Acta Universitatis Carolinae. Mathematica et Physica

A. Jančařík; Tomáš Kepka; Milan Vítek

Multiplication groups of quasigroups and loops IV.

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 46 (2005), No. 1, 77--100
Persistent URL: http://dml.cz/dmlcz/142746

Terms of use:

© Univerzita Karlova v Praze, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Multiplication Groups of Quasigroups and Loops IV.

ANTONÍN JANČAŘíK, TOMÁŠ KEPKA AND MILAN VÍTEK

Praha
Received 7. October 2004

Quasigroups with prime number of inner permutations are studied. Studují se kvazigrupy s prvočíselným počtem vniť̌ních permutací.

1. Auxiliary results (A)

1.1. Throughout this section, let G be a group such that $G=A B=\{a b ; a \in A$, $b \in B\}$ where A and B are (possible non-abelian) subgroups of G. Notice, that then we also have $G=B A$ (if $x \in G$ and $x^{-1}=a b, a \in A, b \in B$, then $x=b^{-1} a^{-1} \in$ $\in B A$).

We put $C=A \cap B$ and we denote by S (resp. T) the set of left (right) cosets modulo C in A (resp. B); that is $S=\{a C ; a \in A\}$ and $T=\{C b ; b \in B\}$. The coset $a C$ will be denoted by \bar{a}.

The following two lemmas are obvious:
1.2 Lemma. The following conditions are equivalent:
(i) $A(B)$ is a left transversal to $B(A)$ in G.
(ii) $A(B)$ is a right transversal to $B(A)$ in G.
(iii) $A(B)$ is a two-sided transversal to $B(A)$ in G.
(iv) $A(B)$ is stable transversal to $B(A)$ in G.
(v) $C=1$.
1.3 Lemma. A is a selfconnected transversal to B in G iff $C=1$ and A is abelian.

[^0]1.4. Let $a \in A$ and $b \in B$. Then $b a=a_{1} b_{1}$ for some $a_{1} \in A, b_{1} \in B$ and, if $b a=a_{2} b_{2}$, then $a_{1} C=a_{2} C \in S$. Furthermore, if $a_{3}=a c, c \in C$, then $b a_{3}=a_{1} b_{1} c$, $b_{1} c \in B$. Now, we see that the element b determines a transformation q_{b} of the set S given by $q_{b}(\bar{a})=\bar{a}_{1}$, since $a_{4}^{-1} b a \in B$ for all $a_{4} \in \bar{a}_{1}$.
1.5 Lemma. (i) q_{b} is a permutation of S for every $b \in B$ and $q_{b}=i d_{s}$ iff $b \in$ $\in \mathbb{L}_{G}(B)$.
(ii) $q_{b_{1}} q_{b_{2}}=q_{b_{1} b_{2}}$ for all $b_{1}, b_{2} \in B$.

Proof. (i) First, let $q\left(\overline{a_{1}}\right)=q\left(\overline{a_{2}}\right), q=q_{b}$. Then $b a_{1}=a_{3} b_{1}, b a_{2}=a_{3} b_{2}, b a_{1} b_{1}^{-1}=$ $=a_{3}=b a_{2} b_{2}^{-1}, a_{2}^{-1} a_{1}=b_{2}^{-1} b_{1} \in C$ and $\overline{a_{1}}=\overline{a_{2}}$ and $a_{3} \in q(\bar{a})$. Then q is a permutation of S. For the rest note that $\mathbb{L}_{G}(B)=\left\{b ; a^{-1} b a \in B\right.$ for every $\left.a \in A\right\}$.
(ii) We have $b_{2} a=a_{1} b_{3}, a_{1} \in q_{b_{2}}(\bar{a}), b_{1} a_{1}=a_{2} b_{4}, a_{2} \in q_{b_{1}}\left(\overline{a_{1}}\right)=q_{b_{1}} q_{b_{2}}(\bar{a})$. Now, $b_{1} b_{2} a=b_{1} a_{1} b_{3}=a_{2} b_{4} b_{3}$ and $a_{2} \in q_{b_{1} b_{2}}(\bar{a})$.
1.6 Corollary. The mapping $\varphi: B \rightarrow S!, \varphi(b)=q_{b}$, is a homomorphism of the group B into the symmetric group S ! of permutations of S and $\operatorname{Ker}(\varphi)=\mathbb{L}_{G}(B)$.
1.7 Corollary. (i) If $k=[A: C]$ is finite, then $\left[B: \mathbb{Q}_{G}(B)\right] \leq k$!.
(ii) If A is finite and B infinite, then $\mathbb{Q}_{G}(B) \neq 1$.
1.8 Corollary. If $m=\operatorname{card}(A)$ and $n=\operatorname{card}(B)$ are finite and if $k=\operatorname{card}(C)$ and $L=\operatorname{card}\left(\mathbb{L}_{G}(B)\right)$, then $l \geq n /(m / k)$!.
1.9. For $a \in A$, let l_{a} denote the permutation of S defined by $l_{a}\left(\overline{a_{1}}\right)=\overline{a a_{1}}=a a_{1} C$.

Now, let $a_{2} b_{2}=a_{3} b_{3}$. Then $l_{a_{2}} q_{b_{2}}(\bar{a})=\overline{a_{2} a_{4}}, b_{2} a=a_{4} b_{4}, l_{a_{3}} q_{b_{3}}(\bar{a})=\overline{a_{3} a_{5}}, b_{3} a=$ $=a_{5} b_{5}, a_{2} a_{4} b_{4}=a_{2} b_{2} a=a_{3} b_{3} a=a_{3} a_{5} b_{5}$ and $\overline{a_{2} a_{4}}=\overline{a_{3} a_{5}}$. Thus we can define a mapping $\Phi: G \rightarrow S!$ by $\Phi(a b)=l_{a} q_{b}$.
1.10 Proposition. (i) Φ is a homomorphism of G into S ! and $\operatorname{Ker}(\Phi)=C \mathbb{L}_{G}(B)$.
(ii) $\Phi \upharpoonright A$ is injective and $\Phi(a)=l_{a}$ for every $a \in A$.
(iii) $\Phi \upharpoonright B=\varphi(1.6)$ and $\Phi(b)=q_{b}$ for every $b \in B$.

Proof. (i) Let $b_{1} a_{2}=a_{3} b_{3}$ and $a_{1} b_{1} a_{2} b_{2}=a_{4} b_{4}$. Now, $\alpha=\Phi\left(a_{1} b_{1}\right) \Phi\left(a_{2} b_{2}\right)=$ $=l_{a_{1}} q_{b_{1}} l_{a_{2}} q_{b_{2}}, b_{1} a_{2} a=a_{3} b_{3} a$ and $q_{b_{1}} l_{a_{2}}=l_{a_{3}} q_{b_{3}}$. Hence $\alpha=l_{a_{1}} l_{a_{3}} q_{b_{3}} q_{b_{2}}=l_{a_{1} a_{3}} q_{b_{3} b_{2}}$. On the other hand, $\beta=\Phi\left(a_{1} b_{1} a_{2} b_{2}\right)=l_{a_{4}} q_{b_{4}}$ and $a_{1} b_{1} a_{2} b_{3}=a_{1} a_{3} b_{1} b_{2}$. Now, we can choose $a_{4}=a_{1} a_{3}, b_{4}=b_{3} b_{2}$ and we see $\alpha=\beta$.

If $\Phi(a b)=\mathrm{id}_{s}$, then $l_{a} q_{b}(\mathrm{~T})=1$ and consequently $\bar{a}=1, a \in C, l_{a}=\mathrm{id}_{s}$, $q_{b}=\operatorname{id}_{S}$ and $b \in \mathbb{L}_{G}(B)$.
(ii) and (iii) Easy.
1.11 Corollary. If $m=\operatorname{card}(A)$ and $n=\operatorname{card}(B)$ are finite and if $k=\operatorname{card}(C)$ and $t=\operatorname{card}\left(C \mathbb{Q}_{G}(B)\right)$, then $t \geq n /((m-k) / k!)$. In particular, if $C=1$, then $t=\operatorname{card}\left(\mathbb{L}_{G}(B)\right)$ and $t \geq n /(m-1)$! (cf. 1.8.).
1.12 Remark. (i) Proceeding as in 1.4, we define a permutation p_{a} of $T, a \in A$, by $b a b_{4}^{-1} \in B$ for every $b_{4} \in C b_{1}=p_{a}(C b), b a=a_{1} b_{1}$. Now, $\psi: A \rightarrow T!, \psi(a)=$
$=p_{a}$, is a homomorphism into the opposite group (T ! $)^{o p}$ (then $a \rightarrow p_{a-1}$ is a homomorphism of A into $T!$) and $\operatorname{Ker}(\psi)=\mathbb{C}_{G}(A)$.
(ii) Proceeding similarly as in 1.9 , we get a homomorphism $\Psi: G \rightarrow(T!)^{o p}$ such that $\operatorname{Ker}(\Psi)=C \mathbb{L}_{G}(A)$.
1.13 Lemma. Let H be a subgroup of G such that $A \cap H=1$. Then $\operatorname{card}(H) \leq \operatorname{card}(B)$. Moreover, if $C=1$ and $G=A H$, then $\operatorname{card}(H)=\operatorname{card}(B)$.

Proof. Suppose, on the contrary, that $\operatorname{card}(B)<\operatorname{card}(H)$. There are mappings $f: H \rightarrow A$ and $g: H \rightarrow B$ such that $x=f(x) g(x)$ for every $x \in H$. Clearly, g is not injective, and so $g(x)=g(y)$ for some $x, y H, x \neq y$. Now, $x y^{-1}=$ $=f(x) f(y)^{-1} \in A \cap H=1$ and $x=y$, a contradiction.
1.14 Lemma. Suppose that A is abelian. Then:
(i) $C \subseteq \mathbb{L}_{G}(B)$.
(ii) If $\mathbb{L}_{G}(B)=1$, then $C=1$ and $\mathbb{Z}(G) \subseteq A$.
(iii) If $\mathbb{L}_{G}(A)=1=\mathbb{L}_{G}(B)$, then $\mathbb{Z}(G)=1$.

Proof. (i) Obvious.
(ii) Let $z \in \mathbb{Z}(G), z=a b$. Then, for every $a_{1} \in A, a b a_{1}=z a_{1}=a_{1} z=$ $=a_{1} a b=a a_{1} b$ and so, $b^{a_{1}}=b$ and it is clear that $b \in \mathbb{Q}_{G}(B)=1$. Thus $z=a \in A$.
(iii) Use (ii).
1.15 Proposition. Suppose that A is abelian and let N be normal subgroup of G such that $N / \mathbb{L}_{G}(B)=\mathbb{Z}\left(G / \mathbb{L}_{G}(B)\right)$. Then $\mathbb{N}_{G}(B)=N B$.

Proof. We can assume that $\mathbb{L}_{G}(B)=1$. Then $\mathbb{Z}(G) \cap B=1, \mathbb{Z}(G) \subseteq A$ and $C=1$.

For every $x \in \mathbb{N}_{G}(B)$, define a transformation t_{x} of A by $a^{x} \in t_{x}(a) B$ for every $a \in A$. First, we show that $t_{x} \in A$!. To that purpose, let $x=c d, c \in A, d \in B$. If $t_{x}\left(a_{1}\right)=t_{x}\left(a_{2}\right)$, then $\left(a_{2}^{-1} a_{1}\right)^{x} \in B, a_{2}^{-1} a_{1}=c^{-1} a_{2}^{-1} a_{1} c \in C=1, a_{1}=a_{2}$. Further, if $a_{3} \in A$, then $d a_{3}=a_{4} e, a_{4} \in A, e \in B$ and we have $a_{4}^{x}=a_{4}^{d}=\left(a_{4} e e^{-1}\right)^{d}=a_{3} e^{-1} d$, and so $t_{x}\left(a_{4}\right)=a_{3}$.

Now, let $x, y \in \mathbb{N}_{G}(B)$ and $a \in A$. We have $a^{x}=t_{x}(a) b_{1}, b_{1} \in B, t_{x}(a)^{y}=$ $=t_{y}\left(t_{x}(a)\right) b_{3}$, where $b_{3}=b_{2} b_{1}^{y} \in B$. On the other hand, $a^{x y} \in t_{x y} y(a) B$, and hence $t_{x y}(a)=t_{y}\left(t_{x}(a)\right)$.

We have proven that the mapping $\tau: x \rightarrow t_{x_{-1}}$ is a homomorphism of $\mathbb{N}_{G}(B)$ into A !. Clearly, $K=A \cap \mathbb{N}_{G}(B) \subseteq \operatorname{Ker}(\tau)$ and $\operatorname{Ker}(\tau) \cap B \subseteq \mathbb{Q}_{G}(B)=1$. On the other hand, since $B \subseteq \mathbb{N}_{G}(B)$, we have $\mathbb{N}_{G}(B)=K B$. Thus $K=\operatorname{Ker}(\tau)$ and both B and K are normal subgroups of $N_{G}(B)$. Since $K \cap B=1$, we have $\mathbb{N}_{G}(B)=K \times B$ and $K \subseteq \mathbb{C}_{G}(B)$. Of course, $K \subseteq \mathbb{C}_{G}(A)$, and so $K \subseteq \mathbb{Z}(G)$. On the other hand, $\mathbb{Z}(G) \subseteq A \cap \mathbb{N}_{G}(B)=K$ trivially.
1.16 Corollary. Suppose that A is abelian and $\mathbb{Q}_{G}(B)=1$. Then:
(i) $C=1, \mathbb{Z}(G) \subseteq A$ and $\mathbb{N}_{G}(B)=\mathbb{Z}(G) \times B$.
(ii) If $\mathbb{Z}(G)=1$, then $\mathbb{N}_{G}(B)=B$.
(iii) If $\mathbb{Q}_{G}(A)=1$, then $\mathbb{Z}(G)=1$ and $\mathbb{N}_{G}(B)=B$.

2. Auxilliary results (B)

2.1. In this section, let G be a group such that $G=A B$, where A nd B are abelian subgroup of G.
2.2 Proposition. G is metabelian and $G^{\prime}=\langle[A, B]\rangle$ is abelian.
2.3 Proposition. (i) $\mathbb{M}_{G}(A)=A G^{\prime}$ and $\mathbb{M}_{G}(B)=B G^{\prime}$.
(ii) If $A \neq B$ and at least one of the subgroups A, B is finite, then either $\mathbb{M}_{G}(A) \neq G$ or $\mathbb{M}_{G}(B) \neq G$.

Proof. See [2]
2.4 Lemma. Let C be a subgroup of G such that $A \subseteq C$. Then:
(i) $C=A(C \cap B)$.
(ii) $\mathbb{Z}(C)=(\mathbb{Z}(C) \cap A)(\mathbb{Z}(C) \cap B)$.
(iii) $\mathbb{Z}(C) \cap B \subseteq \mathbb{Z}(G)$.
(iv) If $\mathbb{Z}(G) \cap B=1$, then $\mathbb{Z}(C) \subseteq A$.
(v) If $C \unlhd G$, then $\mathbb{Z}(C) \unlhd G$ and $A G^{\prime} \subseteq C$.

Proof. (i) and (v) are obvious and (iv) follows from (ii), (iii).
(ii) Let $a \in A$ and $b \in B \cap C$ be such that $a b \in \mathbb{Z}(C)$. Then $a b=b a$ and, for every $c \in B \cap C, a b c=c a b=c b a=b c a$. Thus $a x=x a$ for every $x \in B \cap C$, and so $a \in \mathbb{Z}(C)$ by (i). Since $a b \in \mathbb{Z}(C)$, we also have $b \in \mathbb{Z}(C)$.
(iii) $\mathbb{Z}(C) \cap B \subseteq \mathbb{C}_{G}(A) \cap \mathbb{C}_{G}(B) \subseteq \mathbb{C}_{G}(A \cup B)=\mathbb{Z}(G)$.
2.5 Corollary. (i) $A \cap B \subseteq \mathbb{Z}(G) \cap \mathbb{Q}_{G}(A) \cap \mathbb{L}_{G}(B)$.
(ii) $\mathbb{Z}(G)=(\mathbb{Z}(G) \cap A)(\mathbb{Z}(G) \cap B)$.
(iii) If $\mathbb{Z}(G) \cap A=1($ resp. $\mathbb{Z}(G) \cap B=1)$, then $\mathbb{Z}(G) \subseteq B($ resp. $\mathbb{Z}(G) \subseteq A)$.
(iv) If $\mathbb{L}_{G}(A)=1$ (resp. $\mathbb{Q}_{G}(B)=1$), then $A \cap B=1$ and $\mathbb{Z}(G) \subseteq B$ (resp. $\mathbb{Z}(G) \subseteq A)$.
(v) If $A \cap B=1$ and both A and B are torsionfree, then $\mathbb{Z}(G)$ is torsionfree.
2.6 Lemma. Put $R=A \cap G^{\prime}$. Then:
(i) $\mathbb{M}_{G}(A)=A G^{\prime} \subseteq \mathbb{C}_{G}(R) \unlhd G$.
(ii) $R \subseteq \mathbb{Z}\left(\mathbb{C}_{G}(R)\right) \unlhd G$.
(iii) If $\mathbb{Z}(G) \cap B=1$, then $R \subseteq \mathbb{Z}\left(\mathbb{C}_{G}(R)\right) \subseteq \mathbb{Q}_{G}(A) \subseteq A$.
(iv) If $R \neq 1$, then either $\mathbb{Z}(G) \cap B \neq 1$ or $\mathbb{L}_{G}(A) \neq 1$.

Proof. (i) Since $R \subseteq G^{\prime}$ and G^{\prime} is abelian, we have $G^{\prime} \subseteq \mathbb{C}_{G}(R) \unlhd G$. Similarly, $A \subseteq \mathbb{C}_{G}(R)$.
(ii) Since $\mathbb{C}_{G}(R) \unlhd G$, we have $\mathbb{Z}\left(\mathbb{C}_{G}(R)\right) \unlhd G$ and, since R is abelian, $R \subseteq \mathbb{Z}\left(\mathbb{C}_{G}(R)\right)$.
(iii) Combine (ii) and 2.4(iv).
(iv) If $\mathbb{Z}(G) \cap B=1$, then $\mathbb{L}_{G}(A) \neq 1$ by (iii).
2.7 Corollary. Suppose that either $A \cap G^{\prime} \neq 1$ or $B \cap G^{\prime} \neq 1$. Then either $\mathbb{L}_{G}(A) \neq 1$ or $\mathbb{L}_{G}(B) \neq 1$.
2.8 Proposition. Suppose that $G \neq 1$ and that at least one of the subgroups A, B is finite, Then:
(i) Either $\mathbb{Q}_{G}(A) \neq 1$ or $\mathbb{Q}_{G}(B) \neq 1$.
(ii) If $A \cap G^{\prime}=1=B \cap G^{\prime}$, then $\mathbb{Z}(G) \neq 1$.

Proof. (i) By 1.7(i) and 2.7, we can assume that $n=\operatorname{card}(G)$ is finite and $A \cap G^{\prime}=1=B \cap G^{\prime}$. Now, we shall proceed by induction on n.

If $A=B$, then $\mathbb{Q}_{G}(A)=A=G \neq 1$. Hence, let $A \neq B$ and, by 3.3 , let $M=$ $=\mathbb{M}_{G}(A) \neq G$. By $2.4(\mathrm{i}), M=A C$, where $C=M \cap B \neq B$. By induction, there is a normal subgroup $N \unlhd M$ such that $N \neq 1$ and either $N \subseteq A$ or $N \subseteq D$. We have $N \cap M^{\prime} \subseteq N \cap G^{\prime} \subseteq\left(A \cap G^{\prime}\right) \cup\left(B \cap G^{\prime}\right)=1$. Thus $N \cap M^{\prime}=1$ and consequently $N \subseteq \mathbb{Z}(M)$ and $\mathbb{Z}(M) \neq 1$. If $\mathbb{Z}(G) \cap B \neq 1$, then $\mathbb{L}_{G}(B) \neq 1$. If $\mathbb{Z}(G) \cap B=1$, then $\mathbb{Z}(M) \subseteq A$ by 2.4 (iv). However, $M \unlhd G$.
(ii) According to (i), let $L=\mathbb{Q}_{G}(A) \neq 1$. Then $L \cap G^{\prime} \subseteq A \cap G^{\prime}=1$ and $L \subseteq \mathbb{Z}(G)$.
2.9 Lemma. (i) $\mathbb{L}_{G}(A)\left(A \cap G^{\prime}\right) \subseteq \mathbb{Z}\left(A G^{\prime}\right)$ and $\mathbb{L}_{G}(B)\left(B \cap G^{\prime}\right) \subseteq \mathbb{Z}\left(B G^{\prime}\right)$.
(ii) $\mathbb{C}_{G}(A)=A \mathbb{Z}(G)$ and $\mathbb{C}_{G}(B)=B \mathbb{Z}(G)$.
(iii) $\mathbb{N}_{G}(A)=A Z_{1}$ and $N_{G}(B)=B Z_{2}$, where $Z_{1} / \mathbb{L}_{G}(A)=\mathbb{Z}\left(G / \mathbb{L}_{G}(A)\right)$ and $Z_{2} / \mathbb{L}_{G}(B)=\mathbb{Z}\left(G / \mathbb{L}_{G}(B)\right)$.
(iv) $\mathbb{N}_{G}(A) / \mathbb{C}_{G}(A) \cong Z_{1} / \mathbb{Z}(G)$ and $\mathbb{N}_{G}(B) / \mathbb{C}_{G}(B) \cong Z_{2} / \mathbb{Z}(G)$.

Proof. (i) The inclusion $A \cap G^{\prime} \subseteq \mathbb{Z}\left(A G^{\prime}\right)$ follows from the fact that both A and G^{\prime} are abelian. Further, if $a \in \mathbb{L}_{G}(A)$, then $a \in \bigcap A^{x}, x \in G$, and hence $a \in \mathbb{Z}\left(\mathbb{M}_{G}(A)\right)$. But $\mathbb{M}_{G}(A)=A G^{\prime}$ by 2.3(i).
(ii) We have $\mathbb{C}_{G}(A)=A B_{1}$, where $B_{1}=B \cap C_{G}(A) \subseteq Z(G)$. The rest is clear.
(iii) and (iv). Use 1.15.
2.10 Proposition. Suppose that $\mathbb{M}_{G}(A)=G=\mathbb{M}_{G}(B)$. Then:
(i) $A G^{\prime}=G=B G^{\prime}$.
(ii) If $A \neq B$, then both A and B are infinite.
(iii) If $\mathbb{Z}(G)=1$, then $A \cap G^{\prime}=1=B \cap G^{\prime}$ and $\mathbb{Q}_{G}(A)=1=\mathbb{Q}_{G}(B)$.
(iv) $\mathbb{Z}(G)=1$ if and only if $\mathbb{Q}_{G}(A)=1=\mathbb{Q}_{G}(B)$.

Proof. Combine 2.3, 2.5, 2.7 and 2.9.
2.11 Lemma. Suppose that $\mathbb{Z}(G) \cap B=1$ (e.g., if $\mathbb{Q}_{G}(B)=1$). Then:
(i) $A \cap B=1$ and $\mathbb{Z}(G) \subseteq \mathbb{L}_{G}(A) \subseteq A$.
(ii) $\mathbb{C}_{G}(A)=A$ and $\mathbb{Z}\left(A G^{\prime}\right)=\mathbb{L}_{G}(A)$.
(iii) $A \cap G^{\prime} \subseteq \mathbb{L}_{G}(A)$ and $A \cap G^{\prime} \unlhd G$.

Proof. (i) See 2.5(i), (ii).
(ii) $A \subseteq \mathbb{C}(G)=A C, C=\mathbb{C}_{G}(A) \cap B \subseteq \mathbb{Z}(G) \cap B=1$, and so $\mathbb{C}_{G}(A)=A$, and $\mathbb{Z}\left(A G^{\prime}\right) \subseteq A$. On the other hand, $\mathbb{Z}\left(A G^{\prime}\right) \subseteq G$ implies $\mathbb{Z}\left(A G^{\prime}\right) \subseteq \mathbb{L}_{G}(A)$. Now, $\mathbb{Z}\left(A G^{\prime}\right)=\mathbb{L}_{G}(A)$ by 2.9.
(iii) We have $A \cap G^{\prime}=\mathbb{L}_{G}(A) \cap G^{\prime}$, and so $A \cap G^{\prime} \unlhd G$. The rest is clear from (ii) and 2.9 (see also 2.6(iii)).
2.12 Proposition. Suppose that $\mathbb{Z}(G)=1$. Then:
(i) $A \cap B=1$.
(ii) $\mathbb{C}_{G}(A)=A$ and $\mathbb{C}_{G}(B)=B$.
(iii) $\mathbb{L}_{G}(A)=\mathbb{Z}\left(A G^{\prime}\right)$ and $\mathbb{L}_{G}(B)=\mathbb{Z}\left(B G^{\prime}\right)$.
(iv) $A \cap G^{\prime} \subseteq \mathbb{Q}_{G}(A)$ and $B \cap G^{\prime} \subseteq \mathbb{L}_{G}(B)$.
(v) $A \cap G^{\prime} \unlhd G$ and $B \cap G^{\prime} \unlhd G$.

Proof. See 2.11.

2.13 Lemma. Put $L=\mathbb{1}_{G}(A)$ and $C=\mathbb{C}_{G}(L)$. Then:
(i) $A \subseteq C \unlhd G$ and $C=A B_{1}$, where $B_{1}=B \cap C$.
(ii) $L \subseteq \mathbb{Z}(C) \unlhd G$.
(iii) If $\mathbb{L}_{C}\left(B_{1}\right)=1$, then $\mathbb{Z}(C)=L$.
(iv) If $\mathbb{Q}_{G}(B)=1$, then $\mathbb{L}_{C}\left(B_{1}\right)=1$.
(v) If $\mathbb{L}_{C}(B)=1, A \unlhd C$ and if B_{1} is characteristic in $L B_{1}$, then $A=C$ and $A \unlhd G$.

Proof. (i) and (ii). Obvious.
(iii) We have $\left.\mathbb{Z}(C)=(\mathbb{Z}(C) \cap A)\left(\mathbb{Z}(C) \cap B_{1}\right)\right)$ and $\mathbb{Z}(C) \cap B_{1} \subseteq \mathbb{L}_{C}\left(B_{1}\right)=1$. Thus $\mathbb{Z}(C) \subseteq L$.
(iv) If $b \in \mathbb{L}_{C}\left(B_{1}\right)$, then $b^{a} \in B$ for every $a \in A, b \in \mathbb{Q}_{G}(B)=1$ and $b=1$.
(v) First, $A \unlhd C$ implies $C^{\prime} \subseteq A$. But then $C \unlhd G$ implies $C^{\prime} \unlhd G$ and $C^{\prime} \subseteq$ $\subseteq L \subseteq L B_{1} \subseteq C$. Consequently, $L B_{1} \unlhd C$ and $B_{1} \unlhd C$. But $\mathbb{L}_{C}\left(B_{1}\right)=1$ implies $B_{1}=1$ and $C=A$.
2.14 Proposition. Assume that B is finite, $\mathbb{L}_{G}(B)=1$ and if p is a prime such that $p \mid \operatorname{card}(B)$, then $\mathbb{Q}_{G}(A)$ does not contain any element of order p. Then $A \unlhd G$.

Proof. We proceed by induction on card (B). Assume, on the contrary, that $A \not \ddagger G$. It follows from 2.13(v) that $A \nsubseteq C$ (we have $L B_{1}=L \times B_{1}$). Now, by induction, $B_{1}=B, C=G$ and $L=\mathbb{Z}(G)$.

Put $N=\mathbb{N}_{G}(B)$. By $1.15, N=B \mathbb{Z}(G)=B \times L$. Further, $\mathbb{L}_{G}(N)=L \times B_{2}$, $B_{2}=N \cap B$. Of course, B_{2} is characteristic in $\mathbb{L}_{G}(N)$, and hence $B_{2} \unlhd G$ and $B_{2}=1$. Thus $\mathbb{L}_{G}(N)=L$. Finally, $\bar{G}=G / L=(A / L)(N / L)=\bar{A} \cdot \bar{B}, \mathbb{L}_{\bar{G}}(\bar{A})=$ $=1=\mathbb{Q}_{\bar{G}}(\bar{B})$ and $\bar{G}=1$ by 2.8(i). This means that $L=G$ and $A=G$, a contradiction.
2.15 Remark. Assume that $A \nexists G$, the primary 2-component of the torsion part of A is cyclic (or quasicyclic) and that B is a finite 2 -group, with $\mathbb{Q}_{G}(B)=1$. By
2.14, $L=\mathbb{Q}_{G}(A)$ contains some elements of order 2 . However, the 2 -socle S of L is cyclic, $\operatorname{card}(S)=2$, and $S \unlhd G$. On the other hand, every normal 2-element subgroup is in the center. Thus $S \subseteq \mathbb{Z}(G)$ and $\mathbb{Z}(G) \neq 1$.
2.16 Proposition. Assume that B is a finite p-group for a prime p and that $\mathbb{L}_{G}(B)=1$. Then either $A \leq G$ or $\mathbb{Z}(G) \neq 1$.

Proof. Assume $A \not \ddagger G$. Let $L=\mathbb{C}_{G}(A)$. B 2.14, the p-socle P of L is non-trivial and, of course, $P \unlhd G$. Now, take $e \in P, e \neq 1$, and put $E=\left\langle e^{b} ; b \in B\right\rangle$. Then E is a finitely generated p-elementary abelian group and consequently, E is finite. Clearly, $E \unlhd G$ and we put $K=E B$. Then K is finite p-group, and $K \neq B$. Consequently, K is nilpotent and $N=\mathbb{N}_{K}(B) \neq B$. But $N \subseteq \mathbb{N}_{G}(B)=B \mathbb{Z}(G)$. Thus $\mathbb{Z}(G) \neq 1$.

3. Auxiliary results (C)

3.1. Throughout this section, let G be a group such that $G=A H$, where A is an abelian subgroup of G and H is a finite cyclic subgroup with $\mathbb{Q}_{G}(H)=1$ and $\operatorname{card}(H)=n \geq 2$.

Now, $A \cap H=1, L=\mathbb{L}_{G}(A) \neq 1$ (by 2.8(i)) and $\mathbb{Z}(G) \subseteq L$.
In the sequel, fix a generator $w \in H$. Then there are mappings $\varrho: A \rightarrow A$ and $\sigma: A \rightarrow\{0,1, \ldots, n-1\}$ such that $w a=\varrho(a) w^{\sigma(a)}$ for every $a \in A$. We put $A_{i}=\{a \in A ; \sigma(A)=i\}$ for every $0 \leq i \leq n-1$.
3.2 Lemma. (i) ϱ is a permutation of order n of A.
(ii) $A_{0}=\emptyset$ and A is the disjoint union of the sets A_{1}, \ldots, A_{n-1}.
(iii) $A_{1}=\mathbb{Q}_{G}(A), \varrho\left(A_{1}\right)=A_{1}$, and $\varrho \upharpoonright A_{1}$ is an automorphism of A_{1}.
(iv) $A \cap G^{\prime} \subseteq A_{1}$.
(v) $\mathbb{Z}(G)=\{a \in A ; \varrho(a)=a\} \subseteq A_{1}$.
(vi) If $A \cap G^{\prime}=1$, then $\mathbb{Z}(G)=A_{1}$ and $\varrho(a)=$ a for every $a \in A_{1}$.
(vii) $A \unlhd G$ if and only if $\sigma(a)=1$ for every $a \in A$.

Proof. (i) We have $\varrho=q_{w}$, where q_{w} is the permutation defined in 1.4 and $1.5(\mathrm{i})$.
(ii) Since $A \cap H=1$, we have $A_{0}=\emptyset$ and the rest is clear.
(iii) and (iv) First, $A \cap G^{\prime} \subseteq L=\mathbb{L}_{G}(A)$ by 2.11(iii). If $a \in L$, then $\varrho(a) w^{\sigma(a)-1}=w a w^{-1} \in A$, and so $w^{\sigma(a)-1} \in A \cap H=1, \sigma(a)=1$ and $a \in A_{1}$. Conversely, if $a \in A_{1}$, then $w a=\varrho(a) w$, and hence $\varrho(a) a^{-1}=w a w^{-1} a^{-1} \in$ $\in A \cap G^{\prime} \subseteq L \subseteq A_{1}$ and $\varrho(a) \in A_{1}$. Thus $\varrho\left(A_{1}\right) \subseteq A_{1}$ and, since ϱ is a permutation of finite order, it follows that $\varrho\left(A_{1}\right)=A_{1}$ (the fact that $\varrho \upharpoonright A_{1}$ is in automorphism of A_{1} is obvious). Finally, if $1 \leq i$, then $w^{i} a w^{-i}=$ $=w^{i-1} \varrho(a) w^{1-i}=w^{i-2} \varrho^{2}(a) w^{2-i}=\ldots=\varrho^{i}(a) \in A_{1}$. This means that $A_{1} \subseteq L$, and so $A_{1}=L$.
(v) If $a \in \mathbb{Z}(G)$, then it is clear that $\varrho(a)=a$ and $\sigma(a)=1$. Conversely, if $a \in A$ and $\varrho(a)=a$, then $a^{-1} w a=a^{-1} a w^{\sigma(a)}=w^{\sigma(a)}, a \in \mathbb{N}_{G}(H)=\mathbb{Z}(G) H$ and $a \in \mathbb{Z}(G)$.
(iv) This is clear from (v) and the proof of (iii).
(vii) This is clear.
3.3 Lemma. Let $a, b \in A$. Then:
(i) $\varrho(a b)=\varrho(a) \varrho^{\alpha(a)}(b)$.
(ii) $\sigma(a b) \equiv \sigma \varrho^{\sigma(a)-1}(b)+\sigma \varrho^{\sigma(a)-2}(b)+\ldots+\sigma \varrho(b)+\sigma(b)(\bmod n)$.
(iii) $\varrho(a)^{-1}=r^{s(a)}\left(a^{-1}\right)$.
(iv) If $\sigma(a)=\sigma(b)$, then $a b^{-1} \in A_{1}$ and $\varrho\left(a b^{-1}\right)=\varrho(a) \varrho(b)^{-1} \in A_{1}$.

Proof. (i) and (ii). We have $w a b=\varrho(a) w^{\sigma(a)} b=\varrho(a) w^{\sigma(a)-1} \cdot \varrho(b)=\ldots=$ $=\varrho(a) \varrho^{\sigma(a)}(b) w^{i}, i=\sigma \varrho^{\sigma(a)-1}(b)+\ldots+\sigma(b)$.
(iii) This follows from (i) for $b=a^{-1}$.
(iv) By (i) and (iii), $\varrho\left(a b^{-1}\right)=\varrho(a) \varrho^{i}\left(b^{-1}\right)=\varrho(a) \varrho(b)^{-1}, i=\sigma(a)$. Further, $w a b^{-1}=\varrho\left(a b^{-1}\right) w^{j}$, where $j=\sigma\left(a b^{-1}\right)$. On the other hand, $w a b^{-1}=\varrho(a) w^{i} b^{-1}$, and so $\varrho(b)^{-1} w^{j}=w^{i} b^{-1}, w^{j} b=\varrho(b) w^{i}=w b, w^{j}=w, j=1$. Thus $\sigma\left(a b^{-1}\right)=1$ and $a b^{-1} \in A_{1}$.
3.4 Lemma. Let $1 \leq i n-1$ be such that $A_{i} \neq \emptyset$. Then:
(i) $A_{i}=A_{1} b$ for every $b \in A_{i}$.
(ii) $\varrho^{i-1}(a)=a$ and $w^{i-1} a=a w^{i-1}$ for every $a \in A_{1}$.
(iii) $\varrho\left(A_{i}\right)=A_{j}$ for some $1 \leq j \leq n-1$.

Proof. (i) If $a \in A_{1}$, then $\sigma(a b)=\sigma(b)=i$ by 3.3(ii), and hence $a b \in A_{i}$. Consequently, if $c \in A_{i}$, then $c b^{-1} \in A_{1}$ by 3.3(iv).
(ii) If $b \in A_{i}$, then $\varrho(b) \varrho^{i}(a)=\varrho(b a)=\varrho(a b)=\varrho(a) \varrho(b)=\varrho(b) \varrho(a)$ by 1.3(i). Consequently, $a=\varrho^{i-1}(a)$ and $w^{i-1} a=\varrho^{i-1}(a) w^{i-1}=a w^{i-1}$.
(iii) Let $a, b \in A_{i}$. Then $\varrho\left(a b^{-1}\right)=\varrho(a) \varrho(b)^{-1} \in A_{1}$ by $1.3($ iv $)$, and so $\varrho(a)$, $\varrho(b) \in A_{j}$ for suitable j (see 1.4(i)). We have $\varrho\left(A_{i}\right) \subseteq A_{j}$ and, since the index $\left[A: A_{1}\right] \leq n-1$ is finite, in fact $\varrho\left(A_{i}\right)=A_{j}$.
3.5. $1 \leq i_{1}<i_{2}<\ldots<i_{m} \leq n-1$ be all the indices with $A_{i_{j}} \neq \emptyset$. Then $i_{1}=1$ and, by 1.4(i), $A_{i_{1}}=A_{1}, A_{i_{2}}, \ldots, A_{i_{m}}$ are just all blocks(cosets) modulo A_{1} in $A, A / A_{1}=\left\{A_{i_{1}}, \ldots, A_{i_{m}}\right\}$ and $\left[A: A_{1}\right]=m$.

Let r_{1} denote the smallest number such that $1 \leq r_{1} \leq n$ and $\varrho^{r_{1}}(a)=a$ for every $a \in A_{1}$. Further, put $r_{2}=\operatorname{gcd}\left(n, i_{2}-1, i_{3}-1, \ldots, i_{m}-1\right), r_{2}=n$ if $m=1$ and $H_{j}=\left\langle w^{r_{j}}\right\rangle, G_{j}=A H_{j}, j=1,2$.
3.6 Lemma. (i) $r_{1} \mid r_{2}$ and $r_{1} \mid n$.
(ii) G_{1} and G_{2} are normal subgroups of G.
(iii) $G^{\prime} \subseteq G_{2} \subseteq G_{1} \subseteq G$.
(iv) $H_{2} \subseteq H_{1}$ and $\mathbb{Q}_{G_{j}}\left(H_{j}\right)=1, j=1,2$.
(v) $\mathbb{Z}\left(G_{j}\right)=A_{1}, j=1,2$.

Proof. (i) Use 3.2(i) and 3.4(ii).
(ii) and (iii). Put $r=r_{j}, 1 \leq j \leq 2$. If $a \in A$, then $w^{r} a=\varrho^{r}(a) w^{k}$, $k=\sigma \varrho^{r-1}(a)+\ldots+\sigma \varrho(a)+\sigma(a)=\left(\sigma \varrho^{r-1}(a)-1\right)+\ldots+(\sigma \varrho(a)-1)+$ $+(\sigma(a)-1)+r$. Clearly, r divides k , and so $w^{k} \in H_{j}$. Consequently, $H_{j} A \subseteq A H_{j}$ and $H_{j} A=A H_{j}=G_{j}$ is a subgroup of G. Further, $a^{-1} w^{r} a=a^{-1} \varrho^{r}(a) w^{k}$, so that $a^{-1} w^{r} a \in G_{j}$. We see that $x^{-1} H_{j} x \subseteq G_{j}$ for every $x \in G$. Similarly, waw ${ }^{-1}=$ $=\varrho(a) w^{\sigma(a)-1} \in G_{j}$ (since r divides $\sigma(a)-1$) and, again, $x^{-1} A x \subseteq G_{j}$. Now, it is clear that $G_{j} \unlhd G$ and $G^{\prime} \subseteq G_{j}$.
(iv) Since $A \subseteq G_{j}$, we have $\mathbb{Q}_{G_{j}}\left(H_{j}\right) \subseteq \mathbb{Q}_{G}(H)=1$.
(v) By 2.4 (iv), $\mathbb{Z}\left(G_{j}\right) \subseteq A$, so that $\mathbb{Z}\left(G_{j}\right) \subseteq \mathbb{Q}_{G}(A)=A_{1}$. On the other hand, if $a \in A_{1}$, then $w^{r} a=\varrho^{r}(a) w^{r}=a w^{r}$, which shows that $a \in \mathbb{Z}\left(G_{j}\right)$.
3.7. Put $G_{3}=A G^{\prime}$. Then $G_{3}=A H_{3}, H_{3}=G_{3} \cap H, \quad H_{3}=\left\langle w^{3}\right\rangle$, where $1 \leq r_{3} \leq n$ and $r_{3} \mid n$.
3.8 Lemma. (i) $r_{2} \mid r_{3}$.
(ii) $G^{\prime} \subseteq G_{3} \subseteq G_{2}$ and $H_{3} \subseteq H_{2}$.
(iii) $\mathbb{Z}\left(G_{3}\right)=A_{1}$.

Proof. Easy.
3.9 Lemma. The following conditions are equivalent:
(i) $G_{1}=G$.
(ii) $H_{1}=H$.
(iii) $r_{1}=1$.
(iv) $\varrho(a)=a$ for every $a \in A_{1}$.
(v) $\mathbb{Z}(G)=A_{1}$.

Proof. Easy.

3.10 Lemma. The following conditions are equivalent:
(i) $G_{3}=A$.
(ii) $H_{3}=1$.
(iii) $r_{3}=n$.
(iv) $G^{\prime} \subseteq A$.
(v) $A_{1}=A$.
(vi) $A \unlhd G$.

Proof. Easy.
3.11. Since $A_{1} \subseteq \mathbb{L}_{G}\left(A_{1} H\right)$, we have $\mathbb{Q}_{G}\left(A_{1} H_{0}\right)$ for $H_{0}=H \cap \mathbb{L}_{G}\left(A_{1} H\right)=$ $=\left\langle w^{0}\right\rangle, 1 \leq r_{0}<n, r_{0} \mid n$. Further, $G_{0}=A H_{0}$ is a subgroup of G (since $\left.G_{0}=A \cdot A_{1} H_{0}\right)$ and $A_{1} H_{0} \subseteq \mathbb{L}_{G}\left(G_{0}\right)$. Clearly, $\mathbb{Q}_{G_{0}}\left(H_{0}\right)=1$.
3.12 Lemma. The following conditions are equivalent for $k \geq 1$:
(i) $r_{0} \mid k$.
(ii) $\varrho^{k}(a) a^{-1} \in A_{1}$ for every $a \in A$.

Proof. If $k=l r_{0}$, then $w^{k} \in H_{0}$ and $a^{-1} w^{k} a \in A_{1} H_{0}$. However, $w^{k} a=\varrho^{k}(a) u$ for some $u \in H$, and so $a^{-1} \varrho^{k}(a) \in A_{1}$. Conversely, if (ii) is true, then $a^{-1} w^{k} a \in A_{1} H$ and so $w^{k} \in A_{1} H_{0}, w^{k} \in H_{0}$ and $r_{0} \mid k$.
3.13 Lemma. The following conditions are equivalent:
(i) $A_{1} H \unlhd G$.
(ii) $G^{\prime} \subseteq A_{1} H$.
(iii) $r_{0}=1$.
(iv) $H_{0}=H$.
(v) $\varrho(a) a^{-1} \in A_{1}$ for every $a \in A$.
(vi) $\varrho\left(A_{i}\right)=A_{i}$ for every $1 \leq i \leq n-1$.

Proof. Easy (use 3.12).
3.14. Denote by φ the natural projection of G onto $\bar{G}=G / A_{1} H_{0}$. Then $\bar{G}=\bar{A} \cdot \bar{H}$, where $\bar{A}=\varphi(A)=A H_{0} / A_{1} H_{0} \cong A / A_{1}, \bar{H}=\varphi(H)=A_{1} H / A_{1} H_{1} \cong$ $\cong H / H_{0}, \mathbb{L}_{G}(\bar{H})=1$ and \bar{H} is a cyclic group of order r_{0}.
(i) Assume that $r_{0} \geq 2$. Again, there are a permutation $\bar{\varrho}$ of \bar{A} and a mapping $\bar{\sigma}: \bar{A} \rightarrow \rightarrow\left\{1,2, \ldots, r_{0}-1\right\}$ such that $\varphi(w a)=\varphi(w) \varphi(a)=\bar{\varrho} \varphi(a) \cdot \varphi(w)^{\bar{\sigma} \varphi(a)}=$ $=\bar{\varrho} \varphi(a) \cdot \varphi\left(w^{\bar{\sigma} \varphi(a)}\right)$ for every $a \in A$. Of course, $\varphi(w a)=\varphi \varrho(a) \cdot \varphi\left(w^{\sigma(a)}\right)$, and therefore $\bar{\varrho} \varphi(a)=\varphi \varrho(a)$ and r_{0} divides $\sigma(a)-\bar{\sigma} \varphi(a)$.

Now, put $B=\left\{a \in A ; r_{0} \mid(\sigma(a)-1)\right\}$ and $C=\varphi^{-1}\left(\bar{A}_{1}\right)=\varphi^{-1}\left(\mathbb{L}_{G}(\bar{A})\right)$. Then $\bar{A}_{1}=\varphi(C), B=C \cap A$ is a subgroup of A and $C=B H_{0}=\mathbb{L}\left(G_{0}\right)$. Clearly, $A_{1} \subseteq B$ and $C \unlhd G$. Moreover, since $\bar{A}_{1} \neq 1$, we have $B \neq A$ and $C \neq A_{1} H_{0}$. Finnaly, $B \notin G$, (otherwise $B=A_{1}$) and $H_{0} \neq 1$. It follows that $r_{0} \leq n-1$.
(ii) If $r_{0}=1$, then we put $B=A$ and $C=G$.
3.15 Lemma. $r_{0} \leq n-1$ and $H_{0} \neq 1$.

Proof. See 3.14.
3.16 Lemma. The following conditions are equivalent:
(i) $B=A$.
(ii) $r_{0} \mid r_{2}$ (resp., $G_{2} \subseteq G_{0}$ or $H_{2} \subseteq H_{0}$).
(iii) $r_{0} \mid r_{3}$ (resp. $G_{3} \subseteq G_{0}$ or $H_{3} \subseteq H_{0}$ or $G^{\prime} \subseteq G_{0}$).
(iv) $G_{0} \unlhd G$.
(v) $A_{1} H_{j} \unlhd G$ for at least one $j, 1 \leq j \leq 3$.
(vi) $A_{1} H_{j} \unlhd G$ for every $j, 2 \leq j \leq 3$.
(vii) $\varrho^{s(a)-1}(b) b^{-1} \in A_{1}$ for all $a, b \in A$.
(viii) $\varrho^{\sigma(a)-1}\left(A_{i}\right)=A_{i}$ for every $1 \leq i \leq n-1$.
(ix) $\varrho^{r_{2}}\left(A_{i}\right)=A_{i}$ for every $1 \leq i \leq n-1$.
(x) $\varrho^{r_{3}}\left(A_{i}\right)=A_{i}$ for every $1 \leq i \leq n-1$.

Proof. First, (i) is equivalent to (ii) by 3.14.; (ii) implies (iii), since $r_{2} \mid r_{3}$; (iii) is equivalent to (iv), since $G_{0} \unlhd G$ iff $G^{\prime} \subseteq G_{0}$; (ii) and (v) are equivalent by 3.12.

Further, if $G_{0} \unlhd G$, then $C=B H_{0}=\mathbb{L}_{G}\left(G_{0}\right)=G_{0}$, and so $B=A$ (see 3.14). Now, it is clear that the conditions (i), (ii), (iii), (iv) and (vii) are equivalent.

Assume that $A_{1} H_{j} \unlhd G$ for some $1 \leq j \leq 3$ and put $r=r_{1}$. For $a \in A$, $a^{-1} w^{r} a \in A_{1} H_{j}$. However, $a^{-1} w^{r} a=a^{-1} \varrho^{r}(a) u, u \in H$, and so $a^{-1} \varrho^{r}(a) \in A_{1}$. Now $r_{0} \mid r$ by 3.12, and hence $r_{0} \mid r_{3}$. We have shown that (v) implies (iii).

Let $2 \leq j \leq 3$ be such that r_{0} divides $r=r_{j}$. Then, for every $a \in A, a^{-1} w^{r} a=$ $=a^{-1} \varrho^{r}(a) u \in A H_{j} \cap A_{1} H=A_{1} H_{j}$ (use 3.12), and so $a^{-1} H_{j} a \subseteq A_{1} H_{j}$ and $a^{-1} A_{1} H_{j} a \subseteq A_{1} H_{j}$.

The rest is clear.
3.17. Put $\tilde{G}=G / A_{1}, \tilde{A}=A / A_{1}$ and $\tilde{H}=H A_{1} / H_{1} \cong H$. Then $\tilde{G}=\tilde{A} \tilde{H}$, $\mathbb{L}_{G}(\tilde{A})=1$ and, by $3.4, \varrho$ indces a permutation ϱ of \tilde{A} and σ induces an injective mapping $\tilde{\sigma}: \tilde{A} \rightarrow\{1,2, \ldots, n-1\}$ such that $\psi(w) \psi(a)=\psi(w a)=\psi \varrho(a)\left(w^{\sigma(a)}\right)=$ $=\tilde{\varrho} \psi(a) \cdot \psi(w)^{\tilde{\sigma} \psi(a)}$ for all $a \in A$; here, $\psi: G \rightarrow \tilde{G}$ is the natural projection. Further, by 3.3, we have $\tilde{\varrho}(\psi(a) \psi(b))=\tilde{\varrho} \psi(a) \cdot \tilde{\varrho}^{\tilde{\sigma} \psi(a)}(\psi(b))$ for all $a, b \in \tilde{A}, \tilde{r}(1)=1$ and $m=\operatorname{card}(\tilde{A})=\operatorname{card}(\tilde{\sigma}(\tilde{A}))$. According to 3.12 , the order of $\tilde{\varrho} \mathrm{s}$ just r_{0}; notice that $r_{0} \leq n-1$. By 3.11, $\mathbb{L}_{\sigma}(\hat{H})=\tilde{H}_{0}=A_{1} H_{0} / A_{1} \cong H_{0}$. Since $A \cap G^{\prime} \subseteq A_{1}$, we have $\tilde{A} \cap(\tilde{G})^{\prime}=1$.

Now, consider the following three conditions:
(R1) $\tilde{\varrho}$ is an automorphism of \tilde{A};
(R2) $\tilde{\varrho}=\mathrm{id}_{A}$;
(R3) $\tilde{\sigma}$ is a homomorphism of \tilde{A} into \underline{Z}_{n}^{*} (the multiplicative group of invertible elements of the ring $\underline{Z}=\underline{Z} / \underline{Z} n)$.
3.18 Lemma. (R1) is true if and only if the equivalent conditions of 3.16 are satisfied.

Proof. If (R1) is true and if $a \in A$ and $b \in A_{i}$, then $\varrho(a) b \equiv \varrho\left(a \varrho^{-1}(b)\right)(\bmod$ A_{1}). On the other hand, $\varrho\left(a \varrho^{-1}(b)\right)=\varrho(a) \varrho^{\sigma(a)-1}(b)$ by 1.3. This implies that $\varrho^{\sigma(a)-1} b \in A_{i}$ and $\varrho^{\sigma(a)-1}(b) b^{-1} \in A_{i}$.

The rest is clear.
3.19 Lemma. (R2) is true if and only if the equivalent conditions of 3.13 are satisfied.

Proof. Obvious.
3.20 Lemma. (R3) is true if and only if $\sigma(a b) \equiv \sigma(a) \sigma(b)(\bmod n)$ for all $a, b \in A$ (i.e., $\sigma: A \rightarrow \underline{Z}_{n}^{*}$ is a homomorphism).

Proof. Obvious.
3.21 Lemma. (R2) implies ($R 1$) and ($R 3$).

Proof. If (R2) is true and $a, b \in A$, then $\sigma \varrho^{k}(b) \equiv \sigma(b)$ for every $k \geq 1$, and hence $\sigma(a b) \equiv \sigma(a) \sigma(b)(\bmod n)$ by 3.3.
3.22 Lemma. If $(R 2)$ is true, then either $A \unlhd G$ or $\mathbb{Z}(G) \neq 1$.

Proof. Put $\xi(a, i)=\varrho^{i}(a) a^{-1} \in A$ (see 3.3(iv)) for all $a \in A$ and $i \geq 0$. Then $\xi(a, 0)=1, \xi(a, 1)=\varrho(a) a^{-1}=b$ and, by induction on i, we check that $\xi(a, i)=b \varrho(b) \ldots \varrho^{i-1}(b)$ for every $i \geq 1$. Indeed, $\xi(a, i+1)=\varrho^{i+1}(a) a^{-1}=$ $=\varrho^{i+1}(a) \varrho(a)^{-1} b=\varrho\left(\varrho^{i}(a) a^{-1}\right) b=\varrho \xi(a, i) b=\varrho\left(b \varrho(b) \ldots \varrho^{i-1}(b)\right) b=$ $=\varrho(b) \varrho^{2}(b) \ldots \varrho^{i}(b) b$ (use 3.3(iv) and the fact that $\varrho \upharpoonright A_{1}$ is an automorphism of A_{1}).

Now, $\varrho \xi\left(a, r_{1}\right)=\varrho\left(b \varrho(b) \ldots \varrho^{r_{1}-1}(b)\right)=\varrho(b) \varrho^{2}(b) \ldots \varrho^{r_{1}}(b)=\varrho(b) \ldots \varrho^{r_{1}-1}(b) b=$ $=\xi\left(a, r_{1}\right)$, since $b \in A_{1}$ and $\varrho^{r_{1}}(b)=b$. By 3.2(v), $\xi\left(a, r_{1}\right) \in \mathbb{Z}(G)$. In particular, if $\mathbb{Z}(G)=1$, then $\varrho^{r_{1}}(a) a^{-1}=\xi\left(a, r_{1}\right)=1$ and $\varrho^{r_{1}}(a)=a$ for every $a \in A$. This implies that $r_{1}=n$ and $m=1$ (otherwise r_{1} would divide $r_{2}-1$ and then $r_{1}=1$ and $\left.\mathbb{Z}(G)=A_{1}\right)$ and $A \unlhd G$.
3.23 Lemma. G^{\prime} is generated by the elements $\varrho^{k}(a) a^{-1} w^{\prime}, l=\sigma(a)+\sigma \varrho(a)+$ $+\ldots+\sigma \varrho^{k-1}(a)-k, 1 \leq k \leq n-1, a \in A$.
Proof. We have $G^{\prime}=\langle[A, H]\rangle$.
3.24 Lemma. Assume that $n=p$ is a prime number and that $A \not \ddagger G$ (or $m \geq 2$). Then:
(i) $p \geq 3, m \mid p-1$ and A / A_{1} is cyclic.
(ii) $r_{0}=r_{1}=r_{2}=1$.
(iii) $\mathbb{Z}(G)=A_{1}$ and $\varrho(a)=$ a for every $a \in A_{1}$.
(iv) The condition (R2) is satisfied.
(v) $G^{\prime} \subseteq A_{1} H=\mathbb{Z}(G) H=\mathbb{N}_{G}(H)$.

Proof. Since r_{2} divides both $i_{2}-1$ and n, we have $r_{2}=1$ and consequently also $r_{1}=1$. Further, $r_{0}=1$, since $r_{0} \mid p$ and $r_{0} \leq p-1$ by 3.14 , and so the conditions (R2) and (R2) are satisfied by 3.19 and 3.2.1. In particlar, σ is a homomorphism of A into $\underline{Z}_{p}^{*} \cong \underline{Z}_{p-1}(+)$, and therefore $m \mid p-1$.
3.25 Lemma. Assume that $n=p^{2}$ for a prime p. Then at least one of the following three cases takes place:
(i) $r_{1}=r_{2}=1$ and $\mathbb{Z}(G)=A_{1}$.
(ii) $r_{0}=1$ and (R2) is satisfied.
(iii) $A \unlhd G$.

Proof. Assume $A \not \oiint G$ and $r_{2} \neq 1$. Then $m \geq 2, r_{2}=p$ and p divides $i_{j}-1$ for every $1 \leq j \leq m$ (see 3.5). Thus $1 \leq i_{j}=l_{j} \cdot p+1 \leq p^{2}-1$ and $m \leq p$. On the other hand, $\tilde{\varrho}$ is a permutation of $\tilde{A}, \operatorname{card}(\tilde{A})=m, \tilde{\varrho}(1)=1$ and the order of $\tilde{\varrho}$ is r_{0}. Now, $\tau=\tilde{\varrho} \upharpoonright I, I=\tilde{A} \backslash\{1\}$, is a permutation of $I, \operatorname{card}(I)=m-1 \leq p-1$ the order of τ is r_{0} and $r_{0} \mid p$. From this, $r_{0}=1$.
3.26 Lemma. (i) If $m=\left[A: A_{1}\right]$ is a prime number, then the condition ($R 1$) is satisfied.
(ii) If $m \leq 2$ then, the condition (R2) is satisfied.

Proof. (i) Since m is prime, A_{1} is a maximal subgroup of A. But $A_{1} \subseteq N \subseteq A$ and $A_{1} \neq B$ (see 3.16). Thus $B=A$ and (R1) is true (3.18, 3.16).
(ii) ϱ is a permutation of \tilde{A} and $\operatorname{card}(\tilde{A}) \leq 2$. Consequqntly $\tilde{\varrho}=i d$.

4. Auxiliary results (D)

4.1. This section is a continuation of the preceding one. Moreover, we will asume here that the condition (R2) is satisfied (see 3.17, 3.19, 3.21, 3.22) and that $A \nsubseteq G$. Then $m \geq 2, \varrho\left(A_{i}\right)=A_{i}$ for every $1 \leq i \leq n-1, G^{\prime} \subseteq A_{1} H$ and σ may be viewed as a homomorphism of A into Z_{n}^{*}. We have $\operatorname{Ker}(\sigma)=A_{1}$, and so $m=\left[A: A_{1}\right]$ divides $\varphi(n), \varphi$ being the Euler function.

For $a \in A$ and $i \geq 0$, put $\xi(a, i)=\varrho^{i}(a) a^{-1}$ (cf. the proof of 3.22). Then $\xi(a, i) \in A_{1}, \xi(a, 0)=1, \lambda(a)=\xi(a, 1)=\varrho(a) a^{-1}=b$ and $\xi(a, i)=b \varrho(b) \ldots$ $\varrho^{i-1}(b)$ for every $i \geq 1$. Finally, $\kappa(a)=\xi(a, r) \in \mathbb{Z}(G), r=r_{1}$.
4.2 Lemma. (i) $1 \leq r \leq n-1, r \mid n$ and $2 \leq n / r$.
(ii) $\kappa(a)=\lambda(a) \varrho \lambda(a) \ldots \varrho^{r-1} \lambda(a) \in \mathbb{Z}(G)$ for every $a \in A$.
(iii) $\mathbb{Z}(G) \neq 1$.
(iv) $\xi(a, k r)=\kappa(a)^{k}$ for all $a \in A$ and $k \geq 0$.
(v) $\kappa(a)=\kappa(b)$ for all $1 \leq i \leq n-1$ and $a, b \in A_{i}$.
(vi) If $1 \leq i, j \leq n-1, a \in A_{i}$ and $b \in A_{j}$, then $\xi(\alpha, j-1)=\xi(b, i-1)$.

Proof. (i), (ii) and (iii). See 4.1 and 4.22 .
(iv) This is clear from 4.2 and the fact that $\varrho^{r} \upharpoonright A_{1}=\mathrm{id}$.
(v) Since $\varrho\left(A_{i}\right)=A_{i}$, we have $\varrho^{r}\left(a b^{-1}\right)=\varrho^{r}(a) \varrho^{r}(b)^{-1}$ by 3.3(iv). On the other hand, $a b^{-1} \in A_{1}$, and so $\varrho^{r}\left(a b^{-1}\right)=a b^{-1}$. Now, $\kappa(a)=\varrho^{r}(a) a^{-1}=\varrho^{r}(b) b^{-1}=$ $=\kappa(b)$.
(vi) $\xi(a, j) \xi(\alpha, 1)^{-1}=\varrho^{j}(a) \varrho(a)^{-1}=\varrho\left(\varrho^{j-1}(a) a^{-1}\right)=\varrho \xi(a, j-1)$ and $\xi(b, i) \xi(b, 1)^{-1}=\varrho \xi(b, i-1)$ by 3.3(iv). On the other hand, $\varrho(a) \xi(b, i) b=$ $=\varrho(a) \varrho^{i}(b)=\varrho(a b)=\varrho(b a)=\varrho(b) \varrho^{j}(a)=\varrho(b) \xi(a, j) a$. Thus $\xi(a, j) \xi(a, 1)^{-1}=$ $=\xi(b, i) \xi(b, 1)^{-1}$ and we see that $\xi(a, j-1)=\xi(b, i-1)$.

4.3 Lemma. (i) $\lambda \varrho(a)=\varrho \lambda(a)$ for every $a \in A$.

(ii) $\lambda(a b)=\lambda(a) \lambda(b)$ for all $a \in A_{1}, b \in A$ and $\lambda \upharpoonright A_{1}$ is an endomorphism of A_{1}.
(iii) $\lambda\left(a b^{-1}\right)=\lambda(a) \lambda(b)^{-1}$ for all $1 \leq i \leq n-1$ and $a, b \in A_{i}$.
(iv) $\mathbb{Z}(G)=\{a \in A ; \lambda(a)=a\}$.
(v) $\kappa \varrho(a)=\varrho \kappa(a)=\kappa(a)$ for every $a \in A$.
(vi) $\kappa(a)^{(\sigma(b)-1) / r}=\kappa(b)^{(\sigma(a)-1) / r}$ for all $a, b \in A$.
(vii) $\lambda(a b)=\lambda(a) \lambda(b) \kappa(b)^{(\sigma(a)-1) / r}=\lambda(a) \lambda(b) \kappa(a)^{(\sigma[b)-1) / r}$ for all $a, b \in A$.
(viii) $\kappa(a)^{n / r}=1$ for every $a \in A$.
(ix) $\kappa(a)=1$ for every $a \in A_{1}$.
(x) If $1 \leq k \leq(n-r) / r$, then $\kappa(a)^{k} \neq 1$ for at least one $a \in A$.
(xi) $\kappa(a b)=\kappa(a) \kappa(b)^{\sigma(a)}=\kappa(a)^{\sigma / b} \cdot \kappa(b)$ for all $a, b \in A$.

Proof. (i) $\lambda \varrho(a)=\varrho^{2}(a) \varrho(a)^{-1}=\varrho\left(\varrho(a) a^{-1}\right)=\varrho \lambda(a)$ by $1.3(\mathrm{iv})$.
(ii) $\lambda(a b)=\varrho(a b) a^{-1} b^{-1}=\varrho(a) a^{-1} \varrho(b) b^{-1}=\lambda(a) \lambda(b)$.
(iii) $\lambda\left(a b^{-1}\right)=\varrho\left(a b^{-1}\right) b a^{-1}=\varrho(a) a^{-1} \cdot \varrho\left(b^{-1}\right) b=\lambda(a) \lambda\left(b^{-1}\right)$ by 1.3(iv)
(iv) See 1.2(v).
(v) Since $\kappa(a) \in \mathbb{Z}(G)$, we have $\varrho \kappa(a)=\kappa(a)$. Further, since $\sigma \varrho(a)=\sigma(a)$, we also have $\kappa \varrho(a)=\kappa(a)$.
(vi) $\kappa(a)^{(\sigma(b)-1) / r}=\xi(a, \sigma(b)-1)=\xi(b, \sigma(a)-1)=\kappa(b)^{\mid \sigma(a)-1) / r}$ by 2.3(iv), (vi).
(vii) $\lambda(a b)=\varrho(a b) a^{-1} b^{-1}=\varrho(a) a^{-1} \cdot \varrho^{\sigma(a)}(b) b^{-1}=\lambda(a) \xi(b, \sigma(a))=$ $=\lambda(a) \lambda(b) \varrho \xi(b, \sigma(a)-1)=\lambda(a) \lambda(b) \varrho\left(\kappa(b)^{(\sigma a)-1) / r}\right)=\lambda(a) \lambda(b) \kappa(b)^{(\sigma(a)-1) / r}$ (use the fact that $\varrho \xi(b, \sigma(a)-1)=\varrho\left(\varrho^{\sigma(a)-1}(b) b^{-1}\right)=\varrho^{\sigma(a)}(b) \varrho(b)^{-1}=\varrho^{\sigma(a)}(b) b^{-1}$. $\left.\cdot \varrho(b)^{-1} b=\xi(b, \sigma(a)) \lambda(b)\right)$.
(viii) $\kappa(a)^{n / r}=\xi(a, r)^{n / r}=\xi(a, n)=\varrho^{n}(a) a^{-1}=1$.
(ix) This is obvious.
(x) We have $\varrho^{r k} \neq \mathrm{id}_{A}$, and therefore $\kappa(a)^{k}=\xi(a, r k)=\varrho^{r k}(a) a^{-1} \neq 1$ for at least one $a \in A$.
(xi) By (vii), $\quad \varrho \lambda(a b)=\varrho \lambda(a) \varrho \lambda(b) \kappa(b)^{(\sigma(a)-1) / r}, \quad \varrho^{2} \lambda(a b)=\varrho^{2} \lambda(a) \varrho^{2} \lambda(b)$ $\kappa(b)^{\mid \sigma(a)-1) / r}, \ldots$ Now, $\kappa(a b)=\lambda(a b) \varrho \lambda(a b) \ldots \varrho^{r-1} \lambda(a b)=\kappa(a) \kappa(b) \kappa(b)^{\sigma(a)-1}=$ $\kappa(a) \kappa(b)^{\sigma(a)}$ (use 4.2(ii)).
4.4 Lemma. (i) $\lambda\left(a^{-1}\right)=\lambda(a)^{-1} \kappa\left(a^{-1}\right)^{i}=\lambda(a)^{-1} \kappa(a)^{j}$ for all $a \in A$ and $i=(1-\sigma(a)) / r, j=\left(1-\sigma\left(a^{-1}\right)\right) / r$.
(ii) $\lambda\left(a b^{-1}\right)=\lambda(a) \lambda(b)^{-1} \cdot\left(\kappa(a) \kappa(b)^{-1}\right)^{k}$ for all $a, b \in A$ and $k=\left(\sigma\left(b^{-1}\right)-1\right) / r$.

Proof. (i) By 4.3(vii), $1=\lambda\left(a a^{-1}\right)=\lambda(a) \lambda\left(a^{-1}\right) \kappa\left(a^{-1}\right)^{-i}$ and $1=\lambda\left(a a^{-1}\right)=$ $=\lambda\left(a a^{-1}\right)=\lambda(a) \lambda\left(a^{-1}\right) \kappa(a)^{-j}$.
(ii) By 4.3(vii), $\lambda\left(a b^{-1}\right)=\lambda(a) \lambda\left(b^{-1}\right) \kappa(a)^{k}$. But, by(i), $\lambda\left(b^{-1}\right)=\lambda(b)^{-1} \kappa(b)^{-k}$.
4.5 Lemma. Let $a, b \in A$. Then $\lambda(a)=\lambda(b)$ if and only if $\lambda\left(a b^{-1}\right)=1$ and also if and only if $a b^{-1} \in \mathbb{Z}(G)$. In that case, $\sigma(a)=\sigma(b)$, and $\kappa(a)=\kappa(b)$.

Proof. First, let $\lambda(a)=\lambda(b)$. Then $\kappa(a)=\kappa(b)$ by $4.2(i i)$, and so $\lambda\left(a b^{-1}\right)=1$ by 4.4(ii). Conversely, if $\lambda\left(a b^{-1}\right)=1$, then $a b^{-1}=\varrho\left(a b^{-1}\right)$ and $a b^{-1} \in \mathbb{Z}(G)$ (see 4.3(iv)). Finally, if $a b^{-1} \in \mathbb{Z}(G) \subseteq A_{1}$, then $\sigma(a)=\sigma(b)$ and $\lambda(a)=\lambda(b)$.
4.6 Lemma. (i) λ^{2} is a homomorphism of A into A_{1}.
(ii) $\mathbb{Z}(G) \subseteq \operatorname{Ker}\left(\lambda^{2}\right)=\{a \in A ; \lambda(a) \in \mathbb{Z}(G)\}=\left\{a \in A ; \varrho^{2}(a) \varrho(a)^{-2} a=1\right\}$.
(iii) $\lambda^{2}(a)=\varrho^{2}(a) \varrho(a)^{-2}$ for every $a \in A$.

Proof. Let $a, b \in A$. Then, by 4.3(vii), $\varrho \lambda(a b)=\varrho \lambda(a) \varrho \lambda(b) \kappa(b)^{(\sigma a)-1 / / r}$, and hence $\lambda^{2}(a b)=\varrho \lambda(a b) \lambda(a b)^{-1}=\varrho \lambda(a) \lambda(a)^{-1} \varrho \lambda(b) \lambda(b)^{-1}=\lambda^{2}(a) \lambda^{2}(b)$. Further, $\lambda^{2}(a)=\varrho \lambda(a) \lambda(a)^{-1}=\varrho\left(\varrho(a) a^{-1}\right) \varrho(a)^{-1} a=\varrho^{2}(a) \varrho(a)^{-2} a$. The rest is clear.
4.7 Lemma. $\mathbb{Z}(G)$ contains at least one element of order n / r (and so $\operatorname{card}(\mathbb{Z}(G)) \geq n / r)$.

Proof. For every $i, 1 \leq i \leq(n-r) / r$, choose an element $a_{i} \in A$ such that $\kappa\left(a_{i}\right)^{i} \neq 1$ (see $\left.4.3(\mathrm{x})\right)$ and denote by K the subgroup of $\mathbb{Z}(G)$ generated by all a_{i}. Then K is finite and $a^{n / r}=1$ for every $a \in K$. Moreover, it is easy to see that K contains at least one element of order n / r.
4.8 Remark. (i) With regard to 4.3(vii), λ induces a homomorphism of A into $A_{1} / \mathbb{Z}(G)$. The kernel of this homomorphism is just $\left\{a \in A ; \varrho^{2}(a) \varrho(a)^{-2} a=1\right\}=$ $=\operatorname{Ker}\left(\lambda^{2}\right)$ (see (4.6)).
(ii) κ induces a mapping $v: A / A_{1} \rightarrow \mathbb{Z}(G), v\left(a A_{1}\right)=\kappa(a)$.
(iii) σ induces an injective homomorphism $\mu: A / A_{1} \rightarrow Z_{n}^{*}$.
(iv) $v(x y)=v(x) v(y)^{\mu(x)}=v(x)^{\mu(y)} \cdot v(y), v(y)^{(\mu(y)-1) / r}=v(y)^{\mu(x)-1 / r}$ and $v(x)^{n / r}=$ $=1$ for all $x, y \in A / A_{1}$.
(v) By 4.5, λ induces an injective mapping v of $A / \mathbb{Z}(G)$ into $A_{1}, v(a \mathbb{Z}(G))=$ $=\lambda(a)$. In particular, card $(a / \mathbb{Z}(G)) \leq \operatorname{card}\left(A_{1}\right)$ and $m \leq \operatorname{card}(\mathbb{Z}(G))$.
4.9 Remark. (i) Put $\vartheta(a)=a \varrho(a) \ldots \varrho^{r-1}(a)$ for evey $a \in A_{1}$. Then $\vartheta: A_{1} \rightarrow$ $\rightarrow \mathbb{Z}(G)$ is a homomorphism, $\vartheta(a)=a^{r}$ for every $a \in \mathbb{Z}(G)$ and $\vartheta(b) \neq 1$ for at least one $b \in A_{1}$.
(ii) $\kappa=\vartheta \lambda, \lambda(a)^{n / r} \in \operatorname{Ker}(\vartheta)$ for every $a \in A$. If $b \in A$ and $\lambda(b) \in \mathbb{Z}(G)$ (i.e., if $\left.b \in \operatorname{Ker}\left(\lambda^{2}\right)\right)$, then $\lambda(b)^{n}=1$.
4.10 Lemma. $G^{\prime} \subseteq A_{1} H_{4}$.

Proof. We have $G^{\prime} \subseteq A_{1} H \cap A H_{4}=A_{1} H_{4}$.
4.11 Lemma. Suppose that $r=1$. Then:
(i) $\lambda(a)=\kappa(a)=\xi(a, 1)=\varrho(a) a^{-1} \in \mathbb{Z}(G)=A_{1}$ for every $a \in A$.
(ii) $\xi(a, b)=\lambda(a)^{k}$ for all $a \in A$ and $k \geq 0$.
(iii) $\lambda(a b)=\lambda(a) \lambda(b)^{\sigma(a)}=\lambda(b) \lambda(a)^{\sigma(b)}$ for all $a, b \in A$.
(iv) $\lambda(a)^{n}=1$ for every $a \in A$.
(v) $\mathbb{Z}(G)=A_{1}$ contains at least one element of order n.
(vi) $\lambda(a)=\lambda(b)$ iff $\sigma(a)=\sigma(b)$.

Proof. Obvious.
4.12 Lemma. Suppose that $n=p$ is a prime number (see 3.24). Then:
(i) $m \mid p-1, A / A_{1}$ is cyclic, $\mathbb{Z}(G)=A_{1}, r=1$.
(ii) $\mu: A / A_{1} \rightarrow Z_{p}^{*}\left(\cong \underline{Z}_{p-1}(+)\right)$ is an injective homomorphism.
(iii) $\lambda=\kappa$.
(iv) v is an injective mapping of A / A_{1} into $A_{1}, v(x y)=v(x) v(y)^{\mu(x)}=v(x)^{\mu(y)}$.
$v(y)$ and $v(x)^{p}=1$ for all $x, y \in A / A_{1}$.
Proof. See 3.24, 4.8 and 4.11.
4.13 Lemma. Let $=p$ be a prime, $\alpha \in A / A_{1}$ a generator of A / A_{1} (see 4.12) and let $k=\mu(\alpha) \geq 2$. For $1 \leq i$, let $\gamma(i)$ be such that $0 \leq \gamma(i) \leq p-1$ and $\gamma(i) \equiv\left(1+k+\ldots+k^{i-1}\right)(\bmod p), \gamma(0)=0$. Then:
(i) $v\left(\alpha^{i}\right)=v(\alpha)^{\gamma(i)}$ for every $i \geq 0$.
(ii) The order of $v(\alpha)$ in A_{1} is just p.
(iii) The numbers $0,1, \gamma(2), \ldots, \gamma(m-1)$ are pair-wise different.
(iv) The order of k in Z_{p}^{*} is just m.
(v) $k^{i}-1 \equiv(k-1) \gamma(i)(\bmod p)$ for every $i \geq 0$.

Proof. (i) The equality is clear for $i=0$ and we can further proceed by induction; $v\left(\alpha^{i+1}\right)=v(\alpha) v\left(\alpha^{i}\right)^{k}=v(\alpha)\left(v(\alpha)^{\gamma(i)}\right)^{k}=v(\alpha)^{\gamma(i)+k+1}=v(\alpha)^{\gamma(i+1)}$ (see 4.12).
(ii) This follows from (i) and 4.3(x).
(iii) We have $A / A_{1}=\left\{1, \alpha, \ldots, \alpha^{m-1}\right\}$ and so $v\left(A / A_{1}\right)=\left\{1, v(\alpha), v(\alpha)^{\gamma(2)}, \ldots\right.$, $\left.v(\alpha)^{\gamma(m-1)}\right\}$. Now, take into account that v is injective.
(iv) $k=v(\alpha)$ is of the same order as α.
(v) This is clear from the definition of $\gamma(i)$.

5. Some special cases (A)

5.1. Let G be a group such that $G=A H$, where A is an abelian subgroup of $G, A \nexists G,\left[A: A_{1}\right]=2, A_{1}=\mathbb{L}_{G}(A), H$ is a finite cyclic subgroup of order $n \geq 2$ and $\mathbb{Q}_{G}(H)=1$. Further, let $w \in H$ be generator of H and assume that waw $\in A$ for at least one $a \in A$. Then $m=2, A_{n-1} \neq \emptyset, A=A_{1} \cup A_{n-1}, n \geq 3, \sigma(A)=\{1$, $n-1\}$ and the condition (R2) is satisfied. Moreover, $r=r_{1}$ divides both n and $n-2$. Consequently, either $r=1$ or $r=2$ and $n \geq 4$ is even.

5.1.1 Lemma. Let $r=1$. Then:

(i) $\lambda(a)=\kappa(a)=\varrho(a) a^{-1} \in \mathbb{Z}(G)=A_{1}$ and $\lambda(a)^{n}=1$ for every $a \in A$.
(ii) $\lambda\left(A_{n-1}\right)=\{e\}$ is a one-element set end e is an element of order n in A_{n}.
(iii) $\varrho(a)=a$ for every $a \in A_{1}$ and $\varrho(b)=$ be for every $b \in A_{n-1}=A \backslash A_{1}$.
(iv) $G^{\prime}=\left\langle e w^{n-2}\right\rangle$ is a cyclic group of order n.
(v) $G^{\prime} \cap A=1=G^{\prime} \cap H$ if n is odd.
(vi) $G^{\prime} \cap A=\left\langle e^{n / 2}\right\rangle$ is a two-element group and $G^{\prime} \cap H=1$ if n is even.
(vii) $\operatorname{card}\left(G^{\prime} H\right)=n^{2}$.

Proof. First, (i) and the equality $\lambda\left(A_{n-1)}=\{e\}\right.$ follow from 4.11. Further, $\varrho(b)=\lambda(b) b=e b$ and $\varrho^{i}(b)=e^{i} b$ for all $i \geq 0$ and $b \in A_{n-1}$. The order of ϱ is n, and hence the same is true for e. The rest is clear from 1.2.
5.1.2 Lemma. Let $r=1$. Then:
(i) If $n \geq 3$ is odd, then $A G^{\prime}=G \neq H G^{\prime}$.
(ii) If $n \geq 4$ is even, then $A G^{\prime} \neq G \neq H G^{\prime}$.

Proof. Use 5.1.1.

In the remaining part of 5.1 , we will assume that $r=2$; then $n \geq 4$ is even.
5.1.3 Lemma. (i) $\kappa(a)=\xi(a, 2)=\varrho^{2}(a) a^{-1}$ for every $a \in A$.
(ii) $\kappa\left(A_{1}\right)=1$ and $\varrho^{2}(a)=a$ for every $a \in A_{1}$.
(iii) $\kappa\left(A_{n-1}\right)=\{e\}$, where $e \in \mathbb{Z}(G)$ and the order of e is $n / 2$.

Proof. See 4.1, 4.2 (ii), (v), 4.3(viii), (x).
5.1.4 Lemma. (i) If $a, b \in A$ and either $a \in A_{1}$ or $b \in A_{1}$, then $\lambda(a b)=\lambda(a) \lambda(b)$.
(ii) $\lambda \upharpoonright A_{1}$ is an endomorphism of A_{1}.
(iii) If $a, b \in A_{n-1}=A \backslash A_{1}$, then $\lambda(a b)=\lambda(a) \lambda(b) e^{-1}$.
(iv) $\lambda^{2}(a) \lambda(a)^{2}=e$ for every $a \in A_{n-1}$.

Proof. (i), (ii) and (iii). See 4.3(ii), (vii) and 5.1.3.
(iv) We have $\varrho^{2}(a)=a$. But $\varrho^{2}(a)=\varrho(\lambda(a) a)=\varrho \lambda(a) \varrho(a)=\lambda^{2}(a) \lambda(a)^{2}(a)$. Thus $\lambda^{2}(a) \lambda(a)^{2}=1$.
(v) By (iii), $\lambda\left(a^{2}\right)=\lambda(a)^{2} e^{-1}$ and $e=\lambda(a)^{2} \lambda\left(a^{2}\right)^{-1}$.

Further, $a^{2} \in A_{1}$, and so $\lambda\left(a^{2}\right)^{-1}=\lambda\left(a^{-2}\right)$ and $e=\lambda(a)^{2} \lambda\left(a^{-2}\right)$. Finally, $\lambda^{2}(a)=$ $=\lambda\left(\varrho(a) a^{-1}\right)=\varrho\left(\varrho(a) a^{-1}\right) \varrho(a)^{-1} a=\varrho\left(a^{-1}\right) \varrho^{n}(a) \varrho(a)^{-1} a=\varrho\left(a^{-1}\right) \varrho(a)^{-1} a^{2}$. But $1=\varrho\left(a a^{-1}\right)=\varrho(a) \varrho^{-1}\left(a^{-1}\right), \varrho\left(a^{-1}\right)=\varrho^{-1}\left(a^{-1}\right), \varrho\left(a^{-2}\right)=\varrho\left(a^{-1}\right) \varrho^{-1}\left(a^{-1}\right)=$ $=\varrho\left(a^{-1}\right) \varrho(a)^{-1}$ and $\lambda^{2}(a)=\varrho\left(a^{-1}\right) \varrho(a)^{-1} a^{2}=\varrho\left(a^{-2}\right) a^{2}=\lambda\left(a^{-2}\right)$.
5.1.5 Lemma. Let $u \in A_{n-1}, v=\lambda(u), z=\lambda\left(u^{-1}\right), v^{\prime}=\lambda(u) u^{2}$ and $z^{\prime}=\lambda\left(u^{-1}\right) u^{2}$. Then:
(i) $\lambda(v)=\lambda^{2}(u)=\lambda\left(u^{-2}\right)=\lambda\left(u^{2}\right)^{-1}=\lambda\left(u^{2}\right)^{-1}=\lambda\left(u^{-1}\right)^{2} e^{-1}=z^{2} e^{-1}$.
(ii) $\lambda(z)=\lambda^{2}\left(u^{-1}\right)=\lambda\left(u^{2}\right)=\lambda\left(u^{-2}\right)^{-1}=\lambda\left(u^{2}\right) e^{-1}=v^{2} e^{-1}$.
(iii) $\lambda(z)=\lambda(v) e$ and $v^{2}=\lambda(z) e$.
(iv) $v z=e=\varrho(u) \varrho\left(u^{-1}\right)$.
(v) $z=\lambda(v) v=\varrho(v)$ and $v=\lambda(z) z=\varrho(z)$.
(vi) $v^{\prime}=v u^{2}, z^{\prime}=z u^{-2}, v^{\prime}, z^{\prime} \in \mathbb{Z}(G)$ and $\lambda\left(v^{\prime}\right)=\lambda\left(z^{\prime}\right)=1$.
(vii) $v z=v^{\prime} z^{\prime}=e$.
(viii) $\varrho(a)=\lambda(u) a$ and $\varrho(a u)=\lambda(a) a v u=\lambda(a) a v^{\prime} u^{-1}=\varrho(a) v u=\varrho(a) v^{\prime} u^{-1}$ for every $a \in A_{1}$.

Proof. (i) $\lambda(v)=\lambda^{2}(u)=\lambda\left(u^{-2}\right)^{-1}$ by 5.1.4 and its proof. Further, by 5.1.4(iii), $\lambda\left(u^{-2}\right)=\lambda\left(u^{-1}\right)^{2} e^{-1}=z^{2} e^{-1}$.
(ii) We can proceed similarly as in (i) (we replace u by u^{-1}).
(iii) Combine (i) and (ii).
(iv) By 5.1.4(iii), $1=\lambda\left(u u^{-1}\right)=\lambda(u) \lambda\left(u^{-1}\right) e^{-1}=v z e^{-1}$, and so $v z=e$. Further, $\varrho(u)=\varrho\left(u^{-1}\right)=\lambda(u) u \lambda\left(u^{-1}\right) u^{-1}=\lambda(u) \lambda\left(u^{-1}\right)=e$.
(v) By (iii) and (iv), $z^{2}=\lambda(v) e=\lambda(v) v z=\varrho(v) z$, and so $z=\varrho(v)$. Quite similarly, $v=\lambda(z) z=\varrho(z)$.
(vi) Obviously, $v^{\prime}=v u^{2}$ and $z^{\prime}=z u^{-2}$. Further, $v, u^{2} \in A_{1}$, and hence $\lambda\left(v^{\prime}\right)=$ $=\lambda(v) \lambda\left(u^{2}\right)=\lambda\left(u^{-2}\right) \lambda\left(u^{2}\right)=\lambda\left(u^{-2} u^{2}\right)=1$. Similarly, $\lambda\left(z^{\prime}\right)=1$.
(vii) By (vi) and (iv), $v^{\prime} z^{\prime}=v u^{2} z u^{-2}=v z=e$.
(viii) $\varrho(a u)=\varrho(a) \varrho(u)$, and the rest is clear.
5.1.6 Lemma. Consider the situation from 5.1 .5 and moreover, assume that $u^{2}=1$. Then:
(i) $v=v^{\prime}, z=z^{\prime}$ and $v, z \in \mathbb{Z}(G)$.
(ii) $v^{2}=e=z^{2}$.
(iii) If $n / 2$ is even, then the order of both v and z is n.
(iv) If $n / 2$ is odd, then the order of both v and z is $n / 2$.

Proof. (i) See 5.1.5.
(ii) By (i) and 5.1.5(iii), $\lambda(v)=\lambda(z)=1$ and $v^{2}=z^{2}=e$.
(iii) and (iv). This is clear from (ii) and the fact thhat the order of e is $n / 2$.
5.1.7 Remark. If A_{1} is finite and of odd order, then $n / 2$ is odd and there exists at least one $u \in A_{n-1}$ with $u^{2}=1$.
5.1.8 Lemma. Let $u \in A_{n-1}$ (see 5.1.5). Then:
(i) $\varrho^{i}(u)=e^{(i-1) / 2} \cdot v^{\prime} u^{\prime}=e^{(i-1) / 2} \cdot \varrho(u)=e^{(i-1) / 2} \cdot$ vu for every $i \geq 1$ odd.
(ii) $\varrho^{i}(u)=e^{i / 2} \cdot u$ for every $i \geq 2$ even.

Proof. First, $\varrho(u)=v u=\lambda(u) u=v^{\prime} u^{-1}$ and $\varrho^{2}(u)=\varrho(v u)=\varrho(v) \varrho(u)=$ $=\varrho(v) v u=z v u=e u$ by 5.1.5(iv), (v). Now, we will proceed by induction on i.

If $i \geq 1$ is odd, then $\varrho^{i+1}(u)=\varrho\left(e^{(i-1) / 2} \cdot v u\right)=e^{(i-1) / 2} \cdot \varrho(v u)=e^{(i+1) / 2} \cdot u$.
If $i \geq 2$ is even, then $\varrho^{i+1}(u)=\varrho\left(e^{i / 1} \cdot u\right)=e^{i / 2} \cdot \varrho(u)=e^{i / 2} \cdot v u$.
5.1.9 Remark. (i) $\lambda(a) \neq 1$ for every $a \in A_{n-1}$ (if $\lambda(a)=1$, then $\varrho(a)=a$ and $\left.a \in \mathbb{Z}(G) \subseteq A_{1}\right)$.
(ii) $a^{-1} w a w^{-1}=a^{-1} \varrho(a) w w^{-1}=\lambda(a)$ for every $a \in A_{1}$.
(iii) $a^{-1} w a w^{-1}=a^{-1} \varrho(a) w^{-1} w^{-1}=\lambda(a) w^{-2}$ for every $a \in A_{n-1}$.
(iv) $\lambda(a)^{-1}=\lambda\left(a^{-1}\right) e^{-1}=\lambda\left(a^{-1}\right) e^{(n-2) / 2}$ for every $a \in A_{n-1}$.
(v) $\left(e^{i} \lambda(a) w^{j}\right)^{-1}=e^{-i} w^{n-j} \lambda\left(a^{-1}\right)=e^{-1} \varrho^{n-j} \lambda\left(a^{-1}\right) w^{n-j}=e^{-i} \lambda \varrho^{-j}\left(a^{-1}\right) w^{-j}$ for all $a \in A_{1}, 0 \leq i \leq(n-2) / 2,0 \leq j \leq n-1$.
(vi) $\left(e^{i} \lambda(a) w^{j}\right)^{-1}=e^{-i-1} \cdot w^{n-j} \cdot \lambda\left(a^{-1}\right)=e^{-i-1} \cdot \lambda \varrho^{-j}\left(a^{-1}\right) w^{-j}$ for all $a \in A_{n-1}$, $0 \leq i \leq(n-2) / 2,0 \leq j \leq n-1$.
(vii) $e^{i} \lambda(a) w^{k} \cdot e^{j} \lambda(b) w^{1}=e^{i+j} \cdot \lambda(a) \varrho^{k} \lambda(b) w^{k+1}=e^{i+j} \cdot \lambda(a) \lambda(a) \lambda \varrho^{k}(b) w^{k+1}=$ $=e^{i+j} \cdot \lambda\left(a \varrho^{k}(b)\right) w^{k+1}$ for all $a, b \in A_{1}, 0 \leq i, j \leq(n-2) / 2,0 \leq k, l \leq n-1$.
(viii) $e^{i} \lambda(a) w^{k} \cdot e^{j} \lambda(b) w^{l}=e^{i+j} \cdot \lambda\left(a \varrho^{k}(b)\right) w^{k+l}$ and $e^{j} \lambda(b) w^{l} \cdot e^{i} \lambda(a) w^{k}=$ $=e^{i+j} \cdot \lambda\left(\varrho^{l}(a) b\right) w^{k-l}$ for all $a \in A_{1}, b \in A_{n-1}, 0 \leq i, j \leq(n-2) / 2,0 \leq k$, $l \leq n-1$.
(ix) $e^{i} \lambda(a) w^{k} \cdot e^{j} \lambda(b) w^{l}=e^{i+j+1} \cdot \lambda\left(a \varrho^{k}(b)\right) w^{k+l}$ for all $a, b \in A_{n-1}, 0 \leq i$, $j \leq(n-2) / 2,0 \leq k, l \leq n-1$.
5.1.10 Lemma. $G^{\prime}=\left\{e^{i} \lambda(a) w^{-4 i} ; a \in A_{1}, 0 \leq i \leq(n-2) / 2\right\} \cup\left\{e^{i} \lambda(a) w^{-4 i-2}\right.$; $\left.a \in A_{n-1}, 0 \leq i \leq(n-2) / 2\right\}$.

Proof. Denote by F the set on the right side of the above equality. It follows from 5.1.9 that F is a subgroup of G. Further, $b^{-1} e^{i} \lambda(a) w^{-4 i} \cdot b=e^{i} \lambda(a) w^{-4 i}$
(we have $\left.\quad \varrho^{2}(b)=b\right), \quad c^{-1} e^{i} \lambda(a) w^{-4 i} \cdot c=e^{i} \lambda(a) w^{4 i}, \quad w^{-1} e^{i} \lambda(a) w^{-4 i} \cdot w=$ $=e^{i} \lambda \varrho(a) w^{-4 i}, \quad b^{-1} e^{i} \lambda(c) w^{-4 i-2} \cdot b=e^{i} \lambda(a) w^{-4 i-2}, \quad d^{-1} e^{i} \lambda(c) w^{-4 i-2} \cdot d=$ $=e^{-i-1} \cdot \lambda(c) w^{4 i+2}$ and $w^{-1} e^{i} \lambda(c) w^{-4 i-2} \cdot w=e^{i} \lambda \varrho(a) w^{-4 i-2}$ for all $a, b \in A_{1}, c$, $d \in A_{n-1}$. Now, we see that $F \unlhd G$ and, by 5.1.9(ii), (iii), we have $[a F, w F]=1$ in G / F for every $a \in A$. Since $G / F=\langle a F, w F\rangle$, we conclude that G / F is abelian, i.e., $G^{\prime} \nsubseteq F$.

Conversely, $\lambda\left(A_{1}\right) \subseteq G^{\prime}$ and $\lambda(a) w^{-2} \in G^{\prime}$ for every $a \in A_{n-1}$. Further, $\left(\lambda(a) w^{-2}\right)^{-1}=e^{-1} \lambda\left(a^{-1}\right) w^{2} \in G^{\prime}$ and $\left(e^{-1} \lambda\left(a^{-1}\right) w^{2}\right)^{2}=e^{-1} \lambda\left(a^{-2}\right) w^{4} \in G^{\prime}$. Since $a^{-2} \in A_{1}$, we have $\lambda\left(a^{-2}\right) \in G^{\prime}$ and $e^{-1} w^{4} \in G^{\prime}$. on the other hand, $e^{i} w^{-4 i} \cdot \lambda(a) w^{-2}=e^{i} \lambda(a) w^{-4 i-2}$ for $a \in A_{n-1}$ and $e^{i} w^{-4 i} \cdot \lambda(a)=e^{i} \lambda(a) w^{-4 i}$ for $a \in A_{1}$. Now, it is clear that $F \subseteq G^{\prime}$.
5.1.11 Lemma. (i) If $n=4 k, k \geq 1$, then $G^{\prime} \cap A=\lambda\left(A_{1}\right) \cup e^{k} \lambda\left(A_{1}\right) \neq 1$.
(ii) If $n=4 k+2, k \geq 1$, then $G^{\prime} \cap A=\lambda\left(A_{1}\right) \cap e^{k} \lambda\left(A_{n-1}\right) \neq 1$.
(iii) $H_{1}=H_{2}=H_{3}=\left\langle w^{2}\right\rangle($ see $3.5,3.6,3.7)$ and $G_{1}=G_{2}=G_{3}=A G^{\prime}=$ $=A\left\langle w^{2}\right\rangle \neq G($ see 3.7).

Proof. Use 5.1.10.
5.2 Construction. (cf. 5.1.1 and 5.1.2) Let A_{1} be a non-trivial subgroup of index 2 in an abelian group A (denoted multiplicatively) and let $e \in A_{1}$ be an element of order $n \geq 3$. Define a permutation ϱ of A by $\varrho(a)=a$ and $\varrho(b)=b e$ for all $a \in A_{1}$ and $b \in A \backslash A_{1}$; the order of ϱ is just n.

Now, put $\mathscr{G}=\left\langle L_{a}, \varrho ; a \in A\right\rangle \subseteq A!$ (here, $L_{a}(x)=a x, a, x \in A$). Then $\mathscr{G}=\mathscr{A} \cdot \mathscr{H}$, where $\mathscr{A}=\left\{L_{u} ; a \in A\right\} \cong A$ and $\mathscr{H}=\langle\varrho\rangle$ is a cyclic group of order n; we have $\varrho L_{a}=L_{a} \varrho$ and $\varrho L_{b}=L_{\ell(b)} \varrho^{-1}=L_{\varrho(b)} \varrho^{n-1}$ for all $a \in A_{1}$ and $b \in A \backslash A_{1}$. Clearly, $\mathbb{L}_{\mathscr{G}}(\mathscr{H})=1, \mathbb{L}_{\mathscr{G}}(\mathscr{A})=\mathbb{Z}(\mathscr{G})=\mathscr{A}_{1}=\left\{L_{a} ; a \in A_{1}\right\} \cong A_{1}$ and $\mathscr{G}^{\prime}=\left\langle L_{4} \varrho^{n-2}\right\rangle$ is a cyclic group of order n.
5.3 Remark. Let A_{1} be a non-trivial subgroup of index 2 in an abelian group A and $E=A \backslash A_{1}$. Let ϱ be an endomorphism of A_{1} such that $\varrho^{2}=$ id. Put $\lambda(a)=\varrho(a) a^{-1}$ for every $a \in A_{1}$; then $\lambda^{2}(a)=\lambda(a)^{-2}$.
(i) Let $u \in A$ and $v \in A_{1}$ be such that $\lambda(v)=\lambda\left(u^{-2}\right)$. Put $z=\lambda(v) v$. Then $\lambda(z)=\lambda^{2}(v) \lambda(v)=\lambda\left(v^{-2}\right) \lambda(v)=\lambda\left(v^{-1}\right)=\lambda\left(u^{2}\right)$ and $\lambda(z) z=v$. Further, $\lambda(v z)=$ $=\lambda(v) \lambda(z)=\lambda\left(u^{-2}\right) \lambda\left(u^{2}\right)=1$ and $v z=\lambda(v) v^{2} \cdot \lambda(z) z^{2}$. If $v^{\prime}=v u^{2}$ and $z^{\prime}=$ $=z u^{-2}$, then $v=v^{\prime} u^{-2}, z=z^{\prime} u^{2}, u, z \in \operatorname{Ker}(\lambda)$ and $v z=\lambda(v) v^{2}=\lambda(z) z^{2}=$ $=\left(v^{\prime}\right)^{2} u^{-4} \lambda\left(u^{-2}\right)=\left(z^{\prime}\right)^{2} u^{4} \lambda\left(u^{2}\right)(=e)$.
(ii) Let $e, v^{\prime} \in \operatorname{Ker}(\lambda), u \in E$, be such that $\left(v^{\prime}\right)^{2}=e u^{4} \lambda\left(u^{2}\right)$. Then, for $v=v^{\prime} u^{2}$, we have $\lambda(v)=\lambda\left(u^{-2}\right) \cdot v^{\prime}=v u^{2}$ and $e=\lambda(v) v^{2}$.
(iii) Take $u \in E$ (see (i) and (ii)), $v^{\prime}=v u^{-2}$, then $\lambda(v)=\lambda\left(u^{-2}\right)$. If $u^{2}=1$, $v \in A_{1}$ and $\varrho(v)=v$, then $\lambda(v)=\lambda\left(u^{-2}\right)(=1)$.
(iv) Assume that A_{1} is of finite odd order. Then there exists $\in E$ with $u^{2}=1$. Finnaly, if $\varrho(a) \neq a^{-1}$ for some $a \in A_{1}$ and $v=\varrho(a) a$, then $v \neq 1, \varrho(v)=v$ and $v^{2} \neq 1$.
5.4 Construction. (cf. 5.1.3, ..., 5.1.11). Let A_{1} be a non-trivial subgroup of index 2 in an abelian group A. Put $E=A \backslash A_{1}$ and consider an authomorphism ϱ of A_{1} such that $\varrho^{2}=$ id $\neq \varrho$. Let $u \in E$ and $v \in A_{1}$ be such that $\varrho\left(v u^{2}\right)=v u^{2}$ and the order of $e=v \varrho(v)$ is $n / 2$ for $n \geq 4$ even (see 5.3).

Extend ϱ to a permutation of A by $\varrho(a u)=\varrho(a) v u\left(=\varrho\left(a v^{-1}\right) e u\right)$ for every $a \in A_{1}$. Then ϱ becomes a permutation of order n of $A, \varrho\left(A_{1}\right)=A_{1}, \varrho(E)=E$, $\varrho L_{a}=L_{\varrho(a) \varrho}$ and $\varrho L_{b}=L_{\varrho}(\beta) \varrho^{n-1}$ for all $a \in A_{1}, b \in E$.

Let $\mathscr{G}=\left\langle L_{u}, \varrho, a \in A\right\rangle \subseteq A!$. Then $\mathscr{G}=\mathscr{A} \cdot \mathscr{H}$, where $\mathscr{A}=\left\{L_{a} ; a \in A\right\} \cong A$ $\mathscr{H}=\langle\varrho\rangle$ is a cyclic group of order $n, \mathbb{L}_{\mathscr{C}}(\mathscr{H})=1, \mathbb{L}_{\mathscr{G}}(\mathscr{A})=\mathscr{A}_{1}=\left\{L_{a} ; a \in A_{1}\right\} \cong$ $\cong A_{1}, \mathbb{Z}(\mathscr{G})=\left\{L_{i} ; a \in A_{1} ; \varrho(a)=a\right\}$ (we have $m=r_{1}=2$ and $\mathscr{A}_{n-1}=\left\{L_{a} ;\right.$ $a \in E \neq \emptyset\}$.
5.5 Example. Let $A=\underline{Z}_{16}(+), A_{1}=2 A, \varrho(a)=3 a$ for every $a \in A_{1}\left(A_{1}\right.$ is a cyclic group of order 8$), u=1 \in E=A \backslash A_{1}, v=6 \in A_{1}$. Then $\varrho(v+2 u)=$ $=\varrho(8)=8=v+2 u, e=v+\varrho(v)=8, n=4$.

Further, $\lambda(a)=2 a, a \in A_{1}$, and $\varrho(1)=7, \varrho(3)=13, \varrho(5)=3, \varrho(7)=9$, $\varrho(9)=15, \varrho(11)=5, \varrho(13)=11, \varrho(15)=1, \varrho(1)=6, \lambda(3)=10, \lambda(5)=14$, $\lambda(7)=2, \lambda(9)=6, \lambda(11)=10, \lambda(13)=14, \lambda(15)=2, \varrho(2)=6, \varrho(4)=12$, $\varrho(6)=2, \varrho(8)=8, \varrho(10)=14, \varrho(12)=4, \varrho(14)=10, \lambda(2)=4, \lambda(4)=8$, $\lambda(6)=12, \lambda(8)=0, \lambda(10)=4, \lambda(12)=8, \lambda(14)=12$. Consequently, $\lambda\left(A_{1}\right)=$ $=\{0,4,8,12\}, \lambda(E)=\{2,6,10,14\}$ and $\operatorname{Ker}(\lambda)=\{0,8\}$.

Now, consider the corresponding group $\mathscr{G}=\mathscr{A} \cdot \mathscr{H}$ (see 5.4). Then $\mathscr{A} \cong A=$ $=\underline{Z}_{16}(+), \mathscr{H}=\langle\varrho\rangle \cong \underline{Z}_{4}(+), \mathscr{G}^{\prime}=\left\langle L_{2} \varrho^{2}\right\rangle=\left\{L_{a} ; a \in \lambda\left(A_{1}\right)\right\} \cup\left\{L_{b} \varrho^{2} ; b \in \lambda(E)\right\}$ is a cyclic group of order $8, \mathscr{G}^{\prime} \cap \mathscr{H}=1, \mathbb{Z}(\mathscr{G})=\left\{L_{0}, L_{8}\right\} \cong \underline{Z}_{2}(+), \mathbb{N}_{\mathscr{G}}(\mathscr{H})=$ $=\mathbb{Z}(\mathscr{G}) \mathscr{H} \cong \underline{Z}_{2}(+) \times \underline{Z}_{4}(+), \quad \mathbb{N}_{\mathscr{G}}(\mathscr{H}) \nexists \mathscr{G}, \quad \mathbb{N}_{\mathscr{G}}(\mathscr{A})=\mathscr{A} \cdot\left\langle\varrho^{2}\right\rangle=\mathscr{G}^{\prime} \cdot \mathscr{A} \neq$ $\neq \mathscr{G}, \mathscr{G}^{\prime} \mathscr{H}=\overline{\mathscr{A}}_{1} \mathscr{H} \neq \overline{\mathscr{G}}$.
5.6 Example. Let $A=Z_{30}(+), A_{1}=2 A, \varrho(a)=4 a$ for every $a \in A_{1}\left(A_{1}\right.$ is a cyclic group of order 15$), u=1 \in E=A \backslash A_{1}, v=8 \in A_{1}$. Then $\varrho(v+u)=$ $=\varrho(10)=10, e=v+\varrho(v)=10, n=6$. Further, $\lambda(a)=3 a$ for every $a \in A_{1}$ and $\varrho(1)=9, \varrho(3)=17, \varrho(5)=25, \varrho(7)=3, \varrho(9)=11, \varrho(11)=19, \varrho(13)=$ $=27, \varrho(15)=5, \varrho(17)=13, \varrho(19)=21, \varrho(21)=29, \varrho(23)=7, \varrho(23)=7$, $\varrho(25)=15, \varrho(27)=23, \varrho(29)=1, \lambda(1)=8, \lambda(3)=14, \lambda(5)=20, \lambda(7)=26$, $\lambda(9)=2, \lambda(11)=8, \lambda(13)=14, \lambda(15)=20, \lambda(17)=26, \lambda(19)=2, \lambda(21)=8$, $\lambda(23)=14, \lambda(25)=20, \lambda(27)=26, \lambda(29)=2, \varrho(2)=8, \varrho(4)=16, \varrho(6)=24$, $\varrho(8)=2, \varrho(10)=10, \varrho(12)=18, \varrho(14)=26, \varrho(16)=4, \varrho(18)=12, \varrho(20)=$ $=20, \varrho(22)=28, \varrho(24)=6, \varrho(26)=14, \varrho(28)=22, \lambda(2)=6, \lambda(4)=12$, $\lambda(6)=18, \lambda(8)=24, \lambda(10)=0, \lambda(12)=6, \lambda(14)=12, \lambda(16)=18, \lambda(18)=$ $=24, \lambda(20)=0, \lambda(22)=6, \lambda(24)=12, \lambda(26)=18, \lambda(28)=24$. Consequently, $\lambda\left(A_{1}\right)=\{0,6,12,18,24\}, \lambda(E)=\{2,8,14,20,26\}$ and $\operatorname{Ker}(\lambda)=\{0,10,20\}$.

Now, consider the corresponding group $\mathscr{G}=\mathscr{A} \cdot \mathscr{H}$ (see 5.4). Then $\mathscr{A} \cong A=\underline{Z}_{30}(+), \mathscr{H}=\langle\varrho\rangle \cong \underline{Z}_{6}(+), \mathscr{G}^{\prime}=\left\langle L_{4} \varrho^{2}\right\rangle$ is a cyclic group of order $15, \mathscr{G}^{\prime} \cap \mathscr{H}=1, \mathbb{Z}(\mathscr{G})=\left\{L_{0}, L_{10}, L_{20}\right\} \cong \underline{Z}_{3}(+)$.

6. Some special cases (B)

6.1. Let G be a group such that $G=A H$, where A is an abelian subgroup of $G, A \nsupseteq G$ and H is a (finite cyclic) group of order $p, p \geq 2$ being a prime, such that $\mathbb{Q}_{G}(H)=1$. Now, by 3.24 and 4.12 , we have $p \geq 3, \mathbb{Z}(G)=A_{1}=\mathbb{1}_{G}(A)$, $m \mid p-1, m=\left[A: A_{1}\right]$. Further, by 4.7 (see also 4.13), $\mathbb{Z}(G)$ contains at least one element of order p. Let P and R denote the p-primary component of A and the p-socle of A, resp. Clearly, $R \subseteq P \subseteq \mathbb{Z}(G)$.
6.1.1 Lemma. $G^{\prime} \subseteq R H=R \times H \unlhd G, G^{\prime} \nsubseteq A, G^{\prime}$ is a p-elementary abelian group and $G=A G^{\prime}$.

Proof. By 3.24(v), $G^{\prime} \subseteq \mathbb{Z}(G) H=\mathbb{Z}(G) \times H$. Thus $\mathbb{Z}(G) H \unlhd G$ and, since $R H=R \times H$ is characteristic in $\mathbb{Z}(G) H$, we also have $R H \unlhd G$. Finally, since $G^{\prime} \nsubseteq A,[G: A]=p$ is a prime and $A \subseteq A G^{\prime} \subseteq G$, we conclude easily that $A G^{\prime} \subseteq G$.
6.1.2 Lemma. $[w, a]=\left[a, w^{-1}\right]=[a, w]^{-1}$ for all $a \in A$ and $w \in H$.

Proof. We may assume that $w \neq 1$. Then (see 3.1) we have $\left[a, w^{-1}\right]=$ $=a^{-1} w a w^{-1}=a^{-1} \varrho(a) w^{\sigma(a)-1}, a^{-1} \varrho(a)=\varrho(a) a^{-1} \in A_{1}=\mathbb{Z}(G)$ (3.13 and 3.14), $w\left[a, w^{-1}\right]=a^{-1} \varrho(a) w^{\sigma(a)}=a^{-1} w a$ and $\left[a, w^{-1}\right]=w^{-1} a^{-1} w a=[w, a]$. Similarly, $[a, w]=a^{-1} w^{-1} a w=w^{-\sigma(a)} \varrho(a)^{-1} a w=\varrho(a)^{-1} a w^{-\sigma(a)+1}$ and $[a, w]^{-1}=$ $=a^{-1} \varrho(a) w^{\sigma(a)-1}=\left[a, w^{-1}\right]$.
6.1.3 Lemma. $w[w, a]=[w, a] w$ for all $a \in A$ and $w \in H$.

Proof. Use 6.1.2.

6.1.4 Lemma. $[w, a]^{\sigma(a)}=\left(a^{-1} \varrho(a)\right)^{\sigma(a)} \cdot w^{\sigma(a) \sigma(a)-1)}$ for all $a \in A$ and $w \in H$.

Proof. We have $[w, a]=a^{-1} \varrho(a) w^{\sigma(a)-1}$ and $a^{-1} \varrho(a) \in \mathbb{Z}(G)$.
6.1.5 Lemma. $a^{-1}[w, a] a=[w, a]^{\sigma(a)}$ for all $a \in A$ ad $w \in H$.

Proof. We have $[w, \quad a] a=a^{-1} \varrho(a) w^{\sigma(a)-1} \cdot a=a^{-1} \varrho(a) w^{\sigma(a)-2} \cdot w a=$ $=a^{-1} \varrho(a) w^{\sigma(a)-2} \cdot \varrho(a) w^{\sigma(a)}=\left(a^{-1} \varrho(a)\right)^{2} \cdot w^{\sigma(a)-2} \cdot a w^{\sigma(a)}=\left(a^{-1} \varrho(a)\right)^{2} \cdot w^{\sigma(a)-3}$. $\left.\cdot w a \cdot w^{\sigma(a)}=\left(a^{-1} \varrho(a)\right)^{2} \cdot w^{\sigma(a)-3} \cdot \varrho(a) w^{2 \sigma(a)=(a-1} \varrho(a)\right)^{3} \cdot w^{\sigma(a)-3} \cdot a w^{2 \sigma(a)}=\ldots=$ $=\left(a^{-1} \varrho(a)\right)^{\sigma(a)} \cdot a w^{\sigma(a)(\sigma(a)-1)}=a \cdot\left(a^{-1} \sigma(a)\right)^{\sigma(a)} \cdot w^{\sigma(a) \sigma(a)-1)}=a \cdot[w, a]^{\sigma(a)}$ (use 6.1.4).
6.1.6 Proposition. Let $a \in A$ be such that the finite cyclic group A / A_{1} (see 1.24(i)) iss generated by the block $a A_{1}$. The $G^{\prime}=\langle[w, a]\rangle$ for every $w \in H$, $w \neq 1$. In particular, G^{\prime} is a p-element group, $A \cap G^{\prime}=1$ and $G=A G^{\prime}$. Moreover, $M=\langle a\rangle H$ is a normal metacyclic subgroup of G and $G \cong M \times A /\langle a\rangle$.

Proof. Put $K=\langle[w, a]\rangle$. Then $K \subseteq G^{\prime}$, and so K is a cyclic p-group. If $K=1$, then $a \in \mathbb{N}_{G}(H)=A_{1} H\left(3.24(\mathrm{v}), a \in A_{1}\right.$ and $A_{1}=A$, a contradiction with
$A \not \ddagger G$. Thus $\kappa \neq 1$ and consequently, K is a p-element group. Clearly, $A_{1}=\mathbb{Z}(G) \subseteq \mathbb{N}_{G}(K)$ and its follows from 6.1.5 that $a \in \mathbb{N}_{G}(K)$. Thus $A \subseteq \mathbb{N}_{G}(K)$ and, in fact $\mathbb{N}_{G}(K)=G$, since $w \in \mathbb{N}_{G}(K)$ by 6.1.4. We have proven that $K \unlhd G$. If $K \subseteq A$, then $w^{-1} a w \in A$ and it follows easily that $w \in \mathbb{N}_{G}(A)$ and $A \unlhd G$, a contradiction. Consequently, $K \nsubseteq A, A \cap K=1 A \neq A K$ and $A K=G$. From this, G / K is abelian, and therefore $G^{\prime} \notin K$. Thus $K=G^{\prime}$.
6.1.7 Lemma. $R \cap G^{\prime}=1$ and $R H=R \times H=R \times G^{\prime}$.

Proof. By 6.1.6, $A \cap G^{\prime}=1$ and G^{\prime} is a p-element group. Thus $G^{\prime} \notin R$ and $R H=R G^{\prime}=R \times G^{\prime}$.
6.1.8 Lemma. Let K be a p-element subgroup of $R H$ such that $K \nsubseteq R$ and $K \neq G^{\prime}$. Then $A \cap K=1, \mathbb{L}_{G}(K)=1$ and $G=A K$.

Proof. We have $R H=R K$ and $A K=A R K=A R H=A H=G$.
6.1.9 Lemma. Let $l \geq 0$ be such that $\mathbb{Z}_{l}(G) \subseteq A$ and $H \mathbb{Z}_{l}(G) \not \not G$. Then $\mathbb{Z}_{l}(G) \neq \mathbb{Z}_{l+1}(G) \subseteq A$.

Proof. We have $G / \mathbb{Z}_{l}(G)=\bar{G}=\bar{A} \cdot \bar{H}$, where $\bar{A}=A / \mathbb{Z}_{l}(G)$ and $\bar{H}=$ $=H \mathbb{Z}_{l}(G) / \mathbb{Z}_{l}(G)(\cong H)$. Now, $\bar{A} \nsubseteq \bar{G}$ and $\bar{H} \nsubseteq \bar{G}$. Thus $1 \neq \mathbb{Z}(\bar{G}) \subseteq \bar{A}(3.24$ and 4.12).
6.1.10 Lemma. There exists $k \geq 1$ such that $\mathbb{Z}_{k}(G) \subseteq A, \mathbb{L}_{G}\left(H \mathbb{Z}_{l}(G)\right)=\mathbb{Z}_{l}(G)$ for every $0 \leq l \leq k$ and $H \mathbb{Z}_{k}(G) \unlhd G$.

Proof. We have $\mathbb{Z}_{1}(G)=\mathbb{Z}(G) \subseteq A$ and $\mathbb{Q}_{G}\left(H \mathbb{Z}_{0}(G)\right)=\mathbb{Q}_{G}(H)=1=\mathbb{Z}_{0}(G)$. Further, if $\mathbb{L}_{G}\left(H \mathbb{Z}_{r}(G)\right) \neq \mathbb{Z}_{r}(G)$ for some $r \geq 1$, then $H \mathbb{Z}_{r}(G) \unlhd G$, and hence $H \mathbb{Z}_{s}(G) \unlhd G$ for every $s \geq r$. The result is now clear from 6.1.9 and the fact that $G / \mathbb{Z}(G)$ is finite.
6.1.11 Lemma. Let $k \geq 1$ be as in 6.1.10. Then $\mathbb{Z}_{t}(G) \subseteq A$ and $H \mathbb{Z}_{t}(G)=$ $=G^{\prime} \mathbb{Z}_{t}(G) \unlhd G$ for every $t \geq k$.

Proof. Assume that $\mathbb{Z}_{t}(G) \subseteq A$ and $H \mathbb{Z}_{t}(G) \unlhd G$ for some $t \geq k$ (see 6.1.10). Then $G / \mathbb{Z}_{t}(G)=\bar{G}=\bar{A} \cdot \bar{H}$, where $\bar{A}=A / \mathbb{Z}_{t}(G), \bar{A} \notin \bar{G}$ and $\bar{H}=H \mathbb{Z}_{t}(G) / \mathbb{Z}_{t}(G) \unrhd$ $\triangle \bar{G}, \bar{H} \cong H$. Clearly, $\bar{H}=\bar{G}^{\prime}$, and so $H \mathbb{Z}_{t}(G)=G^{\prime} \mathbb{Z}_{t}(G)$. Further, since $\bar{A} \notin \bar{G}$, we have $\vec{H} \nsubseteq \mathbb{Z}(\bar{G})$, and so $\bar{H} \cap \mathbb{Z}(\bar{G})=1$ and $\mathbb{Z}(\bar{G}) \subseteq \bar{A}$ by 2.5 (ii). Thus $\mathbb{Z}_{t+1}(G) \subseteq A$.
6.1.12 Corollary. $\mathbb{Z}_{l}(G) \subseteq A$ for every $l \geq 0$.
6.1.13 Lemma. Let v be the smallest non-negative integer such that $\mathbb{Z}_{v}(G)=Z_{v+1}(G) . \quad$ Then $\quad v \geq 1, \quad \mathbb{Z}_{v}(G) \subseteq A, \quad H \mathbb{Z}_{v}(G)=G^{\prime} \mathbb{Z}_{v}(G) \unlhd G \quad$ and $\left[G: \mathbb{Z}_{v}(G)\right] \mid p(p-1)$.

Proof. Easy.

6.2 Proposition. Let G be a group such that $G=A H$, where A is an abelian subgroup of G and H is a (finite cyclic) subgroup of prime order $p \geq 2$. Then exactly one of the following five cases takes places:
(1) $H \subseteq A=G$ and G is abelian;
(2) $A \cap H=1, A \unlhd G$, and $G=A \times H$ is abelian;
(3) $A \cap H=1, A \unlhd G, \mathbb{L}_{G}(H)=1, G^{\prime} \subseteq A, G \neq A G^{\prime}$ and G is not abelian;
(4) $A \cap H=1, A \notin G, G^{\prime}=H(\unlhd G), G=A G^{\prime}, p \geq 3$ and G is not abelian;
(5) $A \cap H=1, A \notin G, \mathbb{L}_{G}(H)=1 \neq \mathbb{Z}(G), H \neq G^{\prime}, G^{\prime}$ is a subgroup of order $p, G=A G^{\prime}, p \geq 3$ and G is not abelian.

Proof. See 6.1.
6.3 Corollary. Let G be a group such that $G=A H$, where A is an abelian subgroup and H is a subgroup of a prime order p. If $A \not \ddagger G$, then $p \geq 3, G^{\prime}$ is a subgroup of order p and $G=A G^{\prime}$. If, moreover, $\mathbb{Z}(G)=1$, then $H=G^{\prime}, A$ is a finite cyclic $\operatorname{group}, \operatorname{card}(A) \mid p-1$ and $\operatorname{card}(G) \mid p(p-1)$.
6.4 Corollary. Let G be a group such that $G=A H$ where A is a cyclic subgroup of G and H is a subgroup of prime order. Then G is metacyclic.
6.5 Remark. Let G be a group such that $G=A H$, where A is abelian, $A \nexists G$, H is p-element for a prime $p \geq 2$ and $H \geq G$. Then $A \cap H=1, p \geq 3$ and $H=G^{\prime}$ (see 6.2(4)). Further, the mapping $\phi: A \rightarrow \operatorname{Aut}(H),(\phi(a))(x)=a x a^{-1}$, is a homomorphism and $\operatorname{Ker}(\phi)=\mathbb{Z}(G)=\mathbb{Z}_{G}(A)=A_{1}$. The group $\operatorname{Aut}(H)$ is a cyclic group of order $p-1$, and hence A / A_{1} is a non-trivial cyclic group whose order divides $p-1$. Clearly, $R \subseteq A_{1}$, where R is a the p-socle of A. Now, there exists a subgroup H_{1} of G such that $\operatorname{card}\left(H_{1}\right)=p, \mathbb{L}_{G}\left(H_{1}\right)=1$ and $G=A H_{1}$ if and only if $R \neq 1$. In that case, $R H_{1}=R G^{\prime}$.
(i) If $G=A H_{1}$ for a subgroup H_{1} such that $\operatorname{card}\left(H_{1}\right)=p$ and $\mathbb{Q}_{G}\left(H_{1}\right)=1$, then $R \times H_{1}=R H_{1}=R G^{\prime}=R \times G^{\prime}$, and hence $R=1$.
(ii) If H_{1} is a subgroup of G such that $H_{1} \subseteq R G^{\prime}$ and $\operatorname{card}\left(H_{1}\right)=p$, then $H_{1} \unlhd G$ if and only if $H_{1} \subseteq R$ or $H_{1}=G^{\prime}$.
(iii) If H_{1} is a subgroup of $R G^{\prime}$ such that $H_{1} \nsubseteq R, H_{1} \neq G^{\prime}$ and $\operatorname{card}\left(H_{1}\right)=p$ (such a subgroup exists if and only only if $R \neq 1$), then $\mathbb{L}_{G}\left(H_{1}\right)=1, R H_{1}=R G^{\prime}$ and $G=A H_{1}$.

Quasigroups whose inner permutation groups are finite of prime order

7.1 Theorem. Let Q be a quasigroup such that $\operatorname{card}(I(Q))=p$ for a prime $p \geq 2$. Then Q is either medial or stably nilpotent of class 2 . Moreover, in the latter case, the following are true:
(i) $p \geq 3$.
(ii) Q / s_{Q} is a (non-trivial) cyclic group whose order divides $p-1$.
(iii) If Z is the block of s_{Q} such that $e \in Z e$ being the unique idempotent element of Q), then Z is an abelian group containing at least one element of order p.
(iv) If Q is finite, then p divides $\operatorname{card}(Q)$.

Proof. Use 6.1, 6.2 and [1, Part 3].
7.2 Construction. Let $G=A H$ be a group as in 6.1. For every $v \in H$, there exist a permutation ϱ_{v} of A and a mapping $\sigma_{v}: A \rightarrow\{0,1, \ldots, p-1\}$ such that $v a=\varrho_{v}(a) v^{\sigma(a)}$ for every $a \in A$.

Now, choose $u, v \in H$ such that $H=\langle u, v\rangle$ and define an operation $*$ on A ny $a * b=\varrho_{u}(a) \varrho_{v}(b)$ for all $a, b \in A$. Then $Q(*)$ becomes a quasigroup, $M(Q(*)) \cong G$ and $I(Q(*)) \cong H\left(\cong \underline{Z}_{p}(+)\right)$. Clearly, $Q(*)$ is not medial (see 7.1).

References

[1] Drápal, A., Kepka, T. and Maršálé, P., Multiplication groups of quasigroups and loops II, Acta Univ. Carolinae Math. Phys. 35/1 (1994), 9-29.
[2] Itô, N., Über das Produkt von zwei abelschen Gruppen, Math. Z. 52 (1955), 400-401.

[^0]: Department of Mathematics, Charles University, Sokolovská 83, 18675 Praha 8, Czech Republic
 Faculty of Education, Charles University, M. D. Rettigové 4, 11639 Praha 1, Czech Republic
 The work is a part of the research project MSM0021620839 financed by MSMT and partly supported by the Grant Agency of the Czech Republic, Grant \# 201/02/0594 and Grant \# 406/05/P561.

