups if and only if the orders of elements are powers of prime numbers. Moreover, if G is not a p-group, then the intersection of the Sylow subgroups equals 1 .

4. Groups (b)

Let G be a non-trivial group. We say that G satisfies the condition (MS) if every proper subgroup of G is contained in a (proper) maximal subgroup. If, moreover, G possesses only finitely many maximal subgroups, then we say that G satisfies (MSF).

Lemma 4.1 If a non-trivial group G satisfies (MS) ((MSF), resp.), then every non-trivial factorgroup of G does so.

Proof. Obvious.
Proposition 4.2 A group G is finitely generated if and only if unions of non-empty chains of proper subgroups of G are proper.

Proof. Assume that G is not finitely generated, $\kappa=|G|$ and $G=\left\{a_{\alpha} ; 0 \leq \alpha<\kappa\right\}$. Now, $G_{\alpha}=\left\langle a_{\beta} ; 0 \leq \beta \leq \alpha\right\rangle, 0 \leq \alpha<\kappa$, is a chain of proper subgroups of $G=\bigcup G_{\alpha}$.

Corollary 4.3 Every non-trivial finitely generated group satisfies (MS).
Example 4.4 The infinite direct sum $\mathbb{Z}_{2}^{(\omega)}$ is a non-finitely generated group satisfying (MS). Moreover, every non-trivial subgroup of this group satisfies (MS) as well.

For a group G, let $F(G)$ denote the Frattini subgroup of G. That is, $F(G)$ is the intersection of all maximal (proper) subgroups of G, provided that at least one such a subgroup exists, and $F(G)=G$ otherwise. Clearly, $F(G)$ is an invariant subgroup of G, and so $F(G)$ is normal in G and $F(G / F(G))=1$.

Proposition 4.5 Let G be a non-cyclic group satisfying (MSF) and let $H_{1}, \ldots, H_{n}, n \geq 1$, be all pair-wise different maximal subgroups of G. Then:
(i) $n \geq 3, G=H_{1} \cup \ldots \cup H_{n}$ and $F(G)=H_{1} \cap \ldots \cap H_{n}$.
(ii) If $a_{i} \in G \backslash H_{i}$ for every $1 \leq i \leq n$, then G is generated by the elements a_{1}, \ldots, a_{n}.
(iii) G is finitely generated.

Proof. Obvious.
Proposition 4.6 A non-trivial group G satisfies (MSF) if and only if G is finitely generated and the Frattini subgroup $F(G)$ has finite index in G.

Proof. Assume that G satisfies the condition (MSF). Then G is finitely generated by 4.5 (iii) and, if H is a maximal subgroup of G, then every subgroup conjugate to H is maximal, and hence there are only finitely many conjugates to H. It follows that the normalizer $N(H)$ of H has finite index in G. Now, if $H \neq N(H)$, then $N(H)=G, H$ is normal in G and $G / H \simeq \mathbb{Z}_{p}(+)$ for a prime p. We have shown that the index $[G: H$] is finite and the rest is clear.

Remark 4.7 The following conditions are equivalent for a group G :
(1) Every subgroup of G is finitely generated.
(2) If $G_{0} \subseteq G_{1} \subseteq G_{2} \subseteq \ldots$ is an infinite chain of subgroups of G, then $G_{m}=G_{m+1}=\ldots$ for some $m \geq 0$.
(3) If \mathscr{S} is a non-empty set of subgroups of G, then there exists at least one subgroup $H \in \mathscr{S}$ such that $H=K$, whenever $K \in \mathscr{S}$ and $H \subseteq K$.
If these equivalent conditions are satisfied, then we say that G satisfies maximal condition on subgroups.

Remark 4.8 Let G be a non-trivial group such that every non-trivial subgroup of G satisfies (MSF). Then every subgroup of G is finitely generated $(4.6, .7)$ and
G is torsion. Futhermore, if G is not finite, $F_{0}=G$ and $F_{m+1}(G)=F\left(F_{m}(G)\right)$ for every $m \geq 0$, then $\ldots \subseteq F_{3} \subseteq F_{2} \subseteq F_{1} \subseteq F_{0}$ is an infinite strictly decreasing chain of normal subgroups of G and all of them have finite index in G (use 4.6).

5. Groups (c)

Let G be a non-cyclic group. We say that G satisfies the condition (MCS) if every element of G is contained in a maximal cyclic subgroup of G (i.e., in a cyclic subgroup that is a maximal element of the ordered set of cyclic subgroups). If, moreover, G possesses only finitely many maximal cyclic subgroups, then we say that G satisfies (MCSF).
5.1 Let G be a non-cyclic group satisfying (MCS) and let $C_{i}, i \in I$, be all pair-wise different maximal cyclic subgroups of G.

Lemma 5.1.1 (i) $|I| \geq 3$.
(ii) $C_{i} \neq G$ for every $i \in I$.
(iii) $\bigcup C_{i}=G$.
(iv) $\bigcup_{i \neq j} C_{i} \neq G$ for every $j \in I$.

Proof. Easy.
Lemma 5.1.2 (i) $C=\bigcap C_{i} \subseteq Z(G)$ (the centre of G).
(ii) C is a normal cyclic subgroup of G.
(iii) If $C \neq 1$, then G / C is torsion.
(iv) If C is non-trivial finite, then G is torsion.
(v) If C is infinite, then G is torsion-free.

Proof. (i) is clear, (ii) follows from (i) and (iv) from (iii).
(iii) If $a \in G$, then $a \in C_{i}=\langle b\rangle$ for some $i \in I$. Now, $a=b^{m}$ and $b^{n} \in C$ for an integer m and a positive integer n. Consequently, $a^{n}=\left(b^{n}\right)^{m} \in C$.
(v) If $a \in G, a \neq 1$, then $a \in C_{i}$ for some $i \in I$. Since $C \subseteq C_{i}, C_{i}$ is an infinite cyclic group and the same is true for $\langle a\rangle$.

Lemma 5.1.3 The following conditions are equivalent:
(i) $C=1$.
(ii) There are subgroups $G_{j}, j \in J, J \neq \emptyset$, of G such that $\bigcap_{,} G_{j}=1$ and $\bigcup G_{j}=$ $G \neq \bigcup_{j \neq k} G_{j}$ for every $k \in J$.

Proof. (ii) implies (i). There is a mapping $f: I \rightarrow J$ such that $C_{i} \subseteq G_{f(i)}$ for every $i \in I$. Clearly, $\bigcup G_{f(i)}=G$, and hence $f(I)=J$ and $\bigcap C_{i} \subseteq G_{f(i)}=\bigcap G_{j}=1$.

Lemma 5.1.4 Put $\bar{G}=G / C$. Then:
(i) $\overline{C_{i}}=C_{i} / C, i \in I$, are maximal cyclic subgroups of \bar{G}.
(ii) $\overline{C_{j}} \neq \overline{C_{k}}$ for all $j, k \in I, j \neq k$.

Proof. (i) Let D / C be a cyclic subgroup of \bar{G} such that $C_{i} \subseteq D$. Then $D=\langle C, a\rangle$ for some $a \in G$ and $a \in C_{j}$ for some $j \in I$. Now, $C \subseteq C_{j}$ and $a \in C_{j}$ implies $D \subseteq C_{j}$, and therefore $C_{i} \subseteq C_{j}, i=j, C_{i}=C_{j}$ and, finally, $C_{i}=D$.
(ii) Obvious.

Corollary 5.1.5 (i) The group \bar{G} is a non-cyclic group satisfying (MCS).
(ii) $\bar{C}_{i}, i \in I$, are all pair-wise different maximal cyclic subgroups of \bar{G}.
(iii) $\bigcup \bar{C}_{i}=\bar{G}$ and $\bigcap \bar{C}_{i}=1$.
(iv) $\bigcup_{i \neq j} \bar{C}_{i} \neq \bar{G}$ for every $j \in I$.

Proposition 5.2 The following conditions are equivalent for a group G :
(i) If \mathscr{C} is a non-empty set of cyclic subgroups of G, then there exists at least one cyclic subgroup $C \in \mathscr{C}$ such that $C=D$, whenever $D \in \mathscr{C}$ and $C \subseteq D$ (i.e., G satisfies maximal condition on cyclic subgroups).
(ii) If $C_{0} \subseteq C_{1} \subseteq C_{2} \subseteq \ldots$ is an infinite chain of cyclic subgroups of G, then $C_{m}=C_{m+1}=\ldots$ for some $m \geq 0$.
(iii) None of the following (abelian) groups is isomorphic to a subgroup of G :
(iii1) The quasicyclic Prüfer $p-\operatorname{group} \mathbb{Z}_{p \infty}(+), p$ a prime.
(iii2) The direct sum $\coprod \mathbb{Z}_{p}(+), p \in P, P$ an infinite set of primes.
(iii3) A non-cyclic subgroup of the additive group $\mathbb{Q}(+)$ of rationals.
Proof. Standard and easy.
Proposition 5.3 Every non-cyclic group satisfying the maximal condition on cyclic subgroups (see 5.2) satisfies the condition (MSC).

Proof. Obvious.
Proposition 5.4 A non-cyclic group G satisfies (MCSF) if and only if G is finite.
Proof. Let G satisfy (MCSF) and let $C_{1}, \ldots, C_{n}, n \geq 1$, be all maximal cyclic subgroups of G. By 5.1.2(i), we have $C=C_{1} \cap \ldots \cap C_{n} \subseteq Z(G)$ and, by 3.2, $|G / C| \leq n!=m$. Now, G is finite, provided that C is so, and hence we assume that C is infinite. The mapping $\varphi: x \rightarrow x^{m}$ is a homomorphism of G into C and $\operatorname{Ker}(\varphi)=1$, since G is torsionfree by 5.1.2(v). Then $G \simeq \varphi(G)$ is cyclic, a contradiction.
5.5 Let G be a non-cyclic finite group and let $C_{1}, \ldots, C_{n}, n \geq 1$, be all pair-wise different maximal cyclic subgroups of G (see 5.1 and 5.4).

Lemma 5.5.1 (i) $n \geq 3$.
(ii) $C_{i} \neq G$ for every $1 \leq i \leq n$.
(iii) $\bigcup C_{i}=G$.
(iv) $\bigcup_{i \neq m} C_{i} \neq G$ for every $1 \leq m \leq n$.
(v) $C=\bigcap C_{i} \subseteq Z(G)$ and C is a normal cyclic subgroup of G.

Proof. See 5.1.1.

Lemma 5.5.2 The following conditions are equivalent:
(i) $C=1$.
(ii) There are subgroups $G_{1}, \ldots, G_{m}, m \geq 1$, of G such that $\bigcap G_{j}=G \neq \bigcup_{j \neq k} G_{j}$ for every $1 \leq k \leq m$.
Moreover, if these equivalent conditions are satisfied, then $3 \leq m \leq n$.
Proof. See 5.1.3.
Lemma 5.5.3 (i) $\bar{G}=G / C$ is a non-cyclic group and $|\bar{G}| \leq n!$.
(ii) $\bar{C}_{i}=C_{i} / C, 1 \leq i \leq n$, are all pair-wise different maximal cyclic subgroups of \bar{G}.
(iii) $\cap \bar{C}_{i}=1$.

Proof. See 5.1.4.
Lemma 5.5.4 Every subgroup of G is at most $(n-1)$-generated (and, consequently, G has Prüfer rank at most $n-1$).

Proof. If H is a subgroup of G, then $H \cap C_{i}=\left\langle a_{i}\right\rangle$ for some $a_{i} \in H$ and we put $K=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle$. Clearly, $H=K \cup\left(H \cap C_{n}\right)$, and so either $H=K$ or $H \subseteq C_{n}(1.1)$.

For every prime p, let S_{p} be a Sylow p-subgroup of G. Let Q denote the set of prime numbers q such that either S_{q} is non-trivial cyclic or $q=2$ and S_{q} is dicyclic. Then Q is finite and we put $D=1$ if $Q=\emptyset$ and $D=\prod_{q \in Q}\left(S_{q} \cap Z(G)\right)$ if $Q \neq \emptyset$.

Lemma 5.5.5 $D=C$.
Proof. Firstly, take $q \in Q$, put $R_{q}=S_{q} \cap Z(G)$ and let $1 \leq i \leq n$ and $C_{i}=E \cdot F$, where E is the Sylow q-subgroup of C_{i} and q does not divide $|F|$. The subgroup $E \cdot R_{q}$ is a q-group, and hence $E \cdot R_{q} \subseteq P$ for a Sylow q-subgroup P of G. Futhermore, $E \cdot R_{q}$ is abelian and, since $q \in Q$, it follows easily that $E \cdot R_{q}$ is cyclic. Consequently, either $R_{q} \subseteq E$ or $E \subseteq R_{q}$. If $R_{q} \subseteq E$, then $R_{q} \subseteq C_{i}$. On the other hand, if $E \subseteq R_{q}$, then $R_{q} \cdot F$ is a cyclic group and $C_{i} \subseteq R_{q} \cdot F$ implies $C_{i}=R_{q} \cdot F, E=R_{q}$ and $R_{q} \subseteq C_{i}$ again. Thus $R_{q} \subseteq C_{i}$ for every $q \in Q$, and therefore $D \subseteq C_{i}$ for every i. It follows that $D \subseteq C$.

Now, conversely, take a prime p such that C contains a p-element subgroup A and let $V_{p} \subseteq T$, where V_{p} is the Sylow p-subgroup of C and T a Sylow p-subgroup of G. Assume, for a moment, that $A \cap B=1$ for a p-element subgroup B of T and let $1 \leq k, l \leq n$ be such that $A \subseteq C_{k}$ and $B \subseteq C_{l}$. Then $k \neq l$, and hence $A \nsubseteq C_{l}$. On the other hand, $A \subseteq C \subseteq C_{l}$, a contradiction. We have shown that A is contained in every non-trivial subgroup of T and consequently, $p \in Q$. Thus $V_{p} \subseteq T \cap Z(G)=S_{p} \cap Z(G) \subseteq D$. It follows that $C \subseteq D$.

Theorem 5.6 The following conditions are equivalent for a non-trivial group G :
(i) There exist subgroups $H_{1}, \ldots, H_{m}, m \geq 1$, of G such that $\bigcap_{i=1}^{m} H_{i}=1$ and

```
\(\bigcup_{i=1}^{m} H_{i}=G \neq \bigcup_{i=1, i \neq j}^{m} H_{i}\) for every \(1 \leq j \leq m\) (then \(m \geq 3, G\) is finite and \(|G| \leq m!\) ).
```

(ii) G is non-cyclic finite and $\bigcap_{i=1}^{n} C_{i}=1$, where C_{1}, \ldots, C_{n} are all maximal cyclic subgroups of G (then $3 \leq m \leq n$).
(iii) G is finite and if P is a Sylow p-subgroup of G such that $P \cap Z(G) \neq 1$, then either P is not cyclic or $p=2$ and P is not dicyclic.
(iv) G is finite and if p is a prime dividing $|Z(G)|$, then G contains at least two subgroups of order p.

Proof. See 5.5.
Example 5.7 Consider the group G from 3.8. Then G satisfies the conditions from 5.6 (notice that G has just thirteen maximal cyclic subgroups of order 3 and nine of order 2). On the other hand, the subgroups H_{i} (see 5.5(i)) cannot be chosen to be all maximal (G has just five maximal subgroups, one of order 9 and four of order 6 , and $F(G)=1$).

Example 5.8 (i) The symmetric group S on three letters satisfies 5.6 (iii) (all Sylow subgroups of S are cyclic, but $Z(S)=1$) and the eight-element quaternion group H does not satisfy 5.6(iii).
(ii) Put $G=S \times \mathbb{Z}_{3}(+), S$ being the symmetric group on three letters and $\mathbb{Z}_{3}(+)$ the additive group of integers modulo 3 . Then $|G|=18,|Z(G)|=3,|A|=9$, where A is the (unique) Sylow 3 -subgroup of G and $|B|=2$, where B is any Sylow 2-subgroup of G. Moreover, $A \cap Z(G) \neq 1$ and A is not cyclic, B is cyclic and $B \cap Z(G)=1$. Thus G satisfies 5.6(iii), and hence all equivalent conditions of 5.6.
(iii) The groups $S \times H, S \times \mathbb{Z}_{2}(+)$ and $H \times \mathbb{Z}_{2}(+)$ satisfy $5.5($ iii $)$.
(iv) The groups $S \times \mathbb{Z}_{5}(+), H \times \mathbb{Z}_{3}(+)$ and $H \times \mathbb{Z}_{2}(+) \times \mathbb{Z}_{3}(+)$ do not satisfy 5.6(iii).
(v) The groups $\mathbb{Z}_{4}(+) \times \mathbb{Z}_{2}(+)$ and $H \times \mathbb{Z}_{4}(+)$ satisfy 5.6 (iii). On the other hand, these groups have non-trivial Frattini subgroups.
(vi) The alternating group A_{5} on five letters contains 31 non-trivial cyclic subgroups, each of them is a maximal cyclic subgroup and, pair-wise, they have trivial intersections. Among these cyclic subgroups we find 15 two-element subgroups, 10 three-element subgroups and, finally, 6 five-element subgroups. Consequently, the elements of A_{5} have orders $1,2,3$ and 5 , resp.

Remark 5.9 Let G be a finite non-cyclic group, whose every non-identity element has prime order. Then every non-trivial cyclic subgroup of G is both a maximal and minimal cyclic subgroup, G is the union of cyclic subgroups and $A \cap B=1$ for all cyclic subgroups $A, B, A \neq B$.

References

[1] Brodie M., Finite n-coverings of groups, Arch. Math. 63, (1994), 385-392.
[2] Brodie M., Chamberlian R. and Kappe L. C., Finite coverings by normal subgroups, Proc. Amer. Math. Soc. 104, (1988), 669-674.
[3] Brodie M. and Kappe L. C., Finite coverings by subgroups with a given property, Glasgow J. Math. 35, (1993), 179-188.
[4] Bruckheimer M., Bryan A. C. and Muir A., Groups which are the unions of proper subgroups, MAA Monthly 77, (1970), 52-57.
[5] Cheng K. N., Deaconescu M., Lang M. L. and Shi W. J., Corrigendum and addendum to: "Classification of finite groups with all elements of prime order", Proc. Amer. Math. Soc. 117, (1993), 1205-1207.
[6] Deaconescu M., Classification of finite groups with all elements of prime order, Proc. Amer. Math. Soc. 106, (1989).
[7] Foguel T. and Kappe L. C., On loops covered by subloops (preprint).
[8] Haber L. and Rosenfeld A., Groups as unions of proper subgroups, MAA Monthly 66, (1959), 491-494.
[9] Kappe L. C., Finite coverings by 2-Engel groups, Bull. Austral. Math. Soc. 38, (1988), 141-150.
[10] Kepka t. and rosendorf D., Quasigroups which are unions of three proper subquasigroups, (preprint).
[11] Neumann B. H., Groups covered by finitely many cosets, Publ. Math. Debrecen 3, (1954), 236-248.
[12] Neumann B. H., Groups covered by permutable subsets, J. London Math. Soc. 29, (1954).
[13] Robinson D. J. S., Finiteness conditions and generalized soluble groups, Part I, Springer-Verlag, New York, 1972.
[14] Sorza G., Gruppi Astrati, Editione Cremonese, Perela, Rome, 1942.
[15] Suzuki M., On finite groups with partition, Arch. Math. (Basel), 12, (1961), 241-254.

[^0]: Department of Mathematics, Charles University in Prague, Sokolovská 83, 18600 Praha 8, Czech Republic

